説明

位置決め装置

【課題】治療計画時の患部基準位置と、治療時の患部位置とを、3次元照合することによって、正確に変化量を求められる位置決め装置を提供する。
【解決手段】治療時に、X線画像取得部4、5にて、治療台上での患部の2次元X線画像を複数の方向から撮像し、複数の2次元X線画像データを取得し、シルエット抽出部7にて、複数の2次元X線画像のそれぞれから患部の2次元シルエットを抽出し、視体積交差構成部8にて、複数の2次元シルエットの視体積交差部分から患部の3次元表面形状を復元し、変化量算出部9にて、治療計画時の患部の基準位置に対する、治療時の患部の位置の変化量を、治療計画時に取得した患部の3次元CTデータと3次元表面形状との照合によって算出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、粒子線治療のための患部の位置決め装置に関する。
【背景技術】
【0002】
粒子線治療は、粒子線を患部に向けて照射することで癌細胞を死滅させる治療方法である。この粒子線治療では、患部の形状に合わせて粒子線をピンポイントで照射するため、治療計画を立てた際の患部の3次元位置や姿勢を基準として、現在の患部の位置や姿勢を合わせる「位置決め作業」が必要となる。粒子線治療装置には、粒子線照射装置や位置決め装置が構成要素として含まれるが、位置決め作業は、患者を載せて位置を調整できる治療台を備えた位置決め装置を用いて行われる。位置決め作業は、X線撮像装置によって患部を観察しながら、患部の位置や姿勢が治療計画時の値(基準位置)に合うように治療台の位置や角度を調整することで行われる。しかし、この作業には時間がかかるため、効率的に行いたいという要望がある(例えば、特許文献1参照)。
【0003】
最近では、位置決め作業を支援する位置決め装置の開発が進み、一部が自動化されている。これは、治療計画時に取得されている3次元CT(Computed Tomography:断層撮影)データと治療時に撮影される2次元X線画像のデータ同士を比較し、治療計画時と治療時における患部の3次元位置・姿勢の変化量を推定することで行われる。具体的には、3次元CTデータを任意の仮想視点に向かって再投影した2次元投影画像(DRR:Digitally Reconstructed Radiographと呼ばれる)を繰り返し生成し、X線画像と投影画像が最も一致するときの仮想視点パラメータを探索することで実現される。なお、患部を基準としてみたときの仮想視点の3次元位置とX線撮像装置の3次元位置の並進・回転量の変位量が患部の3次元位置・姿勢の変化量そのものになる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−228966号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
X線画像と投影画像が一致するときの仮想視点パラメータを求めるためには、すべてのパラメータで投影画像を生成し、一致度を検証すればよいが、時間がかかってしまうという問題がある。そのため、一般的には「山登り法」と呼ばれる局所探索法が用いられている。山登り法は、現在探索中のパラメータの近傍の中から最も成績の良い(一致度の高い)パラメータを近傍解として選び、現在のパラメータよりも近傍パラメータの成績の方が良い場合に近傍パラメータを採用するといったことを繰り返すことで最適解を見つける方法である。ただし、これが有効に機能するのは、任意のパラメータに対する一致度の分布が単峰性になる場合であり、多峰性の場合には初期値に依存して誤った局所解に陥る可能性を持っている。
本発明は、任意のパラメータに対する一致度の分布が多峰性である場合においても、初期値に依存せずに最適解を見つけ、その最適解を反映させて患部の位置決めの変化量を最適化させることが可能な位置決め装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
この発明に係わる位置決め装置は、治療計画時に取得した、治療台上での患部の基準位置を示す3次元CTデータを保持するCTデータ保持部、治療時に、上記治療台上での上記患部の2次元X線画像を複数の方向から撮像し、複数の2次元X線画像データを取得するX線画像取得部、複数の上記2次元X線画像のそれぞれから上記患部の2次元シルエットを抽出するシルエット抽出部、複数の上記2次元シルエットの視体積交差部分から上記患部の3次元表面形状を復元する視体積交差構成部、治療計画時の上記患部の基準位置に対する、治療時の上記患部の位置の変化量を、上記3次元CTデータと上記3次元表面形状との照合によって算出する変化量算出部を備えたものである。
【発明の効果】
【0007】
この発明の位置決め装置によれば、3次元CTデータと多方向から撮影した2次元X線画像から復元した3次元表面形状とを3次元照合して、患部の変化量を算出するため、位置決めの変化量を最適化させることができる。
【図面の簡単な説明】
【0008】
【図1】本発明の実施の形態1の説明に必要な、課題解説のための説明図である。
【図2】本発明の実施の形態1の説明に必要な、課題解説のための説明図である。
【図3】本発明の実施の形態1によるCT画像データ取得時のイメージ構成図である。
【図4】本発明の実施の形態1による2次元画像データ取得時のイメージ構成図である。
【図5】本発明の実施の形態1による位置決め装置のブロック構成図である。
【図6】本発明の実施の形態1による視体積交差法の説明図である。
【図7】本発明の実施の形態1による位置決め装置の動作フロー図である。
【図8】本発明の実施の形態2による位置決め装置のブロック構成図である。
【図9】本発明の実施の形態2による位置決め装置の動作フロー図である。
【発明を実施するための形態】
【0009】
実施の形態1.
まず、従来技術の問題点についてより詳細に考察する。図1に示すような3次元CTデータ100、および、X線画像(2次元X線画像)101を対象とし、X線画像101と、3次元CTデータ100から得られる投影画像が一致する仮想視点パラメータを求めたとき、仮想視点をAからBを経てCに向かって変位させ、仮想視点Aにて投影画像A(102)を得、仮想視点Bにて投影画像B(103)を得、仮想視点Cにて投影画像C(104)を得たとする。その場合、X線画像101と投影画像102〜104の一致度を見ると、図2のような多峰性のグラフが得られる。図2では、縦軸にX線画像101と投影画像との一致度を、横軸に仮想視点に関するパラメータ(仮想視点A、B、C)を示している。この場合、仮想視点AおよびCにて一致度が同じように高くなる多峰性であることが分かる。そのため、仮想視点AとCのどちらが真の解であるか判断がつかない。
【0010】
また、真の解が投影視点Aである場合に、偽の解であるC付近に初期値を設定した場合には、山登り法では偽の解であるCが選択され、判断を誤ることになる。これは、3次元の対象物を2次元投影画像として次元縮退し、情報がロスしているために発生している問題である。逆に言えば、3次元のレベルで一致度を検証することができれば、グラフは単峰性となり、山登り法であっても最適解が見つかるはずである。本発明においては、このような問題に鑑み、3次元のレベルでの照合を行い、一致度を向上させて最適解を求めることにより、患者位置決めの際の変化量(位置・姿勢変化量)を最適化できる位置決め装置を提案する。
【0011】
本発明の実施の形態1について、図3〜図7を用いて説明する。図3は、治療計画時に、患者の3次元CTデータを取得時のイメージ構成図であり、CTデータ取得装置を用いて患者3の患部を撮影する様子を示している。X線管1aと検出器1bからなるCTデータ取得装置を用い、CT撮影台2に寝ている患者3の患部である頭部を、X線管1aと検出器1bで挟むように設置し2次元断層画像を連続的に撮影することで3次元CTデータの取得を行う。この治療計画時に得られた3次元CTデータでの患部の位置が治療時の基準位置に設定される。治療時には、治療台上にて、その基準位置に患部を合致させることができるように、患部の配置を再現する必要がある。CTデータ取得装置で得られた3次元CTデータは、治療時に位置決め装置のCTデータ保持部1(後述する)に記憶され、位置決め(患部の再配置)の基準位置を示すデータとして用いられる。
【0012】
図4は、治療時に必要となる粒子線治療装置の治療台6およびその周囲に配置されたX線画像取得装置(X線画像取得部)を用いて、患者3の患部の2次元画像データ(X線画像)を取得する際のイメージ構成図である。X線画像取得部(4)は、X線管4aと検出器4bから成り、治療台6に寝ている患者3の患部を所定方向からはさむように設置され、所定方向からの撮影を行う。また別のX線画像取得部(5)は、異なる方向からの撮影が可能なように、角度を変えてX線管5aと検出器5bが配置されている。なお、説明を簡単にするためにX線画像取得部を2組として記載しているが、実施の形態1では、比較的多くのX線画像取得部が設置されているものとする。これは1組のX線画像取得部が移動することによって異なる位置(多方向)から複数枚のX線画像を撮影するケースも含むものとする。ここで得られるX線画像のデータ数が多いほど、復元する患部の3次元表面形状をより正確なものとできる。
【0013】
以下、図5の位置決め装置のブロック構成図を用いて、実施の形態1を説明する。CTデータ保持部1は、治療計画時に取得した、CT撮影台2に寝た患者3の患部付近の3次元CTデータを保持している。治療時には患者3は、粒子線治療装置の治療台6上に寝て位置決めおよび粒子線照射が行われる。また、X線画像取得部4および5は、治療時の患部のX線画像を複数の方向から撮影し、複数の2次元画像データを得る。
シルエット抽出部7は、X線画像取得部4および5で撮影された複数のX線画像を受け取り、それぞれの画像上で患部領域のシルエットを抽出する。抽出方法は問わないが、正常な臓器画像との画像間差分、あるいは、テクスチャ(模様)特徴解析による領域分割法などを用いて抽出する。なお、シルエット抽出部7は、X線画像取得部4、5と対になって個別に複数存在してもよい。
【0014】
視体積交差構成部8は、複数のX線画像(X線画像1、2、・・・。)から抽出されたシルエットの情報をもとに、視体積交差法によって患部の3次元表面形状を復元する。視体積交差法は、図6に示すように、画像上でのシルエットを三次元空間に逆投影したときに出来る視体積の共通部分を抽出することで、元の3次元表面形状を復元する手法である。図6では2つの画像におけるシルエットを使っているが、より多くの画像を使えば、視体積の共通部分は限りなく実際の患部形状に近づくことになる。詳しくは、情処論文誌 Vol.42, No.SIG6(CVIM2), pp.1-12の“平面間透視投影を用いた並列視体積交差法”などに記載されている。
【0015】
変化量算出部9は、復元された患部の3次元表面形状と、CTデータ保持部1に保持されている3次元CTデータを3次元照合し、CTデータ取得時(治療計画時)とX線画像取得時(治療時)における患部の3次元位置・姿勢の変化量を算出する。この3次元照合の方法として、一つにICP(Iterative Closest Point)法がある。ICP法は対象となる2つの三次元データ群(A、B)において、対応点間の距離の総和を誤差関数として、最小二乗評価に基づく逐次的繰り返し計算により、三次元データ群間の最適な位置姿勢変換パラメータを推定する手法であり、文献Paul J. Besl and Neil D. McKay, “A method for registration of 3-D shapes,” IEEE Trans. PAMI, 14(2), pp. 239-256, 1992に開示されている。
【0016】
次に、本発明の位置決め装置を用いた位置決め作業の動作フローを、図7を用いて説明する。粒子線治療では、まず、治療計画を立てるために、ステップST10にて、患者3がCT撮影台2に寝た状態で、CTデータ取得装置により患部の基準位置(値)を示す3次元CTデータを取得する。この3次元CTデータの診断結果に基づいて粒子線の当て方や量などの治療計画が立てられる。
治療時には、ステップST11にて、X線画像取得部4(5、・・・。)を用い、2方向以上から患部の2次元X線画像を撮影し、多方向からのX線画像を取得する。次に、ステップST12にて、シルエット抽出部7は、撮影された多方向からのX線画像を受け取り、画像上で患部領域のシルエットを抽出する。次に、ステップST13にて、視体積交差構成部8は、視体積交差法により患部の3次元表面形状を復元する。最後にステップST14において、変化量算出部9は、復元された患部の3次元表面形状と、CTデータ保持部1で保持されている3次元CTデータを3次元照合し、CTデータ取得時とX線画像取得時における患部の3次元位置・姿勢の変化量を算出する。
【0017】
以上のように、この発明の実施の形態1では、複数(多方向から)のX線画像のそれぞれから、患部の2次元シルエットを抽出し、その視体積交差部分から復元した3次元表面形状と3次元CTデータを照合することにより変化量を算出するようにしたので、次元縮退による情報ロスもなく、位置・姿勢の変化が大きい場合であっても正確に、最適解を探索することができる。
よって治療計画時と治療時の患部の変化量を正確に求めることができ、その変化量から、治療台6の移動方向、移動量を換算できるため、患者3の患部を、治療計画時の基準位置に再現して位置決めすることが可能となり、高精度な治療を実施することが可能となる。
【0018】
実施の形態2.
上述した実施の形態1では、患部の3次元表面形状をより正確に復元するためには、より多方向から患部を撮影した2次元画像データが必要であった。
実施の形態2では比較的少数(ただし2組以上)のX線画像取得部しかない場合を想定し、実施の形態1と従来手法を組み合わせた構成について説明する。X線画像取得部が少数の場合には、視体積交差法による3次元復元の厳密性が損なわれてしまうが、この組み合わせは、従来手法の欠点とあわせ、双方の欠点を補完する狙いがある。
【0019】
以下、図8のブロック図を用いて、実施の形態2を説明する。実施の形態2では、変化量算出部9は、特定の投影視点を決定し、その情報を投影画像生成部10へ出力する。投影画像生成部10は、CTデータ保持部1から3次元CTデータを読み出して受け取り、その投影視点に向かって再投影した2次元投影画像(DRR)を生成する。それ以外の機能は実施の形態1と同様であるので省略する。
【0020】
次に、実施の形態2の位置決め装置を用いた位置決め作業を、図9の動作フロー図を用いて説明する。まず、ステップST10からステップST14までは実施の形態1と同じである。次に、ステップST15にて、変化量算出部9は、ステップST14で算出した患部の3次元位置・姿勢の変化量にもとづき投影視点を初期設定する。次に、ステップST16にて、投影画像生成部10は、変化量算出部9から投影視点情報を受け取り、2次元投影画像(DRR)を生成する。次に、ステップST17にて、変化量算出部9は、ステップST16で得た2次元投影画像と、ステップST11で得た2次元X線画像を2次元照合する。その照合度合いが最も高くなるときの投影視点パラメータを求めるために、ステップST18でパラメータの収束判定を行い、収束していなければNoに進み、ステップST19で投影視点を更新して、ステップST16からステップST18までを繰り返し行う。投影視点の更新方法は、従来と同じく山登り法などの局所探索法を用いればよい。ステップST18にて、パラメータが収束すれば、Yesに進み、ステップST20において投影視点パラメータから位置・姿勢変化量に変換する(位置・姿勢変化量の算出)。
その後、実際の位置決め作業においては、上述のように求めた患部位置の変化量をもとに、治療台6を移動させて患者の患部の位置決めを完了させる。
【0021】
以上のように、この実施の形態2の位置決め装置は、実施の形態1と従来手法を組み合わせた構成であり、3次元CTデータから、任意の投影視点に向かって再投影した患部の2次元投影画像を生成する投影画像生成部10を備え、変化量算出部9は、投影視点を、治療時の患部の位置の変化量に基づいて初期設定し、投影画像生成部10にて得られる2次元投影画像と2次元X線画像との照合を行い、照合度合がもっとも高くなる投影視点をくり返し探索し、探索された最適な投影視点の情報を基に、変化量を最適化させるものであるため、3次元照合で大まかに解を推定した後に、最後の微小なパラメータ推定を従来手法で行うことで、推定精度も確保することができるものである。
【0022】
つまり、この実施の形態2では、X線画像取得部で得られるX線画像の情報量が少なく、視体積交差法による3次元復元の厳密性が損なわれて正確に3次元表面形状の再現ができない場合に有用であり、まず、3次元照合で大まかなパラメータ推定までを行い、誤った局所解へ陥るといった従来手法の欠点は補いつつ、さらに、投影画像生成部10で得る2次元投影画像と、X線画像とを2次元照合することで、最適な投影視点を探索でき、患部位置の変化量を最適化させることができ、良好な位置決めを行うことが可能となる。
【符号の説明】
【0023】
1 CTデータ保持部
1a、4a、5a X線管
1b、4b、5b 検出器
2 CT撮影台
3 患者
4、5 X線画像取得部
6 治療台
7 シルエット抽出部
8 視体積交差構成部
9 変化量算出部
10 投影画像生成部。

【特許請求の範囲】
【請求項1】
治療計画時に取得した、治療台上での患部の基準位置を示す3次元CTデータを保持するCTデータ保持部、治療時に、上記治療台上での上記患部の2次元X線画像を複数の方向から撮像し、複数の2次元X線画像データを取得するX線画像取得部、複数の上記2次元X線画像のそれぞれから上記患部の2次元シルエットを抽出するシルエット抽出部、複数の上記2次元シルエットの視体積交差部分から上記患部の3次元表面形状を復元する視体積交差構成部、治療計画時の上記患部の基準位置に対する、治療時の上記患部の位置の変化量を、上記3次元CTデータと上記3次元表面形状との照合によって算出する変化量算出部を備えたことを特徴とする位置決め装置。
【請求項2】
上記3次元CTデータから、任意の投影視点に向かって再投影した上記患部の2次元投影画像を生成する投影画像生成部を備え、上記変化量算出部は、上記投影視点を、治療時の上記患部の位置の変化量に基づいて初期設定し、上記投影画像生成部にて得られる上記2次元投影画像と上記2次元X線画像との照合を行い、照合度合がもっとも高くなる上記投影視点をくり返し探索し、探索された最適な上記投影視点の情報を基に、上記変化量を最適化させることを特徴とする請求項1記載の位置決め装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−191986(P2012−191986A)
【公開日】平成24年10月11日(2012.10.11)
【国際特許分類】
【出願番号】特願2011−56541(P2011−56541)
【出願日】平成23年3月15日(2011.3.15)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】