説明

光に基づいた論理レベル表現を有する光論理素子およびその設計方法

偏光に基づいた論理レベル表現を使用して論理演算を行うための装置および方法を提供する。装置および方法は、入力偏光ビームを第1のビームおよび第2のビームに分割し、該第1のビームおよび該第2のビームは、該入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する。さらに、該装置および方法は、第1のビームを第1の相対偏光角で偏光し、該第2のビームを第2の相対偏光角で偏光する。入力偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、該第1の相対偏光角と該第2の相対偏光角の差は、180度またはほぼ180度である。さらに、該入力偏光ビームの該相対偏光角は、該第1の相対偏光角または該第2の相対偏光角のいずれかと同等またはほぼ同等である。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、2006年5月18日に出願された米国仮出願第60/747,656号、2006年5月22日に出願された米国仮出願第60/747,901号、および2006年9月29日に出願された米国仮出願第60/827,630号の優先権を主張するものであり、これらすべては、参照することにより本明細書に組み込まれる。
【0002】
技術分野
本発明の実施形態は、概して偏光に基づいた論理状態表現を使用する2値論理ゲートに関する。
【背景技術】
【0003】
2値論理ゲートは、論理入力に対して論理演算を行い、論理出力を生じる。それぞれの論理入力および出力の論理レベル(または状態)は、0(すなわち、低)または1(すなわち、高)のいずれかである。電気システムにおいて、入力または出力の論理レベルは、その電圧レベルによって表現され、一般的に、低電圧は論理0を表し、高電圧は論理1を表す。同様に、従来技術による光学システムは、入力/出力電磁波の強度に基づき、論理レベルを表す。従来技術に開示される偏光に基づいた論理レベル表現のみ、光学システムにおいて2つの論理レベルを表すために、相対偏光角がゼロである平行/水平偏光電磁波および相対偏光角が90°である平行/垂直偏光電磁波を利用する。
【0004】
論理演算を実行するために論理レベルの強度に基づいた表現を使用する光ゲートは、これらのゲートをカスケード接続する前に、出力電磁波を再生する必要がある。さらに、既存の光ゲートは、単軸結晶、非線形光学素子、および半導体型光検出器等の高価な構成部品を含む。さらに、従来技術による光ゲートは、複雑な平行手順を行い、最適速度で動作しないという点で、効率的ではない。
【0005】
したがって、費用効率が高く、計算的に簡易化した方法で論理演算を実行するために、電磁波のいずれかの偏光角に基づく、偏光に基づいた論理レベル表現を使用する光ゲートの必要性が存在する。
【発明の概要】
【0006】
偏光に基づいた論理レベル表現を使用して論理演算を行う装置および方法を提供する。一実施形態において、入力偏光ビームを第1のビームおよび第2のビームに分割し、該第1のビームおよび該第2のビームは、該入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する、装置および方法が提供される。さらに、装置および方法は、第1の相対偏光角で第1のビームをさらに偏光し、第2の相対偏光角で第2のビームを偏光する。入力偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、該第1の相対偏光角と該第2の相対偏光角の差は、180度またはほぼ180度である。さらに、該入力偏光ビームの該相対偏光角は、該第1の相対偏光角または該第2の相対偏光角のいずれかと同等またはほぼ同等である。
【0007】
別の実施形態では、第1の相対振幅および第1の相対偏光角を有する入力偏光ビームであって、該第1の相対偏光角に基づき、第1の論理状態または第2の論理状態を表す、入力偏光ビームを受信する装置および方法が提供される。装置および方法は、入力偏光ビームを第1のビームおよび第2のビームに分割し、該第1のビームおよび該第2のビームは、同等またはほぼ同等であり、前記入力偏光ビームと同一の論理状態を表す。装置および方法は、第1のビームの相対偏光角が第2の論理状態を表す場合、第1のビームを光学的に除去し、第2のビームの相対偏光角が第1の論理状態を表す場合、第2のビームを光学的に除去する。
【0008】
方法の文脈において上述したが、本発明のその他の実施形態が装置および/またはコンピュータプログラム製品として具体化される。その際、本発明の一実施形態による装置は、ブール関数を行うための一般的なプロセッサを設計するためのメモリ、および該メモリとともに上述の関数を実行するように構成されたプロセッサを含む。コンピュータプログラム製品に関して、該コンピュータプログラム製品は、上述の関数を実行するように構成された実行可能部分を含むコンピュータ読取可能なプログラムコード部分とともに中に格納されたコンピュータ読取可能なプログラムコード部分を有する、少なくとも1つのコンピュータ読取可能な記憶媒体を含む。
【0009】
本発明の利点は、以下の詳細な説明内に一部分が記載され、一部分は、該詳細な説明から明らかとなるか、または本発明を実践することによって習得されるであろう。本発明の利点は、特に添付の特許請求の範囲に挙げられる要素および組み合わせを用いることによって理解され、達成されるであろう。
【0010】
前述の概要および以下の詳細な説明の両方は、例示および説明目的のためだけのものであり、主張されるように本発明を制限するものではない。
【図面の簡単な説明】
【0011】
【図1】入力ビームを処理するようにカスケード接続された、一般的な2電気信号(TES)2値ゲートを含む、例示的な光学素子の一群を示す図である。
【図2】入力および出力ビームが平行である、一般的なTES2値ゲートを示す図である。
【図3】共線的な入力および出力ビームを生じるために追加の光学素子とカスケード接続された、一般的なTES2値ゲートを示す図である。
【図4】複素p平面を示す図である。
【図5】ANDゲートを実現する実施形態を示す図である。
【図6】NANDゲートを実現する実施形態を示す図である。
【図7】ORゲートを実現する実施形態を示す図である。
【図8】NORゲートを実現する実施形態を示す図である。
【図9】XORゲートを実現する実施形態を示す図である。
【図10】XNORゲートを実現する実施形態を示す図である。
【図11】XORゲートを実現する別の実施形態を示す図である。
【図12】XNORゲートを実現する別の実施形態を示す図である。
【図13】ANDゲートを実現する別の実施形態を示す図である。
【図14】3入力ANDゲートを実現する実施形態を示す図である。
【図15】図14の簡易版の3入力ANDゲートを実現する実施形態を示す図である。
【図16】順次論理式ABC+Dの例示的なデジタル回路設計を示す図である。
【図17】本発明の原理と一致する順次論理式ABC+Dの実施形態を示す図である。
【図18】非順次論理式AB+CDの例示的なデジタル回路設計を示す図である。
【図19】本発明の原理と一致する非順次論理式AB+CDの実施形態を示す図である。
【図20】TES Rゲートの複素p平面表現を示す図である。
【図21】TES Sゲートの複素p平面表現を示す図である。
【図22】TES LPPゲートの複素p平面表現を示す図である。
【図23】単反射単一電気信号(SRSES)Rゲート構造の複素p平面表現を示す図である。
【図24】単反射単一電気信号(SRSES)LPPゲート構造の複素p平面表現を示す図である。
【図25】RおよびLPPゲートの複素p平面表現を示す図である。
【発明を実施するための形態】
【0012】
本発明のすべての実施形態ではないが、そのいくつかが示される添付の図面を参照し、本発明が以下により完全に説明される。実際、これらの発明は、多くの異なる形態で実施されてもよく、本明細書に記載される実施形態に制限されると解釈されるべきではなく、むしろ、これらの実施形態は、本開示が適用される法的必要条件を満たすために提供されるものである。全体を通して、類似番号は、類似要素を指す。
【0013】
図1は、互いにカスケード接続された光学素子の一群から構成される、一般的な2電気信号(TES)2値ゲート構造を図示する。それぞれの素子は、薄膜偏光素子、または2つの位置を取るように設計された電気光学素子である。
【0014】
図1は、本発明の原理による一般的な光学システム10であって、電磁波12等のビーム12を生成するビームジェネレータ11、およびビーム12を処理し、出力ビーム18を生じるために互いにカスケード接続された光学素子13、15、17の一群を備えてもよい。電磁波12は、可視光線、マイクロ波、高周波、X線、ガンマ線等のいずれかの周波数であってもよい。
【0015】
光学素子13、15、17の1つ以上は、例えば、一般的な偏光素子(GPD)、または具体的には例えば、位相差板または偏光子であってもよい。GPDは、フィルム基板システム、支持体のないフィルム(外皮膜)、裸基板、または複屈折性結晶等の薄膜システム(TFS)を備えてもよく、もしくは電気光学素子であってもよい。また、光学素子13、15、17の1つ以上は、制御信号に基づき、2つの位置を取るように設計されてもよい。光学素子の2つの位置は、システムの2つの論理状態、例えば論理0(L0)および論理1(L1)を生じてもよい。1対の光学素子13、15は、以下に記載される2つの電気信号(TES)構造2値ゲート19を実装してもよい。
【0016】
GPDは、入射面に対して平行(p)および垂直(s)(p成分およびs成分)である、入力電磁波12、14、16の電気ベクトルの2つの直交成分間に相対振幅減衰tanψ、ならびに相対位相偏移Δをもたらしてもよい。位相差板および偏光子は、GPDの特別な場合である。位相差板は、入力ビームの相対位相偏移を調整し、一方、その相対振幅(大きさ)(すなわち、tanψ=1)を維持する。偏光子は、直線偏光光線を生じ、p成分およびs成分は、時間領域内の位相にある。
【0017】
位相差板に関して、光学素子13、15、17の1つ以上は、薄膜反射位相差板、薄膜透過位相差板、または非薄膜位相差板であってもよい。
【0018】
薄膜反射(TFR)位相差板は、設計入射角の素子の表面での反射を受けて、入力電磁波に所要の遅延角Δを生じる、薄膜素子である。TFR位相差板は、負およびゼロのフィルム基板システムを使用すると理解することができる。Δ=0では、TFRは、入力電磁波の偏光と同一である出力電磁波偏光を生じる、偏光保持素子(PPD)である。外皮膜反射(PR)位相差板は、支持体のない(埋め込まれた)薄膜である外皮膜を使用し、反射を受けて、いかなる相対振幅の導入ももたらすことなく所要の遅延角Δを生じる。
【0019】
薄膜透過(TFT)は、設計入射角の素子の透過を受けて、入力電磁波に所要の遅延角Δを生じる。TFR位相差板は、負、正、およびゼロのフィルム基板システムを使用するように設計されてもよい。TFR位相差板と同様に、Δ=0では、TFRは偏光保持素子(PPD)である。また、外皮膜透過(PT)位相差板も外皮膜を使用し、Δ=0の遅延角を有し、これにより、PPDとなる。非薄膜(NTF)位相差板は、複屈折性結晶から作製され、結晶内の入力ビームの伝播方向に基づき、その光軸を基準に遅延角を生じる。
【0020】
偏光子に関して、位相差板と同様に、薄膜(TF)偏光子には、反射型および透過型の主に2種類がある。それぞれの種類は、フィルム基板システムまたは外皮膜(支持体のないフィルム)のいずれかから構成される。p抑圧偏光子(PSP)は、素子との相互作用を受けて、電磁波のp成分を除去する。s抑圧偏光子(SSP)は、電磁波のs成分を除去する。直線部分偏光子(LPP)は、0または180°の相対位相偏移に加え、相対振幅の減衰を入力電磁波に生じる。非薄膜(NTF)偏光子は、複屈折性結晶から作製される。NTF偏光子は、その偏光方向にのみ電磁波成分を通過させる。例えば、入力波は、偏光子の偏光方向に対して垂直に直線に偏光され、偏光子の出力は、ゼロ、すなわち波は出現しない。
【0021】
図2は、入力ビーム21および出力ビーム25が光学素子22、24との相互作用を受けて平行となる、ゲートを図示する。図3に示されるように、入力31および出力27のビームが共線である必要がある場合、第3の光学素子36が追加されてもよい。光学素子36は、光学素子34から出現するビームの偏光特性を保持するように設計されてもよく、または必要に応じて、光学素子34の機能を実行するために、光学素子34とともに協調設計され、協調制御されてもよい。
【0022】
電磁波および反射型光学素子の偏光状態の両方を表すために、複素p平面が使用されてもよい。複素p平面は、透過素子のために複素τ平面に置換される。複素p平面では、pベクトルは、電磁波の電気ベクトルの2つの成分、pおよびsの相対位相差ならびに相対振幅の減衰を表す。薄膜システム(TFS)からの反射またはそれを通る屈折の場合、
【0023】
p=tanψexp(jΔ) (1)
である。
【0024】
図4を参照すると、複素p平面内のそれぞれの点は、電磁波の偏光の異なる状態を表す。正の実軸41は、時間領域における波、または光線のp成分とs成分との間の位相偏移がゼロである直線偏波を表す。負の実軸45は、時間領域における波、または光線のp成分とs成分との間の位相偏移が180°である直線偏波を表す。
【0025】
実軸41、45上のそれぞれの点は、光線のp成分とs成分との間の相対振幅が異なる光線を表す。該相対振幅は、座標系のx軸から左回りに測定される、光線の偏向角Pを定める。原点では、Pはゼロであり、実軸41の正の方向に無限大で+90°まで増加し、実軸45の負の方向に負の無限大で−90°まで減少する。±90°は、同一の直線偏光光を表すことに留意されたい。複素p平面の虚軸42上の点は、楕円偏光を表す。原点を通過するいかなる直線も、時間領域において等位相偏移の異なる偏光状態を表す。したがって、それぞれの偏光は、異なる相対振幅を有する。一方、原点に中心をおく円は、異なる偏光状態を有するが、同一の相対振幅を有し、したがって位相偏移の異なる波を表す。点p=(+1,0)47は、P=+45°の直線偏光光を表し、一方、点p=(−1,0)47cはP=−45°の直線偏光光を表す。単位円48上の点は、異なる遅延角を有する位相差板を表す。点(0,+1)47bは、右回り円偏光を表し、一方、点(0,−1)47dは、左回り円偏光を表す。(+1,0)と(−1,0)および(0,+1)と(0,−1)の2組の2つの成分のそれぞれは、互いと直交する。
【0026】
2つの偏光状態は、
【0027】
p1・p2=0 (2)
であり、
【0028】
p1およびp2は、複素p平面において2つの偏光状態を表す2つのpベクトルであるという条件を満たす場合かつその場合に限り、直交すると考えられる。p1は、p1の転置複素共役であるエルミート共役である。したがって、単位円上のいかなる2つの原点対称点、原点を通過する直線で結ばれる単位円上の2つの点も、2つの直交状態を表す。例えば、(+1,0)と(−1,0)および(0,+1)と(0,−1)の2組の2つの成分のそれぞれは、もう一方と直交する。一般に、複素p平面内の2つの点は、それらが原点を通過する直線で結ばれ、一方の大きさがもう一方の逆数である場合、直交する。
【0029】
後に明確になるように、複素p平面内の2つの点は、L0およびL1を表すために使用することができる。
【0030】
複素p平面内の偏光素子の受動素子表現は、素子の偏光状態を表す点である。例えば、直線部分偏光子は、その相対振幅の減衰を表す実軸上の点によって表され、位相差板は、その相対遅延角を表す単位円上の点によって表される。複素p平面内の作動中の素子の表現、能動素子表現は、ビームと素子の相互作用の効果を反映する。ビームの薄膜素子との相互作用は、ビームおよび素子を表す2つのpベクトルのベクトル乗算、点乗積の結果によって表される。例えば、+45°の直線偏光光がΔ=+90°のTFR位相差板(右回り円形位相差板)の表面で反射する場合、出力ビームは、右回り円偏光である。一方、入力ビームが右回りに円形に偏光される場合、その結果、出力ビームは、−45°で直線偏光される。また、左回り円偏光ビームは、+45°で直線に偏光されたΔ=−90°のTFR位相差板(左回り円形位相差板)から出る。ビームと素子の相互作用は、ジョーンズまたはストークスマトリックス表示を使用して導かれるpベクトルによって表される。いずれかの2つの直交偏光では、表現pベクトルは、式(2)を満たすべきである。.
【0031】
上記の原理を使用する論理ゲートは、論理関数を行うように設計することができる。容易化のために、+45°の直線偏光光(すなわち、複素平面内の点(+1,0))は、L1を表すために使用され、偏光角が−45°の直線偏光光(すなわち、複素平面内の点(−1,0))は、L0を表すために使用される。
【0032】
表1は、ANDゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、ANDゲートへの制御入力を表してもよい。
【表1】

【0033】
図5は、本発明の原理に基づく、ANDゲート500の実施形態を図示する。光入力51は、L1を表す45°またはL0を表す−45°の直線偏光光を生じる偏光子によって生成されてもよく、または光入力51は、液晶を使用する偏光回転によって生じてもよい。光入力51は、表1の入力Aに対応する。次いで光入力51は、例えばビームスプリッタ(BS)を使用して2つのビーム52a、52bに分割される。好ましくは、ビーム52a、52bは、同一である。
【0034】
ビーム52は、ビーム56を生じるために、−45°の偏光角を有する偏光子53によって処理されてもよい。ビーム52bは、好ましくはビーム52bと同一のビーム52cを生じるために、鏡等の光学素子54によって処理されてもよい。次いでビーム52bは、ビーム57を生じるために、45°の角度の偏光子55によって処理されてもよい。あるいは、ビーム56、57を生じるために、適切に設計されたマスクが使用されてもよい。
【0035】
入力ビーム51が論理0(すなわち、−45°で偏光された)である場合、ビーム56は、L0を表す−45°の偏光を有し、ビーム57は、存在しない、すなわち、偏光子55は、出力ビームを生じない。入力ビーム51が論理1(すなわち、−45°で偏光された)である場合、ビーム56は、存在しない、すなわち、偏光子53は出力ビームを生じず、ビーム57は、L1を表す45°の偏光を有する。したがって、一度にビーム56またはビーム57の両方ではないがいずれかが存在する。
【0036】
ビーム57は、表1の入力Bに対応する制御入力によって制御される位相差板58によってさらに処理される。位相差板58は、制御入力がL0の場合に180°、制御入力がL1の場合に0°、ビーム57の相対偏光角を回転する。一度にビーム56またはビーム57の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表1の列Zに対応する)に導かれてもよい。
【0037】
素子500の動作および表1の比較は、素子500がAND論理演算を行うことを示す。表1の第1の列を参照すると、A=0(すなわち、入力ビーム51が−45度の偏光角を有する)かつB=0(すなわち、位相差板58に対する制御入力が0)である場合、Z=0(ビーム56またはビーム59のいずれか、どちらか存在する方がL0であり、この場合、ビーム56が存在し、L0である)である。表1の第2の列を参照すると、A=0かつB=1(すなわち、位相差板58への制御入力が1)である場合、Z=0(すなわち、ビーム56またはビーム59のいずれか、どちらか存在する方がL0であり、この場合、ビーム56が存在し、L0である)である。表1の第3の列を参照すると、A=1(すなわち、入力ビーム51が+45度の偏光角を有する)かつB=0である場合、Z=0(すなわち、ビーム56またはビーム59のいずれか、どちらか存在する方がL0であり、この場合、ビーム59が存在し、L0である)である。最後に、表1の第4の列を参照すると、A=1かつB=1である場合、Z=1(ビーム56またはビーム59のいずれか、どちらか存在する方がL1であり、この場合、ビーム59が存在し、L1である)である。
【0038】
NANDゲートは、ANDゲート500に基づき、ANDゲート500の出力に複素p平面における180°の角度をもたらす非制御非作動Rを追加することによって設計されてもよい。図6は、本発明の原理に基づくNANDゲート60の別の実施形態を図示する。表2は、NANDゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、NANDゲートへの制御入力を表してもよい。
【表2】

【0039】
図5の処理ブロック50の成分によって生じるビーム56および57は、NANDゲート60にも同様に生じる。図6のビーム56は、ビーム64を生じるためにビーム56の相対偏光角を180°回転する、非制御/非作動位相差板61によってさらに処理される。図6のビーム57は、表2の入力Bに対応する制御入力によって制御される位相差板62によってさらに処理される。
位相差板62は、ビーム63を生じるために、制御入力がL0の場合に0°、制御入力がL1の場合に180°、ビーム57の相対偏光角を回転する。ANDゲート500と同様に、一度にビーム63またはビーム64の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表2の列Zに対応する)に導かれてもよい。
【0040】
素子60の動作および表2の比較は、素子60がNAND論理演算を行うことを示す。表2の第1の列を参照すると、A=0かつB=0(すなわち、位相差板62への制御入力が0)である場合、Z=1(ビーム64またはビーム63のいずれか、どちらか存在する方がL0であり、この場合、ビーム64が存在し、L1である)である。表2の第2の列を参照すると、A=0かつB=1(すなわち、位相差板62への制御入力が1)である場合、Z=1(すなわち、ビーム64またはビーム63のいずれか、どちらか存在する方がL1であり、この場合、ビーム64が存在し、L1である)である。表2の第3の列を参照すると、A=1かつB=0である場合、Z=1(すなわち、ビーム64またはビーム63のいずれか、どちらか存在する方がL0であり、この場合、ビーム63が存在し、L1である)である。最後に、表2の第4の列を参照すると、A=1かつB=1である場合、Z=1(すなわち、ビーム64またはビーム63のいずれか、どちらか存在する方がL0であり、この場合、ビーム63が存在し、L0である)である。
【0041】
ORゲートは、前述のゲートおよびインバータを使用して、またはNANDゲートのみを使用して設計されてもよい。図7は、本発明の原理に基づくORゲート70の別の実施形態を図示する。表3は、ORゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、ORゲートへの制御入力を表してもよい。
【表3】

【0042】
図5の処理ブロック50の成分によって生じるビーム56および57は、ORゲート70にも同様に生じる。図7のビーム56は、表3の入力Bに対応する制御入力によって制御される位相差板71によってさらに処理される。位相差板71は、ビーム72を生じるために、制御入力がL0の場合に0°、制御入力がL1の場合に180°、ビーム56の相対偏光角を回転する。ANDゲート500と同様に、一度にビーム72またはビーム57の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表3の列Zに対応する)に導かれてもよい。
【0043】
素子70の動作および表3の比較は、素子70がOR論理演算を行うことを示す。表3の第1の列を参照すると、A=0かつB=0(すなわち、位相差板71への制御入力が0)である場合、Z=0(ビーム72またはビーム57のいずれか、どちらか存在する方がL0であり、この場合、ビーム72が存在し、L0である)である。表3の第2の列を参照すると、A=0かつB=1(すなわち、位相差板71への制御入力が1)である場合、Z=1(すなわち、ビーム72またはビーム57のいずれか、どちらか存在する方がL1であり、この場合、ビーム72が存在し、L1である)である。表3の第3の列を参照すると、A=1かつB=0である場合、Z=1(すなわち、ビーム72またはビーム57のいずれか、どちらか存在する方がL0であり、この場合、ビーム57が存在し、L1である)である。最後に、表3の第4の列を参照すると、A=1かつB=1である場合、Z=1(すなわち、ビーム72またはビーム57のいずれか、どちらか存在する方がL1であり、この場合、ビーム57が存在し、L1である)である。
【0044】
NORゲートは、ORゲート70およびインバータに基づき設計されてもよく、またはNANDゲート60のみを使用して設計されてもよい。図8は、本発明の原理に基づくNORゲート80の別の実施形態を図示する。表4は、NORゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、NORゲートへの制御入力を表してもよい。
【表4】

【0045】
図5の処理ブロック50の成分によって生じるビーム56および57は、NORゲート80にも同様に生じる。図8のビーム56は、ビーム82を生じるために、表4の入力Bに対応する制御入力によって制御される位相差板81によってさらに処理される。位相差板81は、制御入力がL0の場合に180°、制御入力がL1の場合に0°、ビーム56の相対偏光角を回転する。図6のビーム57は、ビーム84を生じるために、ビーム56の相対偏光角を180°回転する、非制御/非作動位相差板61によってさらに処理される。ANDゲート500と同様に、一度にビーム82またはビーム84の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表4の列Zに対応する)に導かれてもよい。素子80の動作および表4の比較は、素子60がNOR論理演算を行うことを示す。
【0046】
XORゲートは、ANDゲート500またはORゲート70に基づき、インバータとともに設計されてもよく、またはNANDゲート60のみもしくはNORゲート80のみを使用して設計されてもよい。図9は、本発明の原理に基づくXORゲート90の別の実施形態を図示する。表5は、XORゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、XORゲートへの制御入力を表してもよい。
【表5】

【0047】
図5の処理ブロック50の成分によって生じるビーム56および57は、XORゲート90にも同様に生じる。図9のビーム56は、ビーム92を生じるために、表5の入力Bに対応する制御入力によって制御される位相差板91によってさらに処理される。位相差板91は、制御入力がL0の場合に0°、制御入力がL1の場合に180°、ビーム56の相対偏光角を回転する。図9のビーム57は、ビーム94を生じるために、位相差板91へのものと同一の制御入力によって制御されてもよい、位相差板93によってさらに処理される。ANDゲート500と同様に、一度にビーム92またはビーム94の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表5の列Zに対応する)に導かれてもよい。素子90の動作および表5の比較は、素子90がXOR論理演算を行うことを示す。
【0048】
図9に示されるように、位相差板91および93は同一であり、したがってXORゲートは、図11に示されるように簡略化されてもよい。
【0049】
XORゲートと同様に、インバータとともにANDゲート500またはORゲート72を使用して、またはNANDゲート60のみもしくはNORゲート80のみを使用してXNORゲートを構成することができる。図10は、本発明の原理に基づくXNORゲート100の別の実施形態を図示する。表6は、XNORゲートの真理値表を示す。列Aは、光入力を表してもよく、列Bは、XORゲートへの制御入力を表してもよい。
【表6】

【0050】
図5の処理ブロック50の成分によって生じるビーム56および57は、XNORゲート100にも同様に生じる。図10のビーム56は、ビーム102を生じるために、表6の入力Bに対応する制御入力によって制御される位相差板101によってさらに処理される。位相差板101は、制御入力がL0の場合に180°、制御入力がL1の場合に0°、ビーム56の相対偏光角を回転する。図9のビーム57は、ビーム104を生じるために、位相差板101へのものと同一の制御入力によって制御されてもよい位相差板103によってさらに処理される。ANDゲート500と同様に、一度にビーム102またはビーム104の両方ではないがいずれかが存在するため、それらは、例えば光学素子36(図3)によって、干渉なく同一の出力(表6の列Zに対応する)に導かれてもよい。素子100の動作および表6の比較は、素子100がXOR論理演算を行うことを示す。
【0051】
図10に示されるように、位相差板101および103は同一であり、したがってXNORゲートは、図12に示されるように簡略化されてもよい。
【0052】
図5〜図12では、L1を表すために偏光角が+45°の直線偏光光が使用され、L0を表すために偏光角が−45°の直線偏光光が使用される。しかしながら、L1を表すために、pベクトル、
【数1】

によって表される光線の偏光のいずれかの一般的な状態が使用されてもよく、L0を表すために、180°の位相偏移を有する、大きさが1/|p|のベクトルによって表されるその直交偏光状態が使用されてもよい。図5〜図12に示されるゲート等の論理ゲートを設計するために、これらの一般的な論理レベル表現が使用されてもよい。
【0053】
図13は、一般的な論理レベル表現を使用するANDゲート130の実施形態を図示する。ANDゲート130は、図5の偏光子53、55がそれぞれ一般的な楕円偏光子133、135で置換され、偏光子133および135が直交することを除き、ANDゲート500と同様な方法で動作する。さらに、図5の位相差板58は、ビーム137の相対振幅をl/|p|2に縮小拡大し、制御入力がL0の場合にビーム137の相対偏光角を180°回転し、制御入力がL1の場合にビーム137の偏光を保持する、制御された楕円偏光子138で置換される。
【0054】
デジタル論理の確立された設計基準とともに、前述のセクションに記載されるゲートを使用して、いかなる論理式も設計し、行うことができる。さらに、いかなる汎用コンピュータ上でも実行できるようにソフトウェア設計プログラムにプログラムされてもよい、本発明の設計方法論に基づき、単一素子の一般的なプロセッサを使用して、いかなる論理式も設計し、行うことができる。論理式を行うための単一素子を設計するための一般的なプロセスである
【0055】
1.真理値表から開始し、真理値表の第1の列Aである光入力列を分割する。
2.0である真理値表の上半分について進める。
3.第2の列Bの0および1を分割する。
4.出力列の変換を確認する。
5.変換が存在する場合、列Bは効果がない。
6.変換が存在しない場合、次いで光搬送偏光@B=1を反転し、新しい分岐を追加する。最後の入力には、新しい分岐を追加しない。
7.その他のすべての入力列に対して、順にステップ3〜6を繰り返す。
8.必要に応じてRを使用し、最後の光搬送波列が出力列と同一であるかを確認する。
9.1である真理値表の下半分に対してステップ3〜8を繰り返す。
【0056】
B.3入力ANDゲート
【0057】
3入力ANDゲートは、設計アルゴリズムに適用する簡単な事例である。表8に与えられる真理値表について開始する。
【表8】

【0058】
POPを通過して進む際にそれぞれの入力列の後ろに新しい列を追加する、入力列Aの後ろに光搬送波列aを追加し、入力列Bの後ろに光搬送波列bを追加する等によって、表9に、光搬送波、光学ビームの状態を含む新しい真理値表を作成する。ここで、設計アルゴリズムを適用し、常に表8および表9、ならびに図14を参照する。
【表9】

【0059】
設計
【0060】
1.A.入力Aを分割する、表9の水平な実線およびBS1、ならびに図14の2つの偏光子LZBおよびLOBを含む2つの分岐。
1.B.光搬送波列aを埋める、入力列Aと同一である。
2.0である真理値表の上半分に着目する。
3.入力列Bを分割する、表9の上半分の水平な点線。
4.出力列の変換を確認する。存在する。
5.A.その結果、入力列Bは、効果がない。
5.B.したがって搬送ビームは、変化せずに進む。
5.C.光搬送波列bの上半分を埋める、光搬送波列aと同一である。
6.適用されない。
7.入力列C:列Bを分割する点線によって2つの4半分(Qs)に分割される。それぞれの4半分は、別々に扱われる。
【0061】
Q1:
3.Q1を分割する、表9の上半分の水平な点線。
4.出力列の変換を確認する。存在する。
5.A.その結果、入力列Cは、効果がない。
5.B.したがって搬送ビームは、変化せずに進む。(簡略化のために、光搬送波の代わりに搬送波を使用して続ける)
C.搬送波列cの上部分Q、Q1を埋める、搬送波列bと同一である。
【0062】
8.最後の搬送波を確認する、搬送波列cおよび出力列は、同一である。したがって、Rは必要ない。
【0063】
Q2:Q1のように繰り返す。結果は一致する。
【0064】
9.1である表9の下半分に対してステップ3〜8を繰り返す。
【0065】
今、下半分に適用されるステップ3を開始する。
【0066】
3.入力列Bを分割する、表9の下半分の水平な点線。
4.出力列の変換を確認する。存在しない。
5.適用されない。
6.A.次いで光搬送偏光@B=1を反転し、新しい分岐を追加する。
6.B.それにより、搬送波列bの下半分を埋める、表9のB=1の場合の搬送波列aの状態を反転する。
6.C.新しい分岐を追加する、図10。
7.今、入力列Cには、2つの分岐LZBおよびLOBがある。最初に、LZB、搬送波bのQ4の0(搬送波列bの最後の2つの状態)について進める。
7.3.列を分割する、入力列Cの最後の2つの状態を分離している水平な点線、Q4。
7.4.出力列の変換を確認する。存在しない。
7.5.適用されない。
7.6.A.次いで光搬送偏光@C=1を反転し、新しい分岐を追加する。
7.6.B.それにより、搬送波列cの最後の2つの状態を埋める、表9のC=1の場合の搬送波列aの状態を反転する。
7.6.C.これは最後の入力であるため、新しい分岐は必要ない。
8.最後の搬送波を確認する、搬送波列cおよび出力列は、同一である。したがって、Rは必要ない。次に、LOB、搬送波bのQ3の1(搬送波列bの最後の2つのL1状態)について進める。
8.3.列を分割する、入力列Cの最後の状態の2つ前を分離している水平な点線、Q3。
8.4.出力列の変換を確認する。存在する。
8.5.A.その結果、入力列Cは、効果がない。
8.5.B.したがって搬送ビームは、変化せずに進む。
8.5.C.搬送波列cの残りを埋める、搬送波列bと同一である。
9.最後の搬送波は確認せず、次いでRを加える、図10。
【0067】
図14から明らかであるように、下部の分岐R145は、追加されたC−CPIB0 152とともに、実際には制御されたRである、BS2の前に@1(CPIB1)142を反転するB搬送偏光反転ボックスと組み合わせることができ、両方は、B−CPIB0 151で置換することができる。これは、図15に示されるように、C−CPIB1 141の取り外しを必要とする。
【0068】
この設計削減は、常に搬送波列Aの上半分、0にCPIB1を使用し、下半分、1にCPIB0することによって系統的に達成することができる。表10は、この場合の拡張した真理値表の下半分を示す。
【0069】
図15の3入力ANDゲート設計の動作は、ゲートを通過するため、以下のレーザービームにより、容易に理解される。第1に、すべての制御入力信号が同時に加えられ、1つの信号のみを加えるのに掛かった時間である、単一の時間差のみがもたらされるという事実を理解することが重要である。L0の搬送信号がゲートに加えられる場合、BS1によって2つに分割される。LOBへの下方信号は、偏光子によって遮断され、LZBへの上方信号は、偏光子を通過し、変化していない出力、L0に入る。BおよびC信号は、この分岐に加えられないことに留意されたい。この事象は、真理値表の最初の4列を表す。一方、L1の搬送信号がゲートに加えられる場合、BS1によって2つに分割される。LZBへの上方信号は、偏光子によって遮断され、LOBへの下方信号は、L1のB入力へのCPIB0に影響を受けずに偏光子を通過し、次いでBS2によって2つに分割される。L1搬送信号のように、これは、上方分岐の偏光子(LZB)によって遮断され、下方分岐であるLOB内の偏光子を通過する。L1のC信号では、表10の最後の列のように搬送波が変化せずに通過し、L0のC信号では、表10の最後の列の1つ前のように、搬送波状態がL0に変化する。
【0070】
同様の方法により、入力信号のその他のすべての組み合わせが理解され得る。
【0071】
制御信号による搬送波経路を変更するプロセスは、必要である場合、線路(RR)交差、したがって線路構造と類似する。この場合の搬送波は、その目的地、出力偏光状態を決定するために、制御信号の交差動作によって前提条件をつけられたRRシステム上を高速で移動する高速列車と類似する。
【0072】
順次論理式は、すべてが1つの光入力および1つの電気入力を有するゲートによって表されるものとしてここで定義され、したがって順にカスケード接続することができる。一実施例として、図16は、論理式ABC+Dのデジタル設計を示す。この設計は、上述のすべての光処理標準ゲートを使用して実装することができる。また、これは、RR構造POPとして実装することもできる。表10aは、その表現を拡張した真理値表を示し、図17は、RR構造POPとして削減された設計を示す。
【表10a】

【0073】
5つのCPIBとともに、3つのBSのみが使用されることに留意されたい。必要とされるCPIBの数は、2つのみであり、3つの上方CPIB1は、3つのLZBの3つの偏光子の出力をともに1つのCPIB1を通過するように向けることによって1つに組み合わせられる。したがって、設計は、実質的に3つのBS、2つのCPIB0、および1つのCPIB1からなる。出力搬送波は、唯一の搬送波であり、すべての出力経路は、誘導することによって1つに集光されることに常に銘記されたい。
【0074】
非順次論理式は、2つの光入力を有するゲートを含むものとして、ここで定義される。例えば論理式AB+CDを表す図18を参照する。該論理式は、1つのゲート出力が電気入力に変換される場合にのみ、1つの光入力のゲートとして上述のようなすべての光処理ゲートを使用して行うことができる。一方、これは、セクション5の設計アルゴリズムを適用することによって、上述のRR構造POPを使用して行うこともできる。いずれかのゲート出力を電気入力に変換する必要性の除去、したがって電気除去を行う。結果は、表10bおよび図19に示される。
【表10b】

【0075】
常として、高速列車シミュレーションは、設計の動作を容易に理解できるようにする。本明細書の長さを制限し反復を防ぐために、読者に、自身でそれを簡単に使って理解することを委ねる。
【0076】
図19のRR構造POP設計は、除去および削減を招くことが明らかである。これが3BS3CPIB設計に削減することは、明らかである。
【0077】
本発明の原理をさらに説明するために、複素p平面および1対の光学素子TFS1ならびにTFS2、例えば図2のそれぞれの要素22、24を使用して、XORおよびXNORゲートの一定Δおよび一定ψの設計を説明する。
【0078】
一定ψの設計は、位相差板(R)ゲートによって表されてもよい。図20は、単位円20a上の点A(202)によって表される、相対偏光角αを有する入射レーザー(例えば図1の12)を図示する。第2のステップは、図2の2つのフィルム厚さのシステムTFS1 22およびTFS2 24のそれぞれの後のレーザー23、25を表す2つの偏光状態を判断するためのものであって、それぞれ、Δ=βであるL11の点B204、およびΔ=γであるL12の点C206によって表される。したがって、L01≡β+180°およびL02≡γ+180°(Δの値)であり、それぞれ、βおよびγ偏光状態と直交する。これら2つの偏光状態は、それぞれ点B´およびC´によって表される。
【0079】
第3のステップは、TFS1およびTFS2でのそれらの2つの反射をそれぞれ表す2つの偏光状態を判断するものである。ゲートの動作を迅速に調べることによって達成される。ゲートの動作に関して、最初に、偏光Aのレーザーの状態は、それぞれ2つの制御状態1または0のいずれかであるTFS1と相互作用することによって、それぞれL11またはL01を表す偏光BもしくはB´の状態に変換される。TFS1から出現するビームの偏光の状態は、その2つの制御状態1または0のいずれかであるTFS2との相互作用を受けて変化する。この相互作用は、TFS2の制御状態により、CまたはC´のいずれかに変換された偏光状態をもたらす。表1は、明らかにXORゲートのものである、図4のRゲート型の真理値表を示す。表1の作成において、結果として生じる変換を判断するために、点Aを始点として使用し、直前に記載される位相情報を使用することに留意されたい。また、位相を追加するために、ベクトル乗算が削除され、両ベクトルの大きさが一致することにも留意されたい。表8は、TFS1およびTFS2の得られたそれぞれの設計パラメータ(変換)を示す。変換は、いかなる種類の位相差板を使用しても得られることに留意されたい。
【表10】

【表11】

【0080】
以下は、上述の設計を実行するための分かりやすい、段階を追ったアルゴリズムである。第1に、ゲートの真理値表の0および1に対応する、図20からの情報で列A、B、およびCを埋める。次いで、B−Aの差を求めることによって、列TFS1を埋める。次いで、C−Bの差を求めることによって、列TFS2を埋める。次いで、変換であるTFS1およびTFS2に対応する0および1を特定する。最後に、ゲート設計表を構成する。
【0081】
3つのうちのいずれかを行い、一般的なXNOR Rゲートを設計することができる。第1に、インバータによって上述のXORゲートの入力の1つを単純に反転することができる。第2に、インバータによってXORゲートの出力を反転することができる。これら2つの場合、インバータは、分かりやすくは、いかなