説明

付属フィルタを有するカニューレ

【課題】血液を濾過する装置を提供すること。
【解決手段】装置(10)は普通、血管内、特に大動脈などの動脈内を流れる血液を濾過するメッシュ(40)と、メッシュ(40)を血管内で開閉するようにされた構造体と、構造体を作動させる手段とを備えている。方法は、普通、塞栓性物質を捕捉するためにメッシュ(40)を血管に導入する工程と、濾過の過程で必要であればメッシュ(40)を調整する工程と、メッシュ(40)および捕捉された異物を血管から除去する工程とを包含する。さらに、効果的な濾過が確実に得られるように視覚化技法が用いられる。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の分野)
本発明は、一般に、塞栓性物質を捕獲するために血管内に一時的に配置される血液フィルタ装置に関する。詳しくは、血液をバイパス−酸素付加器システムから動脈に運ぶためにおよび血管内の塞栓性物質を捕捉するために血管内に配置される、付属血管フィルタを有するカニューレ装置に関する。さらに詳しくは、本発明は、心臓手術中に大動脈内に配置される血液フィルタ装置に関する。本発明はまた、塞栓性物質を捕捉および除去するために一時的に血液を濾過する方法に関する。詳しくは、動脈からアテローム物質を引き離し得る、切開、クランピング、およびクランプ解除などの処置によって生じる塞栓形成から患者を保護する方法に関する。
【背景技術】
【0002】
(発明の背景)
血液を濾過するように設計された既知の装置は多数存在する。これらの装置の大多数は、肺に向かっている塞栓を捕捉するために静脈内に永久に配置されるように設計されている。例えば、Kimmell,Jr.の特許文献1(本特許および本明細書で言及する他のすべての参考文献は、それらの全体が本明細書に完全に記載されているかのごとくに本明細書に明白に参考として援用される)は、いわゆるキムレイ−グリーンフィールドフィルタを開示している。これは典型的には静脈腔内に配置される永久フィルタであって、ほぼ円錐形に配列された複数の収束脚部を備え、これらはそれぞれの収束端部で頂点のハブに結合している。各脚部は、静脈腔の内壁を突き刺すように端部に曲がりフックを有する。
【0003】
Cottenceauらの特許文献2は、血管内、典型的には静脈腔内への移植用の血液フィルタを開示している。この装置は、巻かれたジグザグ状の糸と、血塊を留める中央ストレーナ部とを備えている。このストレーナ部はメッシュネットを備え、生物学的に吸収され易い材料により製造され得る。この装置は、また血管壁に突入する取付手段も備えている。
【0004】
Guntherらの特許文献3は、静脈系内の血液を濾過する方法を開示している。この方法では、フィルタは、カテーテルを通して誘導される位置決め手段によってカテーテルの遠位端を超えて血管内に位置決めされる。位置決め手段はカテーテルにロックされ、カテーテルは患者に固定される。フィルタはかごの形をとり、複数の細い弾性ワイヤよりなる。このフィルタは血管壁内での内皮化を避けるために血管内で再位置決めされ得る。
【0005】
同様に、Lefebvreの特許文献4は、静脈腔内への静脈内ルートによる移植のための血液フィルタを開示している。このフィルタは円錐形状であり、濾過手段は可撓性金属グリッド、可撓性合成またはプラスチックグリッド、合成フィラメントの織物、もしくは非分解性または恐らくは生体分解性織布よりなり得る。フィルタを静脈内に保持するために、この装置は、静脈腔の内壁に容易に突入し得るように先を尖らせた可撓性ロッドを含む。
【0006】
永久フィルタに関連する問題は様々にある。例えば、フィルタをかなりの期間、静脈腔の内壁と接触したままにしておくと、内皮化が生じ、この後、フィルタは静脈腔に固着し得る。この内皮化がさらに血管閉塞を引き起こし、このためフィルタにより解決されるはずの問題が生じ得る。Guntherの装置以外のこれらの従来のフィルタは、この問題に注目していない。
【0007】
Bajajの特許文献5には、一時的静脈フィルタ装置が開示されている。この装置は肺動脈内の塞栓を取り扱う。動脈と呼ばれているが実際には静脈である。Bajajの装置は、臀部の手術、脳卒中または脳出血、大トラウマ、腹部または骨盤の大手術、神経外科手術、腫瘍、敗血症、心臓性呼吸不全または固定化のために肺塞栓症にかかり易くなった患者の肺幹内に一時的に配置される心臓内カテーテルである。
【0008】
Bajajの装置は、肺に達する前に静脈内の塞栓を捕捉する網細工よりなる傘を含む。この装置は、また、繊維プラスミノゲン活性剤(TPA)などの血栓溶解剤により塞栓を溶解し、高速超音波エネルギーにより塞栓を破壊し、そしてカテーテルの管腔を通しての真空吸引により塞栓を除去することができる。この非常に複雑な装置は、静脈濾過用に設計されたもので、代わりの良好な処置があれば正当化は難しい。
【0009】
動脈での使用のために設計された血管内装置は非常に少ない。静脈内のみでなく動脈内でも機能するフィルタは、動脈と静脈との間には血液力学的な相違があるためさらに別の注意を払う必要がある。動脈は静脈よりはるかに可撓性および弾性があり、動脈では血流は心収縮流と心拡張流との間の大きな圧力変動により博脈する。これらの圧力変動によって動脈壁が拡張および収縮する。動脈内の血流速は約1から約5L/分まで変動する。
【0010】
Ginsburgの特許文献6は動脈装置を開示している。この装置は、その遠位端にストレーナ装置を有するカテーテルを含む。この装置は通常は非手術血管成形治療に関連して使用される。この装置は治療部位から下流側の血管内に挿入され、治療後、ストレーナは捕捉された塞栓の周りでつぶれ、ストレーナおよび塞栓は体外に除去される。Ginsburgの装置は5L/分の流速には耐えることができなかった。これは小動脈のみのために設計されており、従って体のあらゆる部分に向かう塞栓を捕獲することはできなかった。例えば、脳に向かっている塞栓を捕えることはできないであろう。
【0011】
Ing.Walter Hengst Gmb H & Co.の特許文献7は、塞栓症の危険性のある人の動脈内で使用され得る別のフィルタを開示している。このフィルタは、フィルタを畳まれた状態から開いた状態に変える内在張力を有する。あるいは、折り畳み連結システムによって開くことができる。この折り畳み連結システムは、円錐形フィルタの長軸に沿って平行列に間隔を開けて配置された複数の折り畳みアーム(木の枝にほぼ似ている)を備えている。折り畳みアームは、血管内でのフィルタの保持をよくするために、血管壁に突入するようにされた突出端に小さなかぎを備えてもよい。
【0012】
さらに、de Silvaの特許文献8は、左心室を開ける心臓手術中に使用するための動脈フィルタを記載している。この場合のフィルタは手術部位の洗浄で除去されなかった粒子を回収するために使用される。
【0013】
必要とされているものは、一時使用のための簡単で安全な血液フィルタである。例えば、外科処置を複雑にすることも長引かせることもない、手術中に使用するための一時的動脈装置が所望されている。現存する従来の装置はこの目的には不十分である。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】米国特許第3,952,747号明細書
【特許文献2】米国特許第5,375,612号明細書
【特許文献3】米国特許第5,329,942号明細書
【特許文献4】仏国特許第2,567,405号明細書
【特許文献5】米国特許第5,053,008号明細書
【特許文献6】米国特許第4,873,978号明細書
【特許文献7】独国特許第DE 34 17 738号明細書
【特許文献8】ブラジル国特許出願第P19301980A号明細書
【発明の概要】
【課題を解決するための手段】
【0015】
(発明の要旨)
本発明は血液を濾過する血液フィルタ装置および方法に関する。本発明の装置は、血液から塞栓性物質を濾過するようにされる。塞栓性物質または異物とは、血流内を自由に移動することが可能であれば体内に合併症を引き起こし得る任意の粒状物質である。この粒状物質としては、アテローム断片またはアテローム物質および脂肪が含まれるが、これらに限定されない。
【0016】
1つの実施形態では、装置は4つの主要な要素、すなわち、血管内を流れる血液を濾過するメッシュと、メッシュを血管内に配置しまたこれを血管から除去するようにされた挿入チューブと、メッシュを挿入チューブに接続しそして血液がメッシュを通って流れる位置にメッシュを位置決めして維持するようにされた傘フレームと、傘フレームを開閉する手段とを含む。
【0017】
別の実施形態では、装置は3つの主要な要素、すなわち、血管内を流れる血液を濾過するメッシュと、血液がメッシュを通って流れる位置にメッシュを位置決めして維持するようにされた傘フレームと、傘フレームを開閉する手段とを含む。傘フレームは、血管に挿入されるカニューレに固着される。別の実施形態では、必要であれば、カニューレの端部を覆うために別のメッシュが配備され得る。この追加のメッシュは単に上記の第2の好適な実施形態のメッシュの拡張部であっても、カニューレの端部かまたはカニューレ内のいずれかに配置される個別のメッシュであってもよい。
【0018】
別の実施形態では、装置は4つの主要な要素、すなわち、血管内を流れる血液を濾過する連続メッシュと、メッシュを開閉するようにされた膨張可能なドーナツ状バルーンと、メッシュおよびバルーンを血流内の定位置に保持する複数の結合ラインと、作動アセンブリとを含む。好適な実施形態では、メッシュは円錐形であり、バルーンおよびメッシュを濾過のための定位置に保持するために、膨張可能なバルーンに取付けられる4本の結合ラインが用いられる。
【0019】
さらに別の実施形態では、装置は加圧カニューレ内に配置された動脈カニューレを含み得る。加圧カニューレは、近位領域と遠位領域とこれらの間の中間領域とを有する。中間領域は、近位端から遠位端まで延び血液供給用のカニューレを受容する形状の第1のルーメンを含む。遠位領域は、拡張した状態ではほぼ円錐の形状を有してもっと小さなほぼ円筒形状に収縮され得るメッシュを備えた付属フィルタを含み得る。メッシュの近位端は、メッシュを開閉するようにされた膨張可能なドーナツ状バルーンまたは膨張シールに取り付けられ得る。膨張シール−メッシュアセンブリは近位端で加圧カニューレに取り付けられ、遠位端には、選択的に、断絶のない連続メッシュ、血液供給用カニューレの遠位領域に取り付けられたメッシュ、および加圧カニューレの遠位領域に取り付けられたメッシュのうちのいずれかを含み得る。加圧カニューレは普通、膨張シールを膨張および収縮させる手段を含み得る。
【0020】
別の実施形態では、装置は、メッシュと、動脈カニューレと、血流拡散器と、血管内のメッシュを開閉するようにされた傘フレームまたは膨張バルーンなどの構造体とを含む。血流拡散器は動脈カニューレの内側に位置しても外側に位置してもよい。カニューレ内およびカニューレ外拡散器の両方の実施形態において、血流拡散器はメッシュより近位または遠位のいずれに配置されてもよい。
【0021】
別の実施形態では、装置は、広げるとメッシュを取り込むスリーブと、メッシュを開閉するようにされた拡張フレームとを含む。1つの実施形態では、スリーブはスリーブの展開および巻き込みを制御する制御ラインによって作動され得る。取り込まれる構造体は、血液がメッシュを通って流れる位置にメッシュを位置決めして維持するようにされた傘フレームであり得る。もしくは、取り込まれる構造体は膨張可能なバルーンである。
【0022】
さらに別の実施形態では、装置は部分的に変形可能な(例えば)エラストマー材料よりなるカニューレを含み、これによりメッシュが閉じるとカニューレのこの変形可能部分がへこんでメッシュおよび対応する適応構造体を吸収し、この結果、血管導入用の器具の輪郭が縮小される。
【0023】
本発明の方法は、特に塞栓性物質を捕捉するために血管内を流れる血液を濾過し、これにより患者を塞栓形成から保護することに関する。本発明の方法の1つの局面によれば、患者の動脈の1領域に影響を与える処置であって、動脈がその内表面に異物を含み、異物の少なくとも一部が処置中に加えられる機械的なまたは他の力の結果として引き離される処置を行っている一方で、引き離された異物を捕捉するために、影響を受ける動脈の1領域より下流側の血管内に取り外し可能な濾過装置を展開することによって、患者は手術中の塞栓形成から保護される。
【0024】
他の実施形態では、本発明の方法は、普通、以下の工程、すなわち、メッシュを血管内に導入して血液中の塞栓性物質または異物を捕捉する工程と、必要であればメッシュの位置決めを行う工程と、メッシュおよび捕捉された異物を血管から除去する工程とを包含する。加えて、効果的な濾過を確実にするために、上記の処置と共に、経頭蓋ドップラー超音波検査、経食道超音波心臓検査、心外膜超音波心臓検査、および経皮または血管内超音波検査が使用され得る。
【0025】
好適な方法では、心臓手術中に、特に心臓バイパス手術中に患者を塞栓形成から保護するために血液が濾過される。この方法では、メッシュは大動脈内に位置決めされ、血液が頚動脈、腕頭幹、および左鎖骨下動脈に達する前に血液を濾過する。
【0026】
本発明は、部分的には心臓手術中に塞栓形成が生じるという認識に鑑みて開発された。塞栓は心臓手術患者に頻繁に検出され、神経系、心臓、および他の全身性合併症の原因であることが分かっている。特に、塞栓形成は、脳卒中、長期入院、および場合によっては死などの問題の重要な原因となると考えられる。心臓手術を受ける患者のうち、5〜10%は脳卒中を起こし、30%は認識力が損なわれる。さらに、塞栓形成は、機械的なまたは他の力が血管に加えられる、切開、クランピング、およびカニューレ挿入などの血管に行われる処置の結果であることが多いことが認識されている。例えば、Barbutらの「Cerebral Emboli Detected During Bypass Surgery Are Associated With Clamp Removal(バイパス手術中に検出される脳塞栓はクランプ除去に関連する)」,Stroke,25(12):2398−2402(1994)を参照。本文献はその全体が本明細書において参考として援用されている。これらの処置は、心臓手術、冠動脈バイパス移植手術を含む冠動脈手術、動脈瘤修復手術、血管形成術、アテレクトミー、および頚動脈内膜切除術を含む動脈内膜切除術などの多くの様々なタイプの手術で通常行われる。また、これらの処置中に血液をカニューレにより血管内に再導入すると、血液が高速で血管壁に突き当たる結果としてプラークおよび他の塞栓形成物質が引き離され得ることも認識されている。例えば、CosgroveらのLow Velocity Aortic Cannula(低速大動脈カニューレ)、米国特許第5,354,288号を参照。最後に、塞栓形成はいくつかの特定のタイプの患者により生じ易いことが分かっている。例えば、塞栓形成は、年配の患者およびアテローム症(atheromatosis)を持つ患者に、より頻繁に生じる。実際において、アテローム性塞栓形成は、これは大動脈アテローム症の発病度に関連するものであるが、心臓手術を受ける患者の、手術関連の神経系の病気の罹患率に貢献するただ1つの最も重要な要因である。
【0027】
塞栓性物質は、直径28mmで検出されているが、通常0.02mm(20μm)から5mmの範囲であり、主に大動脈壁から引き離されたアテローム性断片および切開中に入る気泡よりなるが、心臓手術中に形成される血小板集塊も含む。Barbutら「Determination of Embolic Size and Volume of Embolization During Coronary Artery Bypass Surgery Using Transesophageal Echocardiography(経食道超音波心臓検査を用いた冠動脈バイパス手術中の塞栓サイズおよび体積の決定)」,J. Cardiothoracic Anesthesia(1996)を参照。これらの塞栓は大脳循環または全身性動脈系のいずれかに入る。大脳循環に入る塞栓は小動脈を塞ぎ、巨視的なまたは微視的な脳梗塞を、そしてこの結果、神経認知機能異常をもたらす。全身性塞栓も同様に梗塞を引き起こし、心臓、腎臓、腸間膜、および他の虚血性合併症をもたらす。Barbutらの「Aotic Atheromatosis And Risks of Cerebral Embolization(大動脈アテローム症および脳塞栓形成の危険性)」,Journal of Cardiothoracic and Vascular Anesthesia 10(1):24−30(1996)を参照。本文献はその全体が本明細書において参考として援用されている。
【0028】
冠動脈バイパス手術中に大脳循環に入る塞栓は、経頭蓋ドップラー超音波検査(TCD)によって検出されている。TCDは大脳循環内の塞栓をモニタするために使用される標準的な視覚化技法である。TCDを用いて塞栓を検出するためには、バイパス患者の中間大脳動脈を、患者のこめかみの深さ4.5から6.0cmの位置に配置されたMHZパルス波TCDプローブ(MedasonicsDS)を用いて断絶をバイパスする大動脈カニューレ挿入から連続してモニタする。塞栓数は、0.1秒より短い持続時間の高振幅で一方向性の過渡信号であり、独特のチャープ音に結び付けられる塞栓信号の数を計数することによって測定される。
【0029】
TCDは塞栓形成と血管で行われる処置との間の関係を分析するのに有用である。例えば、TCDによって検出される塞栓信号のタイミングが、心臓の開または閉手術処置中に行われる各処置のタイミングと共に記録されている。これらの処置の1つに、血液が心臓に逆流するのを一時的に阻止する大動脈クロスクランピングがある。大動脈クランピングおよびクランプ解除後に塞栓の集団が頻繁に検出されることが分かっている。クランプの配置と除去との間に、大動脈壁に沿ってアテローム性物質が明らかに引き離され、体の脳および他の部分に進む。同様に、大動脈カニューレ挿入中ならびにバイパスの開始および終了においても塞栓の集団が検出される。
【0030】
当該分野で既知の別の標準的な視覚化技法である経食道超音波心臓検査(TEE)は、患者に塞栓形成の素因を与え得る症状を検出する場合に重要である。TEEは侵襲的な技法であり、二平面または多平面プローブと共に用いて、大動脈の各セグメントを視覚化してアテロームの存在を突きとめる。この技法により、医師は大動脈壁を極めて詳細に視覚化して、アテローム性大動脈プラークを、その厚さ、管腔内突出程度、および移動成分の有無によって定量化し、また管腔内の塞栓を視覚化することが可能となる。例えば、Barbutらの「Comparison of Transcranial Doppler and Transesophageal Echocardiography to Monitor Emboli During Coronary Bypass Surgery(冠動脈バイパス手術中に塞栓をモニタする経頭蓋ドップラーおよび経食道超音波心臓検査の比較)」,Stroke 27(1): 87−90(1996)ならびにYao、Barbutらの「Detection of Aortic Emboli By Transesophageal Echocardiography During Coronary Artery Bypass Surgery(冠動脈バイパス手術中の経食道超音波心臓検査による大動脈塞栓の検出)」,Journal of Cardiothoracic Anesthesia 10(3):314−317(May 1996)およびAnesthesio1ogy 83(3A):A126 (1995)を参照。これらの文献はそれらの全体が本明細書において参考として援用されている。TEEによって、大部分のプラークが含まれるのは血管壁のどのセグメントであるかということもまた決定され得る。例えば、大動脈アテローム疾患の患者では、移動プラークは上行大動脈では最も普通でなく、遠位弓ではるかにもっと普通であり、下行セグメントで最も頻繁であることが分かっている。さらに、TEEで検出された大動脈プラークは明白に脳卒中に関連する。すべての厚さのプラークが脳卒中に関連するが、関連性は厚さ4mmを超えるプラークにおいて最も強い。Amarencoらの“Atherosclerotic disease of the aortic arch and the risk of ischemic stroke(大動脈弓のアテローム性動脈硬化症および虚血性脳卒中の危険性)”,New England Journal of Medicine,331:1474−1479(1994)を参照。
【0031】
別の視覚化技法である血管内超音波もまた、患者の血管の状態を評価するのに有用である。上述のほかの技法とは異なり、血管内超音波は血管をその内部から視覚化する。従って、例えば、上行大動脈を視覚化するのに有用であり、他の技法の欠点を克服する。本発明の1つの局面では、血管内超音波は本明細書で開示する装置と関連させると有用である考えられる。このようにして、装置と視覚化手段とは単一のカテーテルによって血管内に導入され得る。
【0032】
TEE、心外膜大動脈超音波心臓検査、および血管内超音波などの視覚化技法により、プラークを有する患者を特定すること、および特定の処置を行うべき患者の血管の適切な領域を決定することが可能である。例えば、心臓手術、特に冠動脈バイパス手術中は、大動脈弓が観察されるようにプローブを位置決めすることにより、大動脈カニューレ挿入中に入る空気、バイパス装置内の空気、系内の乱流によって形成される血小板塞栓、および大動脈壁からのアテローム性塞栓を含めてこの処置でのすべての塞栓源をモニタすることが可能となる。視覚化技法は、血液を効果的に濾過するために血液フィルタ装置と共に用いられ得る。例えば、視覚化技法を用いることによって、使用者は血液フィルタ装置の位置およびその装置の作動の程度を調整し、また異物が装置を無視したかどうかを決定することによって装置の効率を評価し得る。
【0033】
本発明の目的は、塞栓に関連すると認められている問題を取り除くかまたは低減することである。本発明は様々な状況下で塞栓を捕捉および除去するように意図される。例えば、本発明の1つの局面では、患者の血管に影響を与える処置中に血液が患者内で濾過され得る。本発明は特に塞栓デブリスを捕捉するために患者の動脈内で血液を一時的に濾過するのに適している。これにより、神経系、認知系、および心臓の合併症が取り除かれるかまたは低減され、入院期間を短くする助けとなる。本発明の別の局面によれば、塞栓形成の危険があると特定された患者内で血液を一時的に濾過し得る。
【0034】
装置に関して、1つの目的は、製造および使用が容易な単純で安全で信頼性のある装置を提供することである。別の目的は、いかなる血管内でも使用し得る装置を提供することである。さらに別の目的は、合併症を減らし、患者の入院期間を短くし、そして手術関連の費用を低くすることにより外科手術を向上させる装置を提供することである。Barbutらの「Intraoperative Embolization Affects Neurologic and Cardiac Outcome and Length of Hospital Stay in Patients Undergoing Coronary Bypass Surgery(手術中の塞栓形成が冠動脈バイパス手術を受けた患者の神経系および心臓の症状ならびに入院期間に影響を及ぼす)」,Stroke (1996)を参照。
【0035】
本明細書で開示される装置は以下の特性を有する。すなわち、長時間にわたって高速度の動脈血流に耐えることができる。移動塞栓を捕獲する一方で血管内の十分な血流が可能なほどに多孔質であるメッシュを含む。撮像装置を用いてまたは用いないで使用することができる。手術が終了すると捕捉された塞栓を除去する。移動プラークを引き離さない。そして、様々なサイズの男女および子供で使用することができる。
【0036】
使用方法に関しては、1つの目的は、任意の血管内に、より詳しくは任意の動脈内に一時的な濾過を提供することである。別の目的は、患者の大動脈内の血液を、血液が頚動脈および遠位大動脈に達する前に一時的に濾過する方法を提供することである。さらなる目的は、塞栓形成の危険性があると特定された患者の血液を濾過する方法を提供することである。さらに別の目的は、血液フィルタ装置、および使用者が適切な濾過部位を決定するのを支援する視覚化技法と共に実行される方法を提供することである。この視覚化技法はまた、使用者が血液フィルタ装置を調整して効果的な濾過を確実に行うのを支援し得る。さらに別の目的は、手術中に濾過が必要なときのみ血液を濾過する方法を提供することである。さらに別の目的は、患者の血管の処置により生じる塞栓形成を、その処置を行う適切な部位を決定する視覚化技法を用いることによって、無くするかまたは最小限にする方法を提供することである。別の目的は、単一の装置で濾過技法と血流拡散技法とを統合することによって、カニューレを用いた処置により生じる血栓アテローム塞栓症(thromboatheroembolisms)の発生を最小限にする方法を提供することである。別の目的は、先ずメッシュフィルタをスリーブで取り込んで装置の輪郭を小さくすることによって、濾過装置が血管壁を通過するようにする方法を提供することである。フィルタカニューレに関係する要旨についての関連する記載としては、同時継続出願である、1996年3月30日に出願された米国出願連続番号08/640,015、1996年1月9日に出願された米国出願連続番号08/584,759、1995年12月28日に出願された米国出願連続番号08/580,223、および1995年11月7日に出願された米国出願連続番号08/553,137が参照される。これらのすべてはそれらの全体が本明細書において明白に参考として援用されている。
【0037】
上記に加えて、本発明は、以下を提供する:
項目1.外表面と、大動脈に入るようにされた遠位端と、バイパス−酸素付加マシーンからの血液を受容するようにされた近位端と、該近位端から該遠位端まで長さ方向に延びる管腔とを有するカニューレと、収縮状態と半径方向への拡張状態との間で拡張可能な、該カニューレに取り付けられた拡張フレームと、該拡張フレームに周部に沿って連続して取り付けられた第1の縁を有するメッシュと、該メッシュの該第1の縁に周部に沿って連続して取り付けられたエラストマーストリップであって、使用中は大動脈の内腔に対して密閉するようにされた従順な縁を提供するストリップと、を備えた、付属フィルタを有する大動脈カニューレ。
項目2.前記拡張フレームは、チャンバーを囲む管状バルーンを備えた膨張シールであることを特徴とする、項目1記載のカニューレ。
項目3.前記拡張フレームは複数のアームを備えた傘であることを特徴とする、項目1記載のカニューレ。
項目4.前記アームは遠位端で前記カニューレの前記遠位端に旋回状に接続され、該アームは前記メッシュの前記第1の縁に取り付けられた近位領域を有し、使用中は、該アームが該カニューレから離れる方向に旋回されると該アームの該近位領域は半径方向に外向きに拡張することを特徴とする、項目3記載のカニューレ。
項目5.前記カニューレは、近位端にバイパス−酸素付加マシーンに取り付けるための形状とされた取付具を含むほぼ円筒形の部材であることを特徴とする、項目1記載のカニューレ。
項目6.前記メッシュは前記カニューレの前記外表面に接触する第2の縁をさらに備え、該カニューレの前記管腔は該メッシュを通って延びることを特徴とする、項目1記載のカニューレ。
項目7.前記メッシュは連続しており、前記カニューレの前記管腔は該メッシュの遠位先端より近位側で終了することを特徴とする、項目1記載のカニューレ。
項目8.前記エラストマーストリップはシリコーンであることを特徴とする、項目3記載のカニューレ。
項目9.前記カニューレの前記遠位端を通って送られる血液を分散するために該カニューレの該遠位端に取り付けられたフロー拡散器をさらに備えたことを特徴とする、項目1記載のカニューレ。
項目10.収縮状態にあるとき前記メッシュおよび拡張フレームの輪郭を最小限にするために該メッシュおよび拡張フレームを周部に沿って囲むスリーブをさらに備え、該スリーブは巻き上がるように動作可能であり、これにより該メッシュおよび拡張フレームを解放して半径方向への拡張状態へと展開させることを特徴とする、項目1記載のカニューレ。項目11.前記カニューレの前記遠位端内のセグメントは変形可能であり、収縮状態にあるとき前記メッシュおよび拡張フレームの輪郭を最小限にするために該拡張フレームの一部を周部に沿って受容するように半径方向に収縮し、使用中は、該メッシュおよび拡張フレームは拡張状態に展開され、該カニューレの該変形可能セグメントは、バイパス中に全管腔血液量が送られるように半径方向に拡張することを特徴とする、項目1記載のカニューレ。
項目12.外表面と、動脈に入るようにされた遠位端と、バイパス−酸素付加マシーンからの血液を受容するようにされた近位端と、該近位端から該遠位端まで長さ方向に延びる管腔とを有するカニューレと、収縮状態と半径方向への拡張状態との間を拡張可能な、該カニューレに取り付けられた拡張フレームと、該拡張フレームに周部に沿って連続して取り付けられた第1の縁を有するメッシュと、収縮状態にあるとき該メッシュおよび拡張フレームの輪郭を最小限にするために該メッシュおよび拡張フレームを周部に沿って囲むスリーブであって、巻き上がるように動作可能であり、これにより該メッシュおよび拡張フレームを解放して半径方向への拡張状態へと展開させる、スリーブと、を備えたことを特徴とする、付属フィルタを有する動脈カニューレ。
項目13.前記拡張フレームは、チャンバーを囲む管状バルーンを備えた膨張シールであることを特徴とする、項目12記載のカニューレ。
項目14.前記拡張フレームは複数のアームを備えた傘であることを特徴とする、項目12記載のカニューレ。
項目15.前記アームは遠位端で前記カニューレの前記遠位端に旋回状に接続され、該アームは前記メッシュの前記第1の縁に取り付けられた近位領域を有し、使用中は、該アームが該カニューレから離れる方向に旋回されるとき該アームの該近位領域は半径方向に外向きに拡張することを特徴とする、項目14記載のカニューレ。
項目16.前記カニューレは、近位端にバイパス−酸素付加マシーンに取り付けるための形状とされた取付具を含むほぼ円筒形の部材であることを特徴とする、項目12記載のカニューレ。
項目17.前記メッシュは前記カニューレの前記外表面に接触する第2の縁をさらに備え、該カニューレの前記管腔は該メッシュを通って延びることを特徴とする、項目12記載のカニューレ。
項目18.前記メッシュは連続しており、前記カニューレの前記管腔は該メッシュの遠位先端より近位側で終了することを特徴とする、項目12記載のカニューレ。
項目19.前記メッシュの前記第1の縁に周部に沿って連続して取り付けられた可撓性を有するスカートをさらに備え、該スカートは使用中は大動脈の内腔に対して密閉するようにされることを特徴とする、項目14記載のカニューレ。
項目20.前記カニューレの前記遠位端を通って送られる血液を分散するために該カニューレの該遠位端に取り付けられたフロー拡散器をさらに備えたことを特徴とする、項目12記載のカニューレ。
項目21.前記カニューレの前記遠位端内のセグメントは変形可能であり、収縮状態にあるとき前記メッシュおよび拡張フレームの輪郭を最小限にするために該拡張フレームの一部を周部に沿って受容するように半径方向に収縮し、使用中は、該メッシュおよび拡張フレームは拡張状態に展開され、該カニューレの該変形可能セグメントは、バイパス中に全管腔血液量が送られるように半径方向に拡張することを特徴とする、項目12記載のカニューレ。
項目22.外表面と、動脈に入るようにされた遠位端と、バイパス−酸素付加マシーンからの血液を受容するようにされた近位端と、該近位端から該遠位端まで長さ方向に延びる管腔とを有するカニューレと、収縮状態と半径方向への拡張状態との間を拡張可能な、該カニューレに取り付けられた拡張フレームと、該拡張フレームに周部に沿って連続して取り付けられた第1の縁を有するメッシュとを備え、該カニューレの該遠位端内のセグメントは変形可能であり、収縮状態にあるとき該メッシュおよび拡張フレームの輪郭を最小限にするために該拡張フレームの一部を周部に沿って受容するように半径方向に収縮し、使用中は、該メッシュおよび拡張フレームは拡張状態に展開され、該カニューレの該変形可能セグメントはバイパス中に全管腔血液量が送られるように半径方向に拡張することを特徴とする、付属フィルタを有する動脈カニューレ。
項目23.前記拡張フレームは、チャンバーを囲む管状バルーンを備えた膨張シールであることを特徴とする、項目22記載のカニューレ。
項目24.前記拡張フレームは複数のアームを備えた傘であることを特徴とする、項目22記載のカニューレ。
項目25.前記アームは遠位端で前記カニューレの前記遠位端に旋回状に接続され、該アームは前記メッシュの前記第1の縁に取り付けられた近位領域を有し、使用中は、該アームが該カニューレから離れる方向に旋回されるとき該アームの該近位領域は半径方向に外向きに拡張することを特徴とする、項目24記載のカニューレ。
項目26.前記カニューレは、近位端にバイパス−酸素付加マシーンに取り付けるための形状とされた取付具を含むほぼ円筒形の部材であることを特徴とする、項目22記載のカニューレ。
項目27.前記メッシュは前記カニューレの前記外表面に接触する第2の縁をさらに備え、該カニューレの前記管腔は該メッシュを通って延びることを特徴とする、項目22記載のカニューレ。
項目28.前記メッシュは連続しており、また前記カニューレの前記管腔は該メッシュの遠位先端より近位側で終了することを特徴とする、項目22記載のカニューレ。
項目29.前記メッシュの前記第1の縁に周部に沿って連続して取り付けられた可撓性を有するスカートをさらに備え、該スカートは使用中は大動脈の内腔に対して密閉するようにされることを特徴とする、項目24記載のカニューレ。
項目30.前記カニューレの前記遠位端を通って送られる血液を分散するために該カニューレの該遠位端に取り付けられたフロー拡散器をさらに備えたことを特徴とする、項目22記載のカニューレ。
項目31.収縮状態にあるとき前記メッシュおよび拡張フレームの輪郭を最小限にするため該メッシュおよび拡張フレームを周部に沿って囲むスリーブをさらに備え、該スリーブは巻き上がるように動作可能であり、これにより該メッシュおよび拡張フレームを解放して半径方向への拡張状態へと展開させることを特徴とする、項目22記載のカニューレ。項目32.前記フロー拡散器は前記カニューレ管腔の内部に位置することを特徴とする、項目9記載の動脈カニューレ。
項目33.前駆フロー拡散器は円錐形であることを特徴とする、項目9記載の動脈カニューレ。
項目34.前駆フロー拡散器は螺旋状であることを特徴とする、項目9記載の動脈カニューレ。
項目35.前駆フロー拡散器は、構造支持体によって前記カニューレ管腔より外部に取り付けられることを特徴とする、項目9記載の動脈カニューレ。
項目36.前駆フロー拡散器はシャフトによって前記フィルタメッシュに接続される、項目9記載の動脈カニューレ。
項目37.前記メッシュの第2の縁より遠位側に取り付けられたフィルタスリーブをさらに備えたことを特徴とする、項目10記載の動脈カニューレ。
項目38.前記フィルタスリーブは、少なくとも1本の巻き上げ制御ラインおよび1本の展開制御ラインに取り付けられることを特徴とする、項目37記載の動脈カニューレ。
項目39.前記制御ラインは制御管腔に入ることを特徴とする、項目38記載の動脈カニューレ。
項目40.前記フィルタスリーブは円形の断面を有することを特徴とする、項目37記載の動脈カニューレ。
項目41.前記フィルタスリーブは千分の3から14インチの厚さを有することを特徴とする、項目37記載の動脈カニューレ。
項目42.前記展開および巻き上げ制御ラインに取り付けられたプーリをさらに備えたことを特徴とする、項目38記載の動脈カニューレ。
項目43.前記フロー拡散器は前記カニューレ管腔の内部に位置することを特徴とする、項目20記載の動脈カニューレ。
項目44.前記フロー拡散器は円錐形であることを特徴とする、項目20記載の動脈カニューレ。
項目45.前駆フロー拡散器は螺旋状であることを特徴とする、項目20記載の動脈カニューレ。
項目46.前駆フロー拡散器は、構造支持体によって前記カニューレ管腔より外部に取り付けられることを特徴とする、項目20記載の動脈カニューレ。
項目47.前駆フロー拡散器はシャフトによって前記フィルタメッシュに接続されることを特徴とする、項目20記載の動脈カニューレ。
項目48.前記フィルタスリーブは、前記メッシュの第2の縁より遠位側で前記カニューレに取り付けられることを特徴とする、項目12記載の動脈カニューレ。
項目49.前記フィルタスリーブは、少なくとも1本の巻き上げ制御ラインおよび1本の展開制御ラインに取り付けられることを特徴とする、項目48記載の動脈カニューレ。
項目50.前記制御ラインは制御管腔に入ることを特徴とする、項目49記載の動脈カニューレ。
項目51.前記フィルタスリーブは円形の断面を有することを特徴とする、項目48記載の動脈カニューレ。
項目52.前記フィルタスリーブは千分の3から14インチの厚さを有することを特徴とする、項目48記載の動脈カニューレ。
項目53.前記展開および巻き上げ制御ラインに取り付けられたプーリをさらに備えたことを特徴とする、項目49記載の動脈カニューレ。
項目54.前記フロー拡散器は前記カニューレ管腔の内部に位置することを特徴とする、項目30記載の動脈カニューレ。
項目55.前記フロー拡散器は円錐形であることを特徴とする、項目30記載の動脈カニューレ。
項目56.前駆フロー拡散器は螺旋状であることを特徴とする、項目30記載の動脈カニューレ。
項目57.前駆フロー拡散器は、構造支持体によって前記カニューレ管腔より外部に取り付けられることを特徴とする、項目30記載の動脈カニューレ。
項目58.前駆フロー拡散器はシャフトによって前記フィルタメッシュに接続されることを特徴とする、項目30記載の動脈カニューレ。
項目59.前記メッシュの第2の縁より遠位側に取り付けられるフィルタスリーブをさらに備えたことを特徴とする、項目31記載の動脈カニューレ。
項目60.前記フィルタスリーブは、少なくとも1本の巻き上げ制御ラインおよび1本の展開制御ラインに取り付けられることを特徴とする、項目59記載の動脈カニューレ。
項目61.前記制御ラインは制御管腔に入ることを特徴とする、項目60記載の動脈カニューレ。
項目62.前記フィルタスリーブは円形の断面を有することを特徴とする、項目59記載の動脈カニューレ。
項目63.前記フィルタスリーブは千分の3から14インチの厚さを有することを特徴とする、項目59記載の動脈カニューレ。
項目64.前記展開および巻き上げラインに取り付けられたプーリをさらに備えたことを特徴とする、項目60記載の動脈カニューレ。
項目65.外表面と、動脈に入るようにされた遠位端と、バイパス−酸素付加マシーンからの血液を受容するようにされた近位端と、該近位端から該遠位端まで長さ方向に延びる管腔とを有するカニューレであって、軸方向に変形可能な弾性材料により形成されるカニューレと、収縮状態と半径方向への拡張状態との間を拡張可能な、該カニューレに取り付けられた拡張フレームと、該拡張フレームに周部に沿って連続して取り付けられた第1の縁を有するメッシュと、を備えたことを特徴とする、付属フィルタを有する動脈カニューレ。
項目66.前記カニューレ管腔内に挿入されたスタイレットをさらに備えたことを特徴とする、項目65記載の動脈カニューレ。
項目67.外表面と、大動脈に入るようにされた遠位端と、バイパス−酸素付加マシーンからの血液を受容するようにされた近位端と、該近位端から該遠位端まで長さ方向に延びる管腔とを有するカニューレと、収縮状態と半径方向への拡張状態との間を拡張可能な、該カニューレに取り付けられた拡張フレームと、近位開口部を規定する、該拡張フレームに周部に沿って連続して取り付けられる近位縁と、遠位開口部を規定する遠位縁とを有するスリーブであって、使用中は、粒状物質が該近位開口部に入り該スリーブによって保留されるため該スリーブを横方向に通過するのが防止されるスリーブと、を備えたことを特徴とする、付属フィルタを有する大動脈カニューレ。
項目68.前記スリーブはメッシュ材料であることを特徴とする、項目67記載のカニューレ。
項目69.前記スリーブは非多孔質材料であることを特徴とする、項目67記載のカニューレ。
項目70.前記スリーブは、血液の横方向の通過を可能にする穴を有する非多孔質材料であることを特徴とする、項目67記載のカニューレ。
項目71.前記拡張フレームは、チャンバー囲む管状バルーンを備えた膨張シールであることを特徴とする、項目67記載のカニューレ。
項目72.前記拡張フレームは可撓性リングであることを特徴とする、項目67記載のカニューレ。
項目73.前記拡張フレームは、前記リングを前記カニューレの前記遠位端に接続する複数の支柱を含むことを特徴とする、項目72記載のカニューレ。
【図面の簡単な説明】
【0038】
次に、図面の簡単な説明を行うが、これらの図面は本明細書で使用される血液フィルタ装置を示すように意図されている。以下の図面および詳細な説明は単に例示的なものであって、添付した請求の範囲に示される本発明の範囲を制限するものではない。
【図1】図1は、1つの実施形態による血液フィルタ装置の長手方向の図である。
【図2】図2は、別の実施形態による血液フィルタ装置の長手方向の図であり、装置はシースが除かれており作動姿勢にある。
【図3】図3は、図2に示す血液フィルタ装置の長手方向の図であり、装置はシースが除かれており解放姿勢にある。
【図4】図4は、別の実施形態による血液フィルタ装置の長手方向の図である。
【図5】図5は、図4に示す装置の断面ライン5−5に沿った断面図であって、装置のバルーンとメッシュとの間の接続を示す。
【図6】図6は、別の実施形態による血液フィルタ装置の長手方向の図であり、フィルタが展開前に収縮され退却ハンドルの下に入れられている状態を示す。
【図7】図7は、図6に示す血液フィルタ装置の長手方向の図であり、カニューレを大動脈に挿入した後フィルタが展開されている状態を示す。
【図8】図8は、現在市販されている標準的な特徴を有する可撓性動脈カニューレの長手方向の図である。
【図9】図9は、別の実施形態による血液フィルタ装置の長手方向の図であり、カニューレを大動脈に挿入した後フィルタが展開された状態を示す。
【図10】図10は、別の実施形態による血液フィルタ装置の長手方向の図である。図10Aは、図10に示す血液フィルタ装置の断面ラインA−Aに沿った断面図である。
【図11】図11は、付属フィルタと遠位フロー拡散器とを有するカニューレの長手方向の図である。図11Aは、図11のフロー拡散器の詳細図である。
【図12】図12は、付属フィルタと遠位フロー拡散器とを有するカニューレの長手方向の図である。図12Aは、図12のフロー拡散器の詳細図である。
【図13】図13は、付属フィルタと近位フロー拡散器とを有するカニューレの長手方向の図である。
【図14】図14は、付属フィルタと近位フロー拡散器とを有するカニューレの長手方向の図である。
【図15】図15は、別の実施形態による付属フィルタを有するカニューレの長手方向の図であって、カニューレは巻き戻された姿勢で示されるコンドーム状フィルタスリーブを含む。
【図16】図16は、図15の付属フィルタを有するカニューレの長手方向の図であって、広がったフィルタスリーブがフィルタアセンブリを取り込んでいる。
【図17】図17は、広がったフィルタスリーブおよびこれに付随する制御ラインの詳細を示す。
【図18】図18は、巻き上げ姿勢にあるフィルタスリーブを有する付属フィルタを有するカニューレの3次元図面である。
【図19】図19は、プーリメカニズムによって展開可能なスリーブを含む付属フィルタを有するカニューレの長手方向の図である。
【図20】図20は、付属フィルタを有するカニューレの長手方向の図であって、カニューレはフィルタの厚さを収容し得るへこみ可能部を有する。
【図21】図21は、バルーン大動脈弾性カニューレの長手方向の図であって、カニューレの外径およびフィルタの輪郭はカニューレの中央ルーメン内にスタイレットを導入することによって小さくされる。
【図22】図22は、図21のバルーン大動脈弾性カニューレの長手方向の図であって、スタイレットは引っ込められている。
【図23】図23は、カニューレの長手方向の図であって、拡張器が遠位カニューレのへこみ可能部より近位にある。
【図24】図24は、カニューレの長手方向の図であって、拡張器が遠位カニューレのへこみ可能部に挿入されている。
【図25】図25および図25Cは、フィルタが血管の凸凹に順応する従順なエラストマー縁を有するカニューレを示す。図25A、図25B、および図25Dは、図25Cに示すカニューレの他の図を示す。
【図26】図26は、大動脈内に配置された開端スリーブを有するカニューレを示す。
【発明を実施するための形態】
【0039】
(詳細な説明)
図面をさらに詳しく参照すると、図1は、本明細書で使用される血液フィルタ装置の1つの実施形態を示す。血液フィルタ装置10は、挿入チューブ20と、傘フレーム30と、端部プレート60と、作動チューブ50と、メッシュ40と、調整装置70と、ハンドル80とを備えている。
【0040】
装置10はカニューレ5のメインポート7を通って血管に導入され、血液または他の外科用装置はサイドポート3を通ってカニューレ5のメインポート7に導入され得る。カニューレ5および装置10は、外科手術中に使用され得る装置の配置の邪魔をしない。
【0041】
図1に示すように、傘フレーム30は複数のアーム32(いくつかは図示されていない)を備えている。これは3本のアーム、より好ましくは4本のアーム、より好ましくは5本のアーム、より好ましくは6本のアーム、より好ましくは7本のアーム、より好ましくは8本のアーム、より好ましくは9本のアーム、そして最も好ましくは10本のアームを含み得る。アームはソケット34に音波溶接され、ソケットは挿入チューブ20に接着剤によって接着される。挿入チューブは、血流を不必要に妨害せずにカニューレ5のメインポート7内に嵌合する大きさである。もしくは、ソケット34は溶接またはエポキシによって挿入チューブ20に接続され得る。挿入チューブ20は、ポリビニール、クリアPVC、ポリウレタン、または他のプラスチックなどの市販の材料よりなる。傘フレーム30のアーム32は、プラスチックまたは薄いゲージ金属よりなる。この材料は可撓性を有するため、アーム32はヒンジなどの余分の部品を必要とせずに曲がる。これによりアセンブリが簡略化され、アセンブリミスの可能性が減る。各アーム32には曲げを容易にするためにアンダーカットが施されている。もしくは、アーム32を形状記憶特性を有する材料により形成し、これによりアームが外部からの力がなくても曲がるようにしてもよい。アームの湾曲点にシリコーン材料を接着して衝撃吸収剤として作用させてもよい。もしくは、アームは親水性コーティングまたは他の衝撃吸収材料によりコーティングされてもよい。フレームは1つの好適な実施形態では8本のアームを含むが、傘フレームは8本より多いかまたは少ない数のアームを含むことも考えられる。
【0042】
端部プレート60はプラスチックまたは金属よりなる単体の射出成形構成部品を有する。端部プレート60は半径rのほぼO形の形状であり、O形の中心に窪みを有する。傘フレーム30の8本のアームは、rより小さい半径によって規定される円の周部に沿って45度の間隔で位置する8個のアーム接合点で端部プレート60に音波溶接または接着される。作動チューブ50は窪み62に溶接またはエポキシ接着される。
【0043】
図1に示すように、作動チューブ50は、端部プレート60から挿入チューブ20を通ってハンドル80内に収容されている調節装置70まで延びる。調節装置70は線形作動装置であり、ガイドフレーム74に取り付けられたサムスイッチ72を備えている。ガイドフレームはボンドジョイントを介して作動チューブ50に取り付けられている。サムスイッチ72は、ベース76と、ハンドル80の先端に沿ったラチェットスロット82に沿って移動するラチェットアーム78とを備え、当該分野では既知の方法で所定の間隔でロックを行う。サムスイッチ72をカニューレ5の遠位端2から離れる方向に摺動させることにより、作動チューブ50が退却し、この結果、端部プレート60がハンドル80の方向に引っ張られる。これにより、傘フレーム30のアーム32が曲がり、メッシュ40が開いて血液中の異物を捕捉する準備が整う。サムスイッチ72をカニューレ5の遠位端2の方向に摺動することにより、作動チューブ50はメッシュ40の方向に押される。作動チューブ50は次に端部プレート60をハンドル80から離れる方向に押し、これにより傘フレーム30のアーム32は真っ直ぐになりメッシュ40は閉じる。
【0044】
もしくは、傘フレーム30のアーム32が形状記憶特性を有する材料よりなる場合は、線形作動装置は、ロックされるとアーム32を真っ直ぐの姿勢に維持し、解放されると傘フレーム30のアーム32が曲がるようにするロックメカニズムを含む必要がある。
【0045】
当該分野で既知の他の線形作動装置もまた本発明に組み込んでもよい。これらの装置としては、端部に結節を有する摩擦フィットスロット装置、油圧またはモータ付き電気機械式装置を組み込んだ装置などを含むがこれらに限定されない。
【0046】
血流を不当に妨害せずに血液を効果的に濾過するためには、すなわち塞栓性材料を捕捉するためには、メッシュは、面積(A)、細線直径(D)、および孔サイズ(S)を含む適切な物理特性を持たなければならない。大動脈では、メッシュ40は、約120mmHg以下の前動脈圧(pre−arterial pressure)で3L/分以上、より好ましくは3.5L/分以上、より好ましくは4L/分以上、より好ましくは4.5L/分以上、より好ましくは5L/分以上、より好ましくは5.5/分以上、そして最も好ましくは6L/分以上の流速を可能としなければならない。
【0047】
できるだけ多くの粒子を捕捉するためには、適切な孔サイズを有するメッシュを選択しなければならない。この選択では捕捉される粒子の寸法が重要な要因である。例えば、大動脈では、粒子サイズは0.27〜2.88mmであり、平均0.85mmであることが分かっている。また、粒子の体積は0.01〜12.45mmであり、平均0.32mmであることが分かっている。粒子の約27%が直径0.6mm以下であることが分かっている。特に心臓バイパス手術中は、大動脈塞栓負荷は0.57cc〜11.2ccであり、平均3.7ccであり、推定大脳塞栓負荷は60〜510mmであり、平均276mmであることが分かっている。
【0048】
直径100μmより大きい気泡がフィルタにぶつかると、気泡が孔を通り抜けるには十分な圧力がフィルタの近位側にかかる必要がある。血液の表面張力により、普通は、気泡は変形して孔から押し出されることはなく、気泡は破れて孔を自由に通り抜けるほどに小さい複数の気泡に分かれる。このためフィルタは気泡ふるいとして働く。
【0049】
相互に干渉する気泡のサイズを小さくすることの利点は2つある。第1に、虚血を引き起こす気泡の潜在力はその直径に直接関係する。気泡が大きいほど、脳のより大きな領域への血流を阻止する可能性がより高まる。気泡が小さいほどより小さな動脈を阻止し得るが、全体的な虚血効果はより小さい。第2に、気泡が小さいほど、表面積の容積に対する比率がより大きくなるため、大きな気泡より迅速に組織および細胞に吸収され得る。最終的な効果として、脳へと進み得るより小さな気泡、およびより迅速に新陳代謝して塞栓性虚血の危険性をさらに減らす気泡が得られる。
【0050】
大きな気泡をより小さな気泡にすることができる別の方法は、速度および運動量効果によるものである。心収縮期の心拍出量がピークとなる瞬間には心臓からの血流速は最大(100〜150cm/秒)である。気泡が大動脈内フィルタに捕捉されて瞬間高速血流に曝される場合、気泡上の血液の運動量により気泡はより小さな気泡へと粉砕され得る。より小さな気泡は十分に小さくされるならば、フィルタの穴を通って「逃れ」得る。
【0051】
例えば、本発明の装置が大動脈内で使用するためのものであるとき、装置10に必要なメッシュの面積は以下の方法で計算される。先ず、メッシュの孔数Nを、細線直径、孔サイズ、流速、上流圧および下流圧の関数として計算する。これは障害物を有するチューブ内の流れに対するベルヌーイの式を用いて行われる。
【0052】
【数1】

この式において、Pは圧力、ρは流体の密度、gは重力定数(9.8m/s)、Vは速度、Kは損失定数を表し、fは摩擦係数である。番号1および2はそれぞれフィルタより上流および下流の条件を示す。
【0053】
大動脈内の条件をシミュレートするために以下の値が選択される。
【0054】
【数2】

メッシュフィルタからの層流を仮定すると、fは以下のように与えられる。
【0055】
【数3】

ここで、Reはレイノルズ数であり、レイノルズ数は以下の式によって与えられる。
【0056】
【数4】

ここで、μは流体の動粘度であり、AはSによって与えられるメッシュの1つの穴の面積である。
【0057】
容積の保存により以下の式が得られる。
【0058】
【数5】

ここでQは血液の流速である。さらに、Vは以下によって与えられる。
【0059】
【数6】

ここでAvesselは血管の断面積である。上記の式を置換および操作することによってNが得られる。
【0060】
次に、メッシュの面積を、以下の式を用いて孔数、細線直径、および孔サイズの関数として計算する。
【0061】
=N(D+S
大動脈で使用するための装置10の実施形態では、以下の範囲内の寸法を有するメッシュが望ましい。すなわち、メッシュ面積は3〜10in、より好ましくは4〜9in、より好ましくは5〜8in、より好ましくは6〜8in、より好ましくは7〜8in、メッシュ厚さは20〜280μm、より好ましくは23〜240μm、より好ましくは26〜200μm、より好ましくは29〜160μm、より好ましくは32〜120μm、より好ましくは36〜90μm、より好ましくは40〜60μm、細線直径は10〜145μm、より好ましくは12〜125μm、より好ましくは14〜105μm、より好ましくは16〜85μm、より好ましくは20〜40μm、そして孔サイズは50〜300μm、より好ましくは57〜285μm、より好ましくは64〜270μm、より好ましくは71〜255μm、より好ましくは78〜240μm、より好ましくは85〜225μm、より好ましくは92〜210μm、より好ましくは99〜195μm、より好ましくは106〜180μm、より好ましくは103〜165μm、より好ましくは120〜150μmである。本発明の好適な実施形態では、メッシュ面積は3〜8in、メッシュ厚さは36〜90μm、細線直径は16〜85μm、および孔サイズは103〜165μmである。本発明のさらに好適な実施形態では、メッシュ面積は3〜5in、メッシュ厚さは40〜60μm、細線直径は20〜40μm、および孔サイズは120〜150μmである。
【0062】
上記に示した計算は大動脈に関して行われた。しかし、大動脈以外の任意の血管内での血流パラメータを上記の式セットに代入して、その血管に適用される血液フィルタ装置に必要なメッシュ面積を計算し得ることは理解されよう。
【0063】
体内の条件をシミュレートする条件の下でメッシュを試験するためには、レザバーの底に取り付けられたパイプを通してレザバーから流出する流体の流れを、流体が流出するパイプの口にメッシュを配置して観察し得る。血液をシミュレートするためにグリセリンと水との混合物が使用され得る。流体の高さ(h)はレザバー内の流体の深さにパイプの長さを加えたものであり、以下の式によって与えられる。
【0064】
【数7】

ここで、ρはグリセリン−水混合物の密度であり、gは重力定数(9.8ms)によって与えられる。
【0065】
(D/S)Equivを決定するためにはベルヌーイの式(上記に示す)を解けばよい。Vは以下の式によって与えられる。
【0066】
【数8】

ここで、Qは試験中に測定され得る流速であり、Aはパイプの断面積である。Vは以下の式によって与えられる。
【0067】
【数9】

ここで、Nはメッシュの孔数であり、Aは1つの孔の面積である。さらに、P=120mmHgおよびP2=0mmHg、そしてSは孔の対角線の長さである。レイノルズ数(Re)は以下の式によって与えられる。
【0068】
【数10】

ここで、ρおよびμはそれぞれグリセリン−水混合物の密度および動粘度である。
適切な物理特性が決定されると、当該分野で既知の標準的なメッシュの中から適切なメッシュを見つけることができる。例えば、SaatiおよびTetkoメッシュなどのポリウレタンメッシュを使用するとよい。これらはシート状で入手可能であり、容易に切断して所望の形状に形成することができる。好適な実施形態では、メッシュは円錐形状に音波溶接される。所望の物理特性を有する当該分野で既知の他のメッシュもまた適切である。メッシュ40は、図1に示すように端部プレート60から端部プレート60とソケット34との間の各アーム32上の点まで、傘フレーム30のアーム32に音波溶接または接着剤により接着される。これは、装置10が血管内に血流の方向に挿入されるときはメッシュ40の最適な配置である。しかし、装置10を血流とは反対の方向に挿入することもまた考えられる。この場合は、メッシュ40は、ソケット34からソケット34と端部プレート60との間の各アーム32上の点まで、傘フレーム30のアーム32に取り付けられ得る。
【0069】
メッシュ40上で血液が凝固する可能性を減らすために、ヘパリンおよびヘパリノイド(heparinoids)などの抗凝血剤がメッシュ40に塗布され得る。ヘパリノイド以外の抗凝血剤を使用してもよい。抗凝血剤はメッシュに塗るかまたはスプレーしてもよい。抗凝血剤を含む化学ディップを使用してもよい。また、当該分野で既知の化学薬品を塗布する他の方法を使用してもよい。
【0070】
装置10は以下の方法で用いられ得る。血管壁を切開してカニューレ5を血管に導入し、次にカニューレ5を血管壁に縫合する。カニューレ5は好ましくはサイズ22〜25フレンチ(外径)である。次に血液フィルタ装置10をカニューレ5を通して血管内に挿入する。カニューレ5内では、血液フィルタ装置10は、傘フレーム30のアーム32は真っ直ぐ伸びメッシュ40は閉じている解放姿勢(図3参照)で保持される。
【0071】
装置10を作動させるためには、外科医は調整装置70のサムスイッチ72をラチェットスロット82に沿ってカニューレ5の遠位端2から離れる方向に、適切な作動姿勢が実現されるまで、またはメッシュ40が開いてその最大サイズになる(図2参照)まで摺動させる。アーム32は複数の作動姿勢において様々な程度まで曲がり得、適切な作動姿勢は血管の断面寸法によって決まる。濾過中、使用者は、血管壁と装置10との間の接触点を探るために血管の外側を軽く触診してもよい。これにより使用者は適切な作動姿勢および血管内の装置の位置を決定することができる。
【0072】
濾過が完了すると、使用者はサムスイッチ72をカニューレ5の遠位端2の方向に摺動し、これにより傘フレーム30が真っ直ぐに伸びメッシュ40が捕獲塞栓を囲んで閉じる解放姿勢となる。ハンドル80は、装置10が解放姿勢にあるときサムスイッチ72上の対応するマーカーバンドに整合するマーカーバンドをさらに備えてもよい。装置10はカニューレ5内に引き戻され、次にカニューレ5および装置10は捕獲塞栓と共に体内から除去される。
【0073】
別の実施形態では、図2および図3に示すような血液フィルタ装置が提供される。装置10は、導入器103と、遠位端111を有するカニューレ105と、シース120と、傘フレーム130と、環状メッシュ140と、可動リング150と、固定リング160と、ガイドワイヤ170と、クラムシェルハンドル180とを備えている。
【0074】
導入器103は、シリンダ107と調整可能縫合リング109とを備えている。導入器103のシリンダ107はシース120の周部に嵌合するようにされ、シースはカニューレ105およびガイドワイヤ170にわたって摺動する。
【0075】
傘フレーム130は図1に示す傘フレーム30にほぼ類似する。傘フレーム130は、図1に関連して上述したように複数のアーム132(いくつかは図示されていない)を備え、これらのアームは(各アーム132の)一方の端部で固定リング160に、(各アーム132の)他方の端部で可動リング150に接続される。固定リング160はカニューレ105に堅固に固定される。各ガイドワイヤ170は一方の端部でカニューレ105の外表面に沿って摺動する可動リング150に、および他端部で、当該分野で既知の線形作動装置であるクラムシェルハンドル180に堅固に固定される。
【0076】
メッシュ140は血流を不当に妨害せずに塞栓性物質を捕捉しなければならない。このメッシュ140はまた当該分野で既知の標準的なメッシュの中から見つければよい。メッシュ140を選択するためには、第1の好適な実施形態のメッシュ40を選択および試験するために使用したのと同じ分析を用い得る。
【0077】
装置10は以下の方法で用いられる。装置10を血管に挿入する。シース120を傘フレーム130が露出するまで退却させる。図2に示すように、使用者は、クラムシェルハンドル180およびガイドワイヤ170を介して可動リング150を固定リング160の方向に押すことによって作動姿勢を実現させる。作動姿勢では、傘フレーム130のアーム132は曲げられ、環状メッシュ140が開いて血液中の異物を捕獲する準備が整う。
【0078】
血液フィルタ10を体内から除去するためには、使用者は先ずクラムシェルハンドル180およびガイドワイヤ170を介して可動リング150を固定リング160から離れる方向に引っ張る。これにより、傘フレーム130のアーム132は真っ直ぐになり環状メッシュ140は閉じてカニューレ105に対して塞栓を捕捉する。使用者は次に血液フィルタ装置10を捕獲塞栓と共に体内から除去する。
【0079】
もしくは、使用者は先ずカニューレ105にわたってシース120を摺動して退却させ、次に装置10を捕獲塞栓と共に体内から除去してもよい。
【0080】
心臓手術中に大動脈で使用するようにされた別の実施形態では、カニューレ105の遠位端111を覆ってまたはカニューレ105内に第2のメッシュを配置し、これにより体外源から体内に流入する血液もまた濾過するようにしてもよい。
【0081】
図2に示す実施形態の利点は、血液または外科用装置の導入のための別のポートを有するカニューレを必要としないことである。
【0082】
図4は、本明細書で開示される血液フィルタ装置の別の実施形態を示す。図4に示すように、血液フィルタ装置10は、メッシュ220と、膨張可能バルーン230と、カラー240と、複数の結合ライン250と、作動アセンブリ260とを含む。メッシュ220はカラー240を介してバルーン230に取り付けられる。使用においては、装置10を複数の結合ライン250を介して血管内に位置決めし維持する。作動アセンブリ260を操作することにより、バルーン230を膨張および収縮させ、また膨張および収縮の程度を制御する。バルーン230の膨張によりメッシュ220が開き、バルーン230の収縮によりメッシュ220を閉じることができる。
【0083】
メッシュ220は、最初の2つの実施形態の場合のように標準的なメッシュの中から見つけられるが、血管内を流れる血液が必ずメッシュ220を通過するように血管の断面積の実質的にすべてを覆うべきである。これにより、血液中の異物はメッシュ220によって捕捉される。この好適な実施形態では、メッシュ220はほぼ円錐形状である。しかし、メッシュ220の形状は、血管内を流れる血液がメッシュ220を通過する限り任意の形状をとるように改変してもよい。
【0084】
図4に示すように、膨張可能バルーン230はカラー240を介してメッシュ220に取り付けられる。好適な実施形態では、バルーン230は、ウレタンまたはポリエチレンテレフタレート(PET)などの可撓性があり僅かに多孔質である材料よりなる、それぞれ外径および内径を有する2つの部分からなる。これらの部分は既知の方法で外径および内径の両方で合わせて溶接される。バルーン230はまた、バルーン230の外径と内径との間に位置するバルブ268およびバルブステム266を有する。バルーン230に使用される材料は、膨張および収縮が可能でなければならない。また、血管壁に付着するプラークまたは他の物質によって生じ得るような血管壁の推定される凸凹に拘わりなく血管壁に順応するほどの十分な可撓性がなければならない。バルーン230に使用される材料はまた、バルーン230をカニューレ205内で折り畳むことができるほどの十分な可撓性がなければならない。材料の例としては、エラストマーバルーンおよびいくつかの非エラストマーバルーンが挙げられる。
【0085】
バルーン230を膨張させこれによりメッシュ220を開くためには、流体またはガスがバルブ268を通してバルーン230に導入される。バルーン230を収縮させるためには、バルーン230からバルブ268を通して流体またはガスが抜き取られる。食塩水などの流体、および不活性ガスなどのガスが本発明では用いられ得る。血流内に放出された場合に患者に危害を与えない限りいかなる流体またはガスを用いてもよい。食塩水または他の適切な膨張材料は典型的には体外のレザバーに貯蔵され、レザバーはチューブ264を通してバルーン230と流体連通が可能である。
【0086】
大動脈に配置するようにされた装置の実施形態では、バルーン230は、十分に膨張したとき、約100Fr、より好ましくは105Fr、より好ましくは110Fr、より好ましくは115Fr、より好ましくは120Fr、そして最も好ましくは125Fr、またはそれ以上の外径、および約45Frの内径を有する(1Fr=0.13in.)。バルーン230の寸法は大動脈以外の血管で使用するようにされた別の実施態様では調整され得る。もしくは、バルーン以外の拡張可能部材を本発明と共に用いてもよい。
【0087】
図4を参照して、カラー240はバルーン230の外径に取り付けられ、ほぼ円形のプラスチック片である。シリコーンまたは高密度ポリエチレンなどの他の材料を使用してもよい。この材料は血管内のフロー条件に耐えるほどに十分な剛性があり、しかもバルーン230が膨張すると拡張し、バルーン230が収縮しカニューレ205内に格納されると折り畳めるほどに十分な可撓性があるものでなければならない。カラー240は内径および外径を有し、外径は僅かに外向きに曲がっている。図5に示すように、カラー240は、溶接、接着、または当該分野で既知の他の取付手段によってバルーン230の外径に取り付けられる。次にメッシュ220がカラー240に接着剤により接着される。もしくは、メッシュ220は溶接、エポキシ、または他の適切な接着手段によってカラー240に接続され得る。
【0088】
装置10の作動は作動アセンブリ260によって行われ、作動アセンブリは流体またはガスをバルーン230に導入およびバルーン230から除去することによってバルーン230を膨張および収縮させる。作動アセンブリ260はまた、メッシュが血管内で開く程度を制御する。作動アセンブリ260は、装置10の濾過または使用中に血管内での装置10の嵌合具合を調整するために使用され得る。さらに、作動アセンブリ260によってメッシュが開く程度を調整することができるため、装置の1つの実施形態が、様々なサイズの血管に対して適切となり得る。
【0089】
作動アセンブリ260は膨張カテーテル262と、バルブステム266に接続されるチューブ264とを備えている。膨張カテーテル262は好ましくは外径9Fであり、バルーン230が膨張する程度をモニタするために、立方センチメートルの増分毎に印が付けられている。チューブ264は好ましくは外径12Frおよび内径7.2Frである。
【0090】
3本の結合ライン、4本の結合ライン、または4本より多い結合ラインを含み得る複数の結合ライン250が、装置10を血流内の定位置に位置決めして維持する。結合ライン250はワイヤよりなり、バルーン230を通ってバルーンの内径に沿って等しく間隔を開けた地点に繋がれる。例えば、4本の結合ラインの場合は、4つの地点がバルーン230の内径に沿って90度の間隔を開けて位置する。結合ライン250は、バルーン230をカニューレ205から押し出したりカニューレ205に引き込んだりするのに、また装置10を血管内に維持するのに十分な堅さを有する他の材料により形成されてもよい。
【0091】
本装置のすべての構成要素は体内に挿入するのに適した材料により構成されるべきである。さらに、すべての構成要素のサイズは、装置が使用される予定の血管の寸法パラメータによって決定される。これらのパラメータは当業者には既知である。
【0092】
本発明による大動脈で使用するようにされたフィルタの動作特性を純粋に例証のための例として以下に示す。
【0093】
【表1】

大動脈以外の血管で本発明を使用する場合の上記の動作特性の修正は、本開示を考慮すれば当業者であれば容易に把握可能である。
【0094】
本明細書で開示するすべての実施形態の1つの利点は、血液フィルタは血液フィルタを挿入する切開口から生じ得る塞栓を捕獲することである。
【0095】
使用において、本明細書で開示する装置を用いて塞栓形成から患者を保護しまた血液を濾過するためには多くの方法がある。血管に行われる処置に関連して塞栓形成の可能性があるため、このような処置に関連して一時的な濾過が頻繁に必要とされる。例えば、塞栓形成と心臓バイパス手術中に行われる大動脈クランピングおよびクランプ解除との間には相関関係がある。
【0096】
本発明の装置は本発明の方法で使用されるように特に仕向けられている。しかし、他の装置を本発明の方法に従って使用するようにしてもよい。
【0097】
本発明の方法は、普通は以下の工程、すなわち、血液中の塞栓性物質または異物を捕捉するために血液フィルタ装置を患者の血管に導入する工程と、メッシュおよび捕捉された異物を血管から除去する工程とを包含する。また、濾過の過程で必要あれば血液フィルタ装置は調整され得る。
【0098】
さらに、どの患者が濾過を必要とするか(リスク要因の特定)、効率を最大限にするために血液フィルタ装置をどこに効果的に位置決めするか、調整が必要な場合は装置をいつ調整するか、装置をいつ作動させるか、および患者の血管に必要な処置を行うための適切な領域を決定するために、視覚化技法を用いることも考慮される。
【0099】
本発明の1つの方法によれば、図4および図5に示す血液フィルタ装置が患者の血管に導入される。典型的には、患者の血管に先ず切開口が作られ、図4を参照すれば、カニューレ205が切開口に血流方向に導入される。カニューレ205内には装置10が閉鎖姿勢で格納されている。この姿勢では、バルーンは収縮し通常は折り畳まれ、メッシュ220は閉じている。
【0100】
次に、血液フィルタ装置10は、結合ライン250を血流方向に押すことによって、カニューレ205を通して血管内に押し出される。装置10を作動させるためには、作動アセンブリ260は、バルーン230によって血管内でメッシュ220が開いて血管内を流れる血液がメッシュ220を通って流れるように血管の断面積の実質的にすべてを覆うまで、バルーンを膨張させる。血液がメッシュ220を通って流れるとき、異物がメッシュによって捕捉される。
【0101】
フィルタがもはや必要でなくなると、装置10は捕捉された異物と共に血管から除去される。バルーン230は収縮され、結合ライン250は血流とは反対の方向にカニューレに向かって引っ張られる。バルーン230がカニューレ205内に引き込まれると、バルーン230は折り畳まれ、メッシュ220は捕捉異物を囲んで閉じる。別の実施形態では、カニューレ205は、バルーン230、メッシュ220、および捕捉異物が血流を妨害せずにカニューレ205に入るのにさらに便宜が与えられるように構成され得る。例えば、血管内に配置されるカニューレの端部をほんの僅かだけ漏斗状にしてもよい。
【0102】
本発明の1つの局面によれば、TCDなどの視覚化技法が血液フィルタ装置をいつ作動させるかを決定するために使用される。例えば、心臓バイパス手術において、大動脈カニューレ挿入中、切開中、ならびにバイパスおよび大動脈のクロスクランピングの終了時に、塞栓の集団が検出される。従って、メッシュをこれらの処置中に大動脈より下流側の血管内で開き、これらの処置から生じる塞栓形成が止まったときに閉じるのがよい。濾過が必要ないときにメッシュを閉じることにより血流の妨害を最小限にする助けとなる。
【0103】
別の実施形態によれば、血液フィルタ装置の塞栓捕捉の効率を評価する目的で大脳循環に入る塞栓をモニタするために、視覚化技法が使用される。また、視覚化技法は、装置が最適な効率で動作するように装置を血管内で位置決めするのに有用である。例えば、使用者は、TCDのモニタによって塞栓が自由に大脳循環に入っていることが分かると、装置の位置を調整し得る。さらに、使用者は血液フィルタ装置のメッシュを調整して、血管内を流れる血液の実質的にすべてが確実にメッシュを通過するようにしてもよい。
【0104】
さらに別の実施形態によれば、TEEおよび心外膜大動脈超音波検査などの視覚化技法を用いて、本発明による血液濾過を必要とする患者を特定する。例えば、これらの視覚化技法は、移動プラークの存在により塞栓形成を生じる恐れのある患者を特定するために使用され得る。これらの技法は、移動プラークが存在する血管に影響を与え得る任意のタイプの処置を患者が受ける前に使用してもよい。
【0105】
さらに、視覚化技法は、塞栓形成の発生を無くするかまたは減らすための特定の処置を行うための血管の適切な部位を選択するために使用してもよい。例えば、心臓バイパス手術中、大動脈にはクランピングおよびカニューレ挿入が行われる。これらの処置は大動脈壁に既に存在するアテローム物質を頻繁に引き離す。引き離されるアテローム物質の量を最小限にするために、使用者は、TEE、心外膜大動脈超音波検査、または他の視覚化技法によって特定される、含有するアテローム物質量が最も少ない大動脈部分にクランピングおよびカニューレ挿入を行ってもよい。
【0106】
切開およびクランピング以外の処置もまた血管壁からアテローム物質を引き離す傾向がある。これらの処置としては拡張(dilation)、血管形成、およびアテレクトミーが含まれるがこれらに限定されない。
【0107】
視覚化技法は、また、血液を濾過するための適切な部位を選択するためにも使用され得る。アテローム物質が血管内で突きとめられると、血液フィルタ装置はその場所より下流側に配置され得る。
【0108】
上述の技法以外の当業者には既知の視覚化技法もまた、外科処置によって影響を受ける血管の輪郭を把握して、塞栓形成要因の様々なリスクを評価し、また特定の処置を行うための血管の適切な部分を見つけるのに有用である。本明細書に開示される装置などの装置の塞栓捕捉の効率を評価するためには任意の適切な視覚化装置を用いればよい。
【0109】
別の実施形態では、図6および図7に示すような付属フィルタを有するカニューレが提供される。図6を参照すると、装置は、近位領域301と遠位領域302と近位領域と遠位領域とを接続する中間領域とを有する加圧カニューレ300を含む。加圧カニューレ300は、典型的には、近位領域から遠位領域まで延び血液供給カニューレ350を受容する形状を持つほぼ円筒形の第1のルーメン303を有する、剛性または半剛性の好ましくは透明のチューブである。加圧カニューレ300は、さらにその近位領域に、ルアー取付具304および305を備え、これらは、キャップまたは隔壁306および、食塩水またはガスで満たされバレル309とプランジャー310とを定位置にロックするロッキングメカニズム308(図7)を有する注射器307を受容するような形状とされる。加圧カニューレ300は、典型的には、膨張シール(後述)の加圧を行うために二重ルーメンを有する。従って、ルアー305は、加圧カニューレ300の近位端から遠位端まで延びる第2のルーメン312と流体連通する通路311に接続される。一方、ルアー304は、加圧カニューレ300の近位端から遠位端まで延びる第3のルーメン314と流体連通する通路313に接続される。遠位領域では、加圧カニューレ300は、図7にさらに詳細に示す血液濾過アセンブリ315を含む。
【0110】
図8はSarns 3M(Ann Arbor,Michigan)から市販されている標準的な可撓性大動脈カニューレ400を示す。図8を参照すると、カニューレは典型的には約25cmの長さを有する。カニューレは、遠位端領域401と近位端領域402とこれらの間に位置する中間領域とを含む。遠位端領域401は約8mmの外径を有し、約13mmの拡大径、約5mmの幅を有する密封リング403がカニューレ400の遠位先端から約25mmの位置に配置されている。密封リング403は、処置中にカニューレ400が大動脈から抜けないように大動脈の切開口の内側に対する固定点として機能する。近位端領域402は、カニューレを血液マシーンに接合するコネクタ404を含む。カニューレはその近位先端に、カニューレをバイパス−酸素付加マシーンに接続しロックする先細ジョイント405を含む。
【0111】
図6を再び参照すると、血液供給カニューレ350は、図8に示される標準的なカニューレ400と共通するいくつかの特徴を有し得る。本明細書で使用される血液供給カニューレ350はほぼ円筒形、半剛性の、好ましくは透明のチューブであり、その遠位領域の周部にリブ351が配備されている。血液カニューレは加圧カニューレ内で摺動可能であり、近位領域では血液カニューレ350は注射器307を妨害しない形状となるように角度を付けてもよい。さらに、血液カニューレは、典型的には、バイパス−酸素付加器システムに連結するようにされた取付具または成形ジョイント352を含み得る。血液カニューレ350は血液をバイパス−酸素付加器システムから大動脈に運ぶようにされる。
【0112】
加圧カニューレは、また、加圧カニューレ300の中間領域の周部に配置されたほぼ円筒形のチューブを備えた挿入および退却ハンドル380を含む。ハンドル380は、普通、保持および挿入を容易にする成形ハンドグリップを有する剛性または半剛性で好ましくは透明のチューブを含む。図7を参照して、ハンドル380は加圧カニューレ300に対して摺動可能であり、またハンドルの近位領域に取り付けられ、ハンドル380と加圧カニューレ300との間の血液の漏洩を防ぐために、これらの間に配備されたゴム製ワッシャまたはOリングよりなる密封部材381を含み得る。ハンドル380はその近位および中間領域の波形リブ382と、大動脈切開口で血管材料に対してきつく嵌合するようにされたほぼ平坦または平面のカラー挿入領域383とを含み得る。いくつかの実施形態では、カラー挿入領域383は、外科処置中にカニューレアセンブリが抜けるのを防ぐために大動脈に対する固定具として働く幅約5mm、外径約13mmの密封リングまたはリブ(図示せず)を含み得る。「巾着」縫合が普通、大動脈切開口の周部に沿って縛られるが、この糸がカニューレアセンブリが抜けるのを防ぐためにカラー領域383のリングの周りに締められる。
【0113】
ハンドル380はまた、図6に挿入前が示されているように、血液濾過アセンブリ315を囲む拡大端領域384を含み得る。このハウジング囲み部384は血液濾過アセンブリが不注意に展開するのを防ぐため、特に好適な構成部品であり、大動脈を引き裂くことなく切開口を通して大動脈に入るのを容易にする平滑な外表面をカニューレに提供する。このようなハウジング囲み部がなければ、バルーンおよびフィルタは血管の内壁をこすって血管を損傷または破裂させる恐れがある。ハンドル380はその遠位端に血液カニューレ350のリブ351に圧接する逆カフ385を含み、これにより濾過アセンブリ315がハンドル380内に囲まれているときシールを形成し得る。
【0114】
図7には、加圧カニューレ300の遠位領域が、人の大動脈399の上行領域で展開されている血液濾過アセンブリ315と共に示されている。ハンドル380はフィルタアセンブリ315を露出させるように近位方向に移動している。加圧カニューレ300の遠位領域は、Dacron(商標)または他の適切な材料よりなる複数のスポークまたは保持ストリング316を含む。保持ストリング316は加圧カニューレ300の遠位領域を膨張シール317に接続させる。膨張シールは、外側がフィルタメッシュ318に取り付けられた好ましくは薄いチュービングの連続リングからなる。フィルタメッシュ318はその遠位端で血液カニューレ350の周部に、好ましくはリブ351に密に当接する断面位置で接着される。
【0115】
膨張シール317は、ドーナツ状チャンバー319を囲むエラストマーまたは非エラストマーの管状材料により構成され得る。展開されると、膨張シールは大動脈399の管腔に対してきつく嵌合する直径まで膨張し得る。従って膨張シールは少なくとも2cm、より好ましくは少なくとも2.5cm、より好ましくは少なくとも3cm、より好ましくは少なくとも3.5cm、より好ましくは少なくとも4cm、より好ましくは少なくとも4.5cmの外径までの拡張が可能となり得る。これらの直径範囲は小児科用および大人用の両方に適用され得る。膨張シールは、典型的には、一方の側がメッシュフィルタに他方の側が保持ストリングによって加圧カニューレに取り付けられた、非常に薄いチュービングの連続リングである。
【0116】
膨張シールは、破裂せずに、55mmHgより大きい、より好ましくは60mmHgより大きい、より好ましくは70mmHgより大きい、より好ましくは80mmHgより大きい、より好ましくは90mmHgより大きい、より好ましくは100mmHgより大きい、より好ましくは110mmHgより大きい、より好ましくは120mmHgより大きい、より好ましくは130mmHgより大きい、より好ましくは140mmHgより大きい、より好ましくは150mmHgより大きいチャンバー319内圧を維持することが可能であるべきである。必要とされる内圧はメッシュに対して大動脈内で維持される圧力に依存し得る。従って、大動脈圧が55mmHgの場合は、膨張シール内の圧力は、シール周囲の漏洩を防ぐためには55mmHgより大きくなければならない。典型的には、大動脈圧は少なくとも75mmHgであり得る。何故なら十分な脳灌流を確実にするにはこのレベルの圧力が必要とされる。肺では典型的には静脈および動脈が破裂せずに保持し得るのは約40〜50mmHg以下またはせいぜい60mmHgであるため、上記のような膨張シール圧は肺静脈系で使用され得る最大レベルよりはるかに高いことは認識されよう。
【0117】
チャンバー319は、チャンバー319がガスにより、または好ましくは食塩水などの流体により膨張するのを可能にする、第1の管状通路320および第2の管状通路321と流体連通する。通路320は加圧カニューレ300の第2の管腔312と流体連通し、通路321は加圧カニューレ300の第3の管腔314と流体連通する。従って、通路320および321はそれぞれ、チャンバー319を加圧カニューレ300の第2および第3の管腔312および314と相互接続させる。
【0118】
いくつかの実施形態では、膨張シール317は、チャンバー319を回る流体の一方向の移動を阻止する隔壁322を含み得る。隔壁322が流体流入ポートに密に隣接して位置決めされる場合は、流体の注入により膨張シール317の周りのチャンバー319内のすべてのガスが押され通路321を通って流出する。
【0119】
1つの実施形態では、流入ポートおよび流出ポートは、流入ポートおよび流出ポート間に配置された隔壁322に密に隣接して位置決めされる。この場合には、流体注入により実質的にすべてのガスが膨張シール317から押し出される。
【0120】
フィルタメッシュ318は近位端で膨張シール317に、そして遠位端で血液カニューレ350に、場合によってはリブ351の近位または遠位縁で接着される。メッシュ318は補強または非補強材料により形成され得る。メッシュ318は、図7に示すように拡張されると、切頭遠位領域を有するほぼ円錐形状となり得る。メッシュは、サイズが5mm以下、より好ましくはサイズが3mm、より好ましくは3mmより小さい、より好ましくは2.75mmより小さい、より好ましくは2.5mmより小さい、より好ましくは2.25mmより小さい、より好ましくは2mmより小さい、より好ましくは1.5mmより小さい、より好ましくは1mmより小さい、より好ましくは0.75mmより小さい、より好ましくは0.5mmより小さい、より好ましくは0.25mmより小さい、より好ましくは0.1mmより小さい、より好ましくは0.075mmより小さい、より好ましくは0.05mmより小さい、より好ましくは0.025mmより小さい、より好ましくは0.02mm、および赤血球より少しだけ大きいサイズまでの対象物を妨害する孔サイズを有する材料により形成されるべきである。上述の特定のサイズの粒子を阻止する所与の孔サイズでは、その孔サイズはそのサイズより大きいすべての粒子を同様に阻止するであろうことは理解されよう。また、必要な孔サイズは、血液スループット、メッシュの表面積、およびメッシュの近位および遠位側の圧力の関数であることもまた理解されよう。例えば、直径40mmの大動脈断面で5〜6L/分のスループットが所望され、80mmHgの遠位圧を得るために120mmHgの圧力がメッシュの近位側に加えられる場合は、約50μmの孔サイズが必要である。反対に、肺動脈では同じスループットが必要であるが、動脈の断面は30mmの直径しかない。その上、近位圧は典型的には40〜60mmHgであり、遠位圧は約20mmHgである。従って、血流を維持するためにははるかに大きい穴サイズが必要である。本明細書で開示したような孔サイズを肺動脈で使用するとすれば、この血液スループットは血液の酸素付加を維持するには不十分であり、患者は肺動脈高血圧のために右心室の過負荷を被るであろう。
【0121】
またこのカニューレ装置では、患者への血流は、メッシュ318を通らず血液カニューレ350を通る血液通路によって維持されることも理解されよう。従って、カニューレは少なくとも3.0L/分、より好ましくは3.5L/分、より好ましくは4L/分、より好ましくは少なくとも4.5L/分、より好ましくは少なくとも5L/分、およびそれ以上の平均流速での血液スループットを可能にする内径を持たなければならない。当然ながら、流速は断続的にに0.5L/分の低さまで変動し得る。従って、血液供給カニューレ350の内径は典型的には少なくとも9F(3.0mm)、より好ましくは10F、より好ましくは11F、より好ましくは12F(4mm)、より好ましくは13F、より好ましくは14F、より好ましくは15F(5mm)、およびそれ以上であり得る。チュービングの内径および厚さにより異なるが、血液カニューレ350の外径は約8mmである。一方、加圧カニューレ300およびハンドルのカラー領域383は外径がそれぞれ約10.5mmおよび13.0mmである。上述の範囲は典型的な装置のパラメータおよび寸法を単に例示するためのものであって、実際のパラメータは、本明細書で開示する基本的な原理から逸脱することなく上述の範囲および数字から明らかに外れて変動してもよい。
【0122】
使用においては、付属フィルタを有するカニューレは注射器307を有する。注射器を取り外して無菌状態で食塩水を充填する。次に注射器を加圧カニューレ300に取り付け、キャップ306を取り外す。食塩水をルアー304から食塩水が流出するまで注入し、これにより実質的にすべてのガスが膨張シールと加圧カニューレ300の二重管腔システムから追い出される。次にキャップ306を元に戻し加圧カニューレ300に固定させる。
【0123】
次に当該分野で既知であり本明細書でより十分に説明される標準的なカニューレ挿入を用いる処置に従って心臓手術を行い得る。メッシュ318と膨張シール317とは、加圧カニューレ300の遠位先端をちょうど越えた位置のハンドル380の下の拡大端の部分に取り込まれている。カニューレが切開口を通して患者の大動脈、好ましくは上行大動脈に導入され、切開口は「巾着」縫合を用いてカニューレの周りに締められ得る。血液カニューレ350を通して心肺バイパスが形成される。
【0124】
カニューレは定位置に保持され、フィルタは展開の準備が整う。外科医はハンドルを握って、血液カニューレ350および加圧カニューレ300を前方に押す。この動きによりハンドルの先端のシールが破れ血液カニューレおよび加圧カニューレが前方に押し出され、これによりフィルタが解放される。次に注射器のプランジャーをバレル内に押し下げて膨張シールを拡張させる。膨張シールは拡張して、大動脈の内部の管腔の周部に沿ったすべての地点に確実に接触する。次に注射器を定位置にロックして、使用中に膨張シールが膨張または減圧するのを防ぐ。
【0125】
次に、大動脈は、心臓とカニューレ切開口との間の領域でクロスクランピングされる。大動脈から引き離された塞栓性物質がフィルタメッシュ318によって捕獲および捕捉される。次に、バイパス−酸素付加器システムを作動させて血液カニューレ350を通る心肺バイパスを実現させる。次に、心臓手術が行われる一方で、フィルタおよび膨張シールは長時間、典型的には8時間以下、より典型的には7時間以下、より典型的には6時間以下、より典型的には5時間以下、より典型的には4時間以下、より典型的には3時間以下、そしてより典型的には2時間以下にわたって定位置に維持される。
【0126】
心臓手術の終了時、フィルタは減圧され上行大動脈から除去される。注射器のロックを解除し、ハンドル380を保持しながら加圧カニューレを引き戻す。これにより食塩水が膨張シール317から解放され、フィルタメッシュ、膨張シール、および加圧カニューレが退却し、展開前に配置されていたようにハンドルの下に戻る。注目すべきは、フィルタ内に回収された塞栓性物質もまたハンドル下のその拡大部に捕捉される。場合によっては、注射器を操作して食塩水を膨張シールから引き抜くことによって、加圧カニューレを引き戻す前に膨張シールを収縮させてもよい。付属フィルタがハンドル下に退却すると、標準的な処置を用いることによって大動脈の切開口を損傷することなくカニューレを患者から除去することができる。
【0127】
別の実施形態では、カニューレからの血液が患者内を循環する前にメッシュを通過するように血液カニューレの管腔を超えておよび管腔にわたって延びる図4に示すような連続フィルタを有する、図6および図7に示すようなカニューレが提供される。図9を参照すると、装置は、加圧カニューレ300と血液カニューレ350と膨張シール317とメッシュ318とを含み得る。装置は、場合によっては、ハンドル380、および図6および図7を参照して上述したような膨張システムを含み得る。さらに、膨張システムは加圧カニューレまたは血液カニューレのいずれかに保持され得る。いくつかの実施形態では、血液カニューレおよび加圧カニューレは一体的に組み合わされて単一の構成部品とされ、膨張システムは血液カニューレの内部または外部のいずれかに保持され得る。図9は図6および図7と共通する多くの特徴を有し、適切な記述を図6および図7を参照して見い出すことができるように装置の構成部品の番号付けは同じにしてある。
【0128】
別の実施形態では、カニューレは図10に示すような膨張可能負荷バルーンを備えている。装置は、近位端から遠位端まで延びる加圧管腔422を有するカニューレ421を含む。カニューレは、膨張すると補強ワイヤリブ424に半径方向に外向きの力を加える膨張可能負荷バルーン423を装備している。リブは、一方の縁のカニューレ表面から別の縁の膨張シール426まで延びる膨張メッシュ425を支持する。場合によっては、別の端部(図示せず)で加圧注射器のプランジャーに取り付けられ、これによりカニューレ421の近位端で動作する加圧注射器の動きによって作動(前進および後退)され得る複数の回復ストリング427が配備される。もしくは、ストリングは近位端を、ストリングを引き戻すために引っ張るか、または押し出すために前進させることができるリングまたはスライドに取り付けてもよい。図10AはラインA−Aに沿った大動脈399の断面図である。カニューレが、負荷バルーン423が拡張されるとき半径方向に外向きに延びる複数の補強ワイヤリブ424を備えているのを見ることができる。
【0129】
別の実施形態では、図11および図11Aに示す付属フィルタおよび遠位フロー拡散器を有するカニューレが提供される。図11および図11Aを参照すると、装置は、加圧カニューレ300、血液供給カニューレ350、および保持ストリング316と膨張シール317とフィルタメッシュ318とチャンバー319と管状通路320および321と隔壁322とを含む血液膨張アセンブリ315を備えている。図11Aに示すように、血液供給カニューレの遠位端はキャップ390によって閉鎖され、フロー拡散器395は、カニューレ350の遠位端の血管への挿入が容易になるように丸みを帯びた半球形状である。フロー拡散器395はキャップ390から始まってカニューレ350の近位端に向かって先細となっている。血液に損傷を与えるのを避けるために、拡散器の形状は好ましくは円錐形である。しかし、ピラミッド形状を含む他の形状もまた用いられ得る。
【0130】
図11および図11Aの実施形態では、カニューレ350の遠位端に近い側壁に複数の出口開口部391が形成される。開口部はアーチ型の形状にして各アーチの湾曲部392が上流方向を向くようにしてもよい。任意の数の開口部が可能であるが、好適な実施形態は6個の開口部を有する。好ましくは、開口部の全面積は同じ直径の従来のカテーテルの遠位端の面積より大きい。また、開口部391の長さは好ましくはフロー拡散器395の長さより大きい。
【0131】
別の実施形態では、図12および図12Aに示すような付属フィルタおよびフロー拡散器を有するカニューレが提供される。この実施形態では、カニューレ350の遠位端は螺旋形状の拡散器396を含む。拡散器396は、カニューレの遠位端の先細形状によって、接着剤によって、超音波溶接によって、または他の適切な手段によってカニューレ内に定位置に保持され得る。拡散器は、好ましくは、一回の180度の捻れを有する平坦な方形部材により形成される。この実施形態では、カニューレの遠位端は部分的に塞がれる。さらに、任意の数の出口開口部397がカニューレの側壁に形成され得る。
【0132】
図11および図12のカニューレ内フロー拡散器はまた、例えば、図9に示す装置の血液カニューレ内に拡散器を配置することによって、フィルタより近位側に用いられ得る。管腔内フロー拡散器の他の変形例および詳細については、CosgroveらのLowVelocityAorticCannula(低速大動脈カニューレ)米国特許第5、354、288号に見い出され得る。この文献は本明細書において参考として援用される。
【0133】
別の実施形態では、図13に示すような付属フィルタおよびフロー拡散器を有する血液カニューレが提供される。本実施形態では、フロー拡散器702の近位端は複数の構造支持体704によってカニューレ350の遠位端に接続される。拡散器702は好ましくは円錐形であるが、他の形状を用いてもよい。フロー拡散器702の遠位端は、拡張したフィルタの中心を通る直線シャフト708によってフィルタ706の頂部まで延びる。この実施形態では、フロー拡散器702はフィルタ706より近位側の血流を拡散する。
【0134】
別の実施形態では、図14に示すような動脈血液カニューレが提供される。この実施形態では、フロー拡散器802は血液カニューレ10の遠位端内に含まれる。好適な実施形態では、拡散器802は図12および図12Aに示した螺旋状拡散器である。フロー拡散器802は、カニューレの遠位端の先細形状によって、接着剤によって、超音波溶接によって、または他の任意の適切な手段によって定位置に保持され得る。図12の拡散器とは異なり、拡散器802の遠位端は、拡張したフィルタの中心を通る直線シャフト808によってフィルタ806の頂部に取り付けられる。シャフトは血液成分を傷つけない任意の形状でよく、好ましくは、遠位方向に外向きに先細となる丸みを帯びた表面を備える。この実施形態でも、フロー拡散器はフィルタより近位側のカニューレ血流を拡散する。カニューレ350は場合によっては遠位端804に開口部803を含み、カニューレの血液をさらに拡散する。別の実施形態では、血液拡散器802はカニューレ350内に含まれるが、図9で開示したように支持されているフィルタ806には接続されない。
【0135】
図11〜図14の拡散器のようなフロー拡散器は、図2および図3に示した装置を含む、血液供給カニューレと付属フィルタとを有する任意の血液フィルタ装置で使用され得る。さらに、図14の拡散器は、図7の場合のような遠位フィルタを有するカニューレの内部に用いてもよく、これにより2つのフィルタを、1つはカニューレ開口部の近位側に1つは遠位側に有する血液フィルタ装置が形成される。
【0136】
別の実施形態では、図15に示すように、血液フィルタ装置および付属フィルタ906は、カニューレ10の遠位端の周囲に配置され4本の制御ライン902a、902b、904a、および904bに取り付けられたほぼ円筒形のフィルタスリーブ908を含む。展開制御ライン904aおよび904bに近位方向の力が加わると、フィルタスリーブ908がその図示した位置から広がり、図16に示すようにフィルタを取り込む。この実施形態では、フィルタスリーブを広げる方法はラテックス製コンドームを広げるのに類似する。スリーブは任意の形状であってよいが、制御ラインに応答して装置を覆うことと巻き上がることの両方を行う場合は、好適な実施形態ではスリーブは円形断面を有する。
【0137】
図15では、フィルタスリーブ908はフィルタより遠位の位置に巻き上げられているため、フィルタは十分に拡張することができる。図15はスリーブの断面切取図を示す。図示されていないが、完全なスリーブは360度の軸周りにカニューレを囲む連続体である。好適な実施形態では、円形コンドーム状スリーブが円910の弧に沿ってカニューレの外径に取り付けられる。コンドーム状スリーブはカニューレ先端の出口が可能となるように遠位開口部を有する。好適な実施形態では、一対の制御ライン902aおよび904aはそれぞれ地点928および929で制御管腔に入り、カニューレ管腔に隣接する制御管腔922内を通って、カニューレの近位点(図示せず)で制御管腔から出る。この好適な実施形態では、制御ライン902bおよび904bも同様にそれぞれ地点926および927で第2の制御管腔924に入りそして出る。これらの地点はカニューレの外径上で第1の管腔から180度離れて位置する。
【0138】
図16に示すように、展開制御ライン904aおよび904bはそれぞれ、スリーブの近位端に位置する地点914および916でスリーブ908に取り付けられる。この結果、図15に示すようにスリーブ908が巻き上げられると、地点914および916はスリーブ908のオウムガイ形状のリップの中心へと巻かれ、展開制御ライン904aおよび904bはスリーブの側面に沿って巻き上げられる。
【0139】
これに対して、巻き上げ制御ライン902aおよび902bはそれぞれ地点918および920でカニューレに取り付けられる。地点918および920は弧910上に位置する。図15に示すようにスリーブが巻き上げられると、巻き上げ制御ライン902aおよび902bは、それぞれの取り付け点918および920から巻き上げられたスリーブの露出側部に沿って延び、それぞれ地点926および928で制御管腔922および924に入る。制御管腔に入った後は、巻き上げラインは制御管腔を通って進み、カニューレ上の近位方向に位置する地点(図示せず)から出る。
【0140】
図16は、図15の血液カニューレおよび付属フィルタを有する同じ血液フィルタ装置を示すが、スリーブ908は十分に広がりフィルタ906を取り込んでいる。広がったスリーブは、装置が血管に導入され血管から退却するときにコンパクトで滑らかな輪郭を提供する。スリーブを図15に示す姿勢から広げるためには、図16の展開ライン904aおよび904bをカニューレ先端から離れる近位の方向に引っ張る。この結果、地点914および916は広がったスリーブ908の近位端に位置する。
【0141】
スリーブが展開状態にあるとき、巻き上げ制御ライン902aおよび902bはそれぞれ地点918および920からスリーブ908の下側に沿って延び、スリーブの近位端を回り、次にスリーブの外側に沿って遠位方向に延び、その後それぞれ地点926および928で制御管腔922および924に入る。地点926および928で入ると、巻き上げ制御ライン902aおよび902bは制御管腔を通って進み、カニューレの近位領域に位置する地点(図示せず)で制御管腔から出る。スリーブが図16に示すように展開姿勢にあるときは、巻き上げラインはカニューレの先端から離れる近位の方向に引っ張られ得る。巻き上げラインを引っ張ることにより、スリーブ908は巻き上げられ、図15に示す巻き上げ状態に達する。好適な使用方法では、スリーブ908はカニューレを血管に挿入する前に広げられ、メッシュ展開中には巻き上げられ、カニューレの退却前に再び広げられる。
【0142】
図17は、制御ラインのための取り付け点を強調して示した、展開状態のスリーブ908の断面詳細図である。図17の実施態様では、360度(図示せず)にわたって連続するスリーブは、2本の巻き上げライン902aおよび902bにそれぞれ地点918および920で直接接続される。もしくは、巻き上げラインは、スリーブの遠位端の直下に位置する918および920に近い点でカニューレに直接取り付けられる。図17の矢印で示すように、巻き上げラインを近位の方向に引っ張ることにより、スリーブはコンドームのように巻き上がる。従って、スリーブの材料は、こぶ状になるのを防ぎ、巻き上げラインによって加えられる近位方向の力に反応して円滑に巻かれるのに十分な薄さとすべきである。好適な実施形態では、スリーブはラテックスよりなり、千分の3〜14インチの厚さを有する。より好適な実施形態では、スリーブはラテックスよりなり、千分の4〜16インチの厚さを有する。本発明はまたスリーブを構成するためにシリコーンまたは別のシラスティックの生体適合性材料を用いてもよい。当該分野で既知の他の材料でも、その材料が破れまたは引き裂きに対して適切な保障を与えるならば、千分の6インチより薄い厚さのスリーブが使用可能となる。
【0143】
図18は、カニューレ350、フィルタ906、およびスリーブ908の、スリーブ908が巻き上げ状態にある場合の3次元の図である。1つの実施形態では、フィルタ906は、カニューレの出力がカニューレを出るとき濾過されるようにカニューレの開口部より遠位側に位置する。別の実施形態では、フィルタは、カニューレの出力がフィルタより下流側であるようにカニューレの開口部より近位側に位置する。カニューレ開口部は場合によっては平面拡散器932を有してもよい。フィルタ906は密封スカート930に隣接するメッシュよりなる。入口点933を除いては、巻き上げラインおよび展開ラインは共に図示しない地点でカニューレに入りそして出る。好適な実施形態では、制御ラインはキャプスタン、リング、またはプーリ(図示せず)などの制御ライン作動メカニズムに取り付けられる。この実施形態では、フィルタを開閉するようにされる構造体は、図1に示すような傘フレーム(図示せず)、もしくは図7および図9に示すような膨張バルーン(図示せず)であり得る。図18の実施形態は、本明細書で述べたような構造体を作動する様々な手段のいずれかと共に使用され得る。
【0144】
展開制御ライン904aおよび904bを近位の方向に引っ張ると、取り込みスリーブはフィルタの先端にわたって広がる。次に巻き上げ制御ライン902aおよび902bを近位の方向に引っ張ると取り込みスリーブは巻き上げられ、これによりフィルタの展開が可能となる。図18では、展開ラインはフィルタの周部に沿って互いから180度の角度に向けられている(従って904bは示されていない)。巻き上げライン902aおよび902bは同様に互いから180度の角度に向けられている。しかし、図15〜図17の発明の場合と同様に、この実施形態はフィルタスリーブの外径の周りに様々な間隔を開けて配置される任意の数の制御ラインを用いてもよい。
【0145】
図19は、1つの制御リング936がプーリメカニズムの補助によりスリーブ934の巻き上げおよび展開を制御する別の実施形態を示す。制御リング936はカニューレ(図示せず)の外径に沿って近位および遠位の両方向に移動可能である。制御リング936は、展開制御ライン904aおよび904bに直接取り付けられ、また巻き上げ制御ライン902aおよび902bにプーリ934を介して取り付けられる。制御リングの近位方向への移動によりスリーブ908が広げられる。反対に遠位方向への移動によりスリーブ908が巻き上げられる。
【0146】
血液濾過装置の別の実施形態では、図20に示すように、カニューレ350は、カニューレがフィルタ906およびフィルタシール907ならびに他のフィルタ構成部品を収容し得るように、へこみ可能または変形可能部938を含む。へこみ可能部938はラテックスまたはシリコーンなどのエラストマー材料により形成される。別の実施形態では、へこみ可能部は二重壁バルーンである。好適な実施形態では、へこみ可能部は、展開力によりフィルタ手段が拡張するときへこみ可能壁が自動的に非へこみ状態に戻るような生来の記憶を有する可撓性材料により形成される。へこみ可能部は、フィルタが畳まれた状態にあるときのフィルタシール907より近位側で始まる。図示する実施形態では、へこみ可能部938は、フィルタシール907の位置の直近位側で始まり、フィルタおよびフィルタシールの長さに等しい長さを有する。別の実施形態では、へこみ可能部はフィルタシールの直近位側からカテーテルの先端まで延びる。変形可能部は、カニューレに低輪郭の遠位端を提供するために、濾過アセンブリが閉じられると半径方向に内側にへこむ。従って、カニューレの半径方向の容積の一部は、濾過アセンブリが展開されると濾過アセンブリによって占領される。しかし、カニューレを流れる血液が引き続いて変形可能なカニューレ壁に当たって外向きに押すため、カニューレの直径全体を通る血液流が可能となる。
【0147】
図21および図22に示される血液濾過装置の別の実施形態では、カニューレ350は、ラテックス、シリコーン、ゴムなどのような医学的に受け入れ可能な弾性材料により構成される。図22に示すように、カニューレは、軸方向の応力が加えられていないときこのカニューレを特徴付ける本来の長さおよび直径を有する。カニューレの本来の長さおよび直径は血管サイズにより変動する。カニューレは、図11で開示したタイプのキャップ型拡散器で端部が閉鎖されてもよい。もしくは、カニューレは図12のように先端が部分的に閉じられてもよい。
【0148】
図21に示すように、スタイレット944がカニューレ350内に配置され、カニューレの先端に係合する。別の実施形態では、スタイレットは開先端の開口部に懸垂されたリングに係合する。カニューレ内に十分に挿入されると、長いスタイレット944はカニューレの遠位端に係合し、図示するようにカニューレ本体を軸方向に引き伸ばす。このようにして、カニューレは引き伸ばされ、カニューレの直径は縮小する。スタイレットの近位端に固定されたフィンガーグリップ946はラッチ部材948を含む。ラッチ部材は、カニューレの引き伸ばされた形状を維持するために、カニューレの近位取付具952に形成された凹部950に係合する。血管内への挿入後、弾性カニューレは、ラッチ部材948を押して図22のようにスタイレットを引っ込めることによって半径方向に伸張および縮小される。
【0149】
この実施形態では、フィルタ908は、テザーライン954および956によって、スタイレットが導入されるとカニューレの伸張によってテザーラインがピンと張るように、伸張していない弾性カニューレ350の外径に固定される。これにより、フィルタはカニューレの輪郭に沿う。反対に、図22に示すように、スタイレットが除去されるとカニューレは短くなり、これによりフィルタが拡張する。様々なバイアス化およびフィルタを開くメカニズムが用いられ得るが、好適な実施形態では、フィルタ自体が開いた状態にバイアスされた記憶ワイヤにより形成される。
【0150】
図23および図24に示す別の実施形態では、フィルタアセンブリ962が取り付けられる遠位カニューレ部960は、少なくとも一部は、通常は縮径の収縮位置にある、半径方向に可撓性を有する材料または複合構成物である。これにより、収縮したフィルタアセンブリ962は血管への挿入に対して輪郭を出来る限り小さくすることができる。遠位カニューレの縮径部964は、密接に嵌合する拡張器966を縮径部に挿入することによって開けられる。拡張器966は遠位端967を有する。拡張器を挿入することにより、フィルタアセンブリ962は遠位カニューレの外側輪郭に対して突出する外形を示す。場合によっては、図24に示すように、フィルタアセンブリ962は、本明細書で既に述べたように、展開メカニズム(図示せず)によって十分に展開されてもよい。図23および図24の両方で、拡張器は近位カニューレ968に対して固定される。拡張器をへこみ可能部に挿入するには、両方が遠位カニューレに対して遠位方向に動かされる。もしくは、拡張器966は近位カニューレ968とは独立して動いてもよい。
【0151】
図25、図25A〜図25Dに示される別の実施形態では、カニューレ350は、最も外側の縁の周りに配置されたスカート970を有するフィルタ906を含む。スカート970は、フィルタメッシュの近位縁に取り付けられたエラストマー材料片(例えば、シリコンまたは他の適切な材料)である。スカート970は、血管の管腔地形に順応する従順な縁を形成し、フィルタが展開されると管腔と共により良好なシールを与える。さらに、従順な縁970は、血管が心収縮期から心拡張期へと脈動するときの血管内部寸法の変化を受容する。展開制御ライン904aおよび904bならびに巻き上げ制御ライン902aおよび902b(図示せず)の両方がチューブ978を通り、次に、位置971でカニューレハウジングを通り、その後チュービング972内に入って、体外の操作点まで延びる。巻き上げおよび展開制御ラインに加えて、第5の制御ラインもまた、図25に示す傘フレーム973を操作するために、チューブ972および位置971を通って渡される。この制御ラインはチューブ978の内側または外側のいずれかに入ることができる。傘フレームは、メッシュの遠位端から近位端まで延びメッシュの周部に沿って配置される一連の一次支柱974と、一連の二次支柱975とからなる。支柱975は近位端で支柱974に接続し、遠位端で円錐形濾過メッシュの軸に摺動可能に接続する。従って二次支柱975は、拡張フレームを半径方向に拡張した状態と半径方向に収縮した状態との間で開閉するように動作する。
【0152】
図26に示される別の実施形態では、カニューレ350はその遠位端に、多孔質メッシュ、非多孔質材料(例えばシリコン)、またはある程度の横方向の血流を通す穴を有する非多孔質材料のいずれかである「吹流し」または開端スリーブ976を含む。図26には、吹流しカニューレが大動脈99内で展開されている様子を示す。図で見て取れるように、カニューレより上流側で引き離された塞栓デブリスは吹流し976を通って運ばれ遠位開口部977から出ることになる。従ってスリーブ976は頚動脈の領域内で塞栓性物質が横方向に通過するのを防ぎ、これにより塞栓性物質が脳に達するのを防ぐかまたは減らす。しかし同時に、吹流し装置は、横方向にスリーブを通り抜ける必要なく多量の血液を頚動脈より下流側に送達することによって、血液凝固およびデブリス蓄積によりフィルタが封鎖されることに関連する問題を克服する。
【0153】
別の実施形態では、フィルタは、Regerらの米国特許第5,108,419号(図2、14、15)および第5,160,342号に記載されているような「ロブスタートラップ」の形態で提供される。これらの文献は本明細書において参考として援用されている。この構成のフィルタはデブリスを小さな開口部を通して捕捉チャンバーに入れることができる。この構造体には普通、一連の他の小さな開口部が含まれており、従ってデブリスは構造体を通って一方向に遠位方向に進む。しかし、物質はひとたび構造体に入ると出て行くことはできず、従って血管内の血液が瞬間的にでも逆流することがあっても、塞栓性デブリスはフィルタから流れ出ることはできない。
【0154】
図15〜図26の血液濾過装置、およびロブスタートラップは、場合によっては血液カニューレ350の代わりに任意の細長い挿入部材を用いてもよいことは理解されよう。細長い挿入部材は管腔を含む必要はない。
【0155】
本明細書で開示されたような血液を濾過する方法の1つの純粋に例証のための例として、この方法をManual of CardiacSurgery(心臓手術マニュアル)、d.Ed.By Bradley J Harlan,Albert Spar,Frederick Harwinに記載されているような心臓バイパス手術に関連して以下に述べる。本文献は本明細書においてその全体が参考として援用されている。
【0156】
本発明の好適な方法は、心臓手術、特に心臓バイパス手術中に患者を塞栓形成から保護するために使用され得る。この方法は以下の工程、すなわち、メッシュを患者の大動脈に導入する工程と、メッシュが血液中の塞栓性物質または異物をこれが脳に逃れ得る前に捕捉し得るように、好ましくは頚動脈に近位の大動脈の断面積の実質的にすべてを覆うようにメッシュを位置決めする工程と、大動脈の断面積の実質的にすべてを覆うメッシュ位置を維持するようにメッシュを調整する工程と、メッシュおよび捕捉異物を大動脈から除去する工程とを包含する。変形例は、脳に向かうはずの塞栓を体の他の部分に向けるために円筒形メッシュを大脳血管の開始点レベルに配置する工程を包含する。
【0157】
心臓手術中、大動脈は何度もクランピングされる。大動脈をクランピングすることにより大動脈壁からアテローム物質が引き離され、これが血流に放出されるため、メッシュはクランピングが始まる前に大動脈内に位置決めしなければならない。アテローム物質はまた手術中にクランプの背後に蓄積し、クランプを除去するとこの物質が血流に放出されるため、メッシュはクランプの除去後4〜10分間は血流内に維持しなければならない。大動脈は、最終的に血流に放出されるアテローム物質の多くの源であることが多いため、メッシュを大動脈内の心臓と頚動脈との間に配置するのが好ましい。この配置により、異物が脳に達し得る前に捕捉されることが確実となる。
【0158】
例示のために、図4に示した装置に関連して血液を濾過する方法について述べる。バイパス手術の準備のために患者に麻酔がかけられ、患者の胸が開かれると、外径サイズ約22Fr〜約25Frのカニューレ205を大動脈に形成された切開口に導入する。カニューレ205を大動脈壁に縫合し、心臓を麻痺させる。装置10はカニューレ205内に閉姿勢で格納されている。この姿勢では、バルーン230は収縮して折り畳まれ、メッシュ220は閉じている。カニューレ205および装置10は外科処置で使用される他の装置を妨害することはない。
【0159】
次に、血液フィルタ装置10がカニューレ205を通って結合ライン250を介して大動脈に挿入される。食塩水が体外のレザバーから作動アセンブリ260を通してバルーン230に導入され、装置は徐々に、バルーン230がドーナツ形に膨張しメッシュ220が開いて血管の断面積の実質的にすべてを覆う開姿勢をとる。開姿勢では、装置10は血流中の異物を捕捉する準備ができている。バルーン230に導入される食塩水の量を調整することによって、外科医は膨張量、従ってメッシュ220が開く程度を制御し得る。装置を作動させると、バイパスマシーンからの血液がカニューレ205を通って大動脈内に導入され、装置10によって濾過される。
【0160】
血液が心臓に逆流するのを阻止するために、外科医は大動脈をクロスクランピングするか、または別の処置では、バルーンが動脈または大動脈を塞ぐ。大動脈をクロスクランピングすること、および/またはバルーンで塞ぐことにより、アテローム物質が大動脈の壁から引き離されこれが血流に放出される。クロスクランピングは装置10より上流側で行われるため、アテローム物質は装置10によって血液から濾過され得る。大動脈がクロスクランピングされている灌に、外科医は患者の脚から取り除かれた静脈の一方の端部を冠動脈に移植する。外科医は血流をチェックして漏洩がないことを確かめると、大動脈クランプを取り外す。アテローム材料がクランプの背後に蓄積しており、クランプが除去されるとこの物質が血流に放出され、血流は装置10によって濾過され得る。バイパスマシーンからの流速は塞栓形成を最小限にするように低く維持され、そして心臓を再び鼓動させる。
【0161】
手術中、メッシュの位置は、大動脈の断面積の実質的にすべてを覆った状態に維持されるように調整が必要となり得る。これを実現するには、外科医は、メッシュ220が大動脈の断面積の実質的にすべてを覆うように装置10を調整するために、大動脈の外側を時折軽く触診する。外科医はまた大動脈内の装置10の位置を調整し得る。
【0162】
装置10はまたTCD視覚化技法と共に用いられ得る。この技法により、外科医は、大動脈カニューレ挿入中、切開中、ならびにバイパス、大動脈クランピングおよびクランプ解除の終了時などの塞栓の集団が予想されるときのみ装置10を作動させ得る。
【0163】
次に、外科医は、大動脈を長さ方向にクランピングして大動脈を部分的に閉鎖する。この場合も装置10によって濾過されるべきアテローム物質が放出される。大動脈の閉鎖部分に穴が開けられ、静脈クラフトの他端が穴が開けられた大動脈に縫い合わされる。次に、大動脈クランプが除去され、再び装置10によって血液から濾過されるべき蓄積されたアテローム物質が放出される。外科医は血流をチェックして漏洩がないことを確かめる。心臓はポンピングのすべてを回復し、バイパスマシーンのスイッチが切られ、この処置は終了する。
【0164】
次に、食塩水をバルーン230から作動アセンブリ260を介して除去すると、バルーン230は収縮し、メッシュ220は捕捉塞栓を包んで閉じる。次に、結合ライン250をカニューレ205へと引っ張ることによって、装置10をカニューレ205内に退却させる。退却前にバルーン230が十分に収縮していない場合は、カニューレ205に退却するとき余分の食塩水をバルーン230から絞り出せばよい。最後に、カニューレ205および装置10を捕捉塞栓と共に体外に除去する。装置10は処置中ずっと定位置にあるため、処置中に放出されるいかなる物質も装置10によって捕捉され得る。
【0165】
装置10を他の侵襲的な処置と共に使用するときは、装置の寸法を影響を受ける血管に嵌合するように調整すべきである。また、その血管内の血流にとって適切なメッシュが選択されるべきである。使用において、装置は、処置中にクランピングまたは処置の他の工程によって影響を受ける血管部分より下流側に配置されるように位置決めするとよい。例えば、脚動脈内の塞栓性物質を捕捉するためには、円錐形のフィルタを円錐点が足の方を指すように配置することができる。
【0166】
本発明の装置および方法ならびに本明細書で述べた血液を濾過する方法の利点は、装置が挿入される切開口から生じる異物を捕捉することが可能なことである。本発明の装置の別の利点は、膨張可能バルーンの可撓性により血管壁の推定される凸凹に順応することができることである。
【0167】
本発明の他の方法では、フィルタはカニューレから離され、カニューレとは別の細長い部材上に配置される。これにより、カニューレが通常は大動脈弓より上流側の大動脈内に挿入されるとき、細長い部材上に配置されたフィルタは、カニューレと同じ切開口を通って入ってもそうでなくてもよい。従って、フィルタは以下のルートのいずれかによって入ればよい。すなわち、(1)カニューレを通ってカニューレより下流側に展開される、(2)カニューレを通ってカニューレより上流側に展開される、(3)鎖骨下動脈を通ってカニューレより上流または下流の地点で展開される、そして(4)大腿動脈を通って大動脈弓に入り、カニューレより上流または下流の地点で展開される。本発明の他の方法では、フィルタは心臓手術処置の工程中に展開され、工程と工程との間で除去される。
【0168】
冠動脈バイパス移植中の大脳塞栓シグナルは、以下の通りである(イベント毎の塞栓放出パーセントとして表示):カニューレ・オン=2%、バイパス・オン=6%、大動脈クロスクランプ・オン=6%,大動脈クロスクランプ・オフ=21%、部分閉塞クランプ・オン=7%、部分閉塞・オフ=14%、バイパス・オフ=8%。さらに、バイパス・オンと大動脈クロスクランプ・オンとの間の約5.8分の間隔中に塞栓性物質の約4%が放出される。クロスクランプの配置と大動脈クロスクランプの除去との間の間隔、約38.8分の時間の間に、塞栓性物質の約13%が放出される。大動脈クロスクランプの除去と部分閉塞クランプの配置との間の約4.1分の間隔中に塞栓性物質の約9%が放出される。部分閉塞クランプの配置と部分閉塞クランプの除去との間の約9.7分の間隔中に塞栓性物質の約2%が放出される。最後に、部分閉塞クランプの除去とバイパス切断との間の約7.3分の間隔中に塞栓性物質の約8%が放出される。
【0169】
従って、1つの実施形態では、フィルタをクロスクランプ除去の少し前に展開し、その少し後に除去するのが望ましい。別の実施形態では、フィルタをクロスクランプ配置の直後の期間中のみに展開し、クロスクランプ除去の後に除去するのが望ましい。さらに別の実施形態では、フィルタを大動脈クロスクランプの配置直前に展開し、大動脈クロスクランプの除去後まで維持することが望ましい。もしくは、フィルタは、クロスクランプの配置、クロスクランプの除去、部分閉塞クランプの配置、または部分閉塞クランプの除去の前に展開してその後に除去してもよい。さらに別の実施形態では、フィルタは、大動脈クロスクランプの配置と除去との間の間隔中のみに展開される。従って、いくつかの実施形態では、フィルタは、短期間のイベント、例えば、カニューレ・オン、バイパス・オン、クロスクランプ・オン、クロスクランプ・オフ、部分閉塞クランプ・オン、部分閉鎖クランプ・オフ、およびバイパス・オフに対して、単に過渡的に展開させるのが望ましい。他の実施形態では、多くのこれらの操作イベントを通してずっとフィルタを展開させるのが望ましい。さらに他の実施形態では、これらの操作イベント間の1つ以上の間隔中のみにフィルタを展開させるのが望ましい。バイパス手術中の塞栓のステージングについては、Barbutら、Stroke 25:2398−2402(1994)を参照されたい。この文献は本明細書において明白に参考として援用されている。
【0170】
血液を濾過する特定の装置および方法について述べたが、この記述が既知となれば、本発明の精神および範囲から逸脱することなく他の実施形態および他の工程もまた可能であることは当業者であれば明らかであろう。さらに、各実施形態の特定の特徴が他の実施形態で示された装置と組み合わせて使用され得ることは明らかであろう。例えば、図7に示す膨張システムは図1〜図4に示す装置のいずれかと共に使用することができる。従って、上記の記述は例示的なものであって制限的なものではなく、本発明の範囲は以下の請求の範囲によって規定されるものと解釈されるべきである。

【特許請求の範囲】
【請求項1】
明細書中に記載の発明。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2011−15989(P2011−15989A)
【公開日】平成23年1月27日(2011.1.27)
【国際特許分類】
【出願番号】特願2010−208653(P2010−208653)
【出願日】平成22年9月16日(2010.9.16)
【分割の表示】特願2007−204801(P2007−204801)の分割
【原出願日】平成10年4月15日(1998.4.15)
【出願人】(500218127)エドワーズ ライフサイエンシーズ コーポレイション (93)
【氏名又は名称原語表記】Edwards Lifesciences Corporation
【住所又は居所原語表記】One Edwards Way, Irvine, CALIFORNIA 92614, U.S.A.
【Fターム(参考)】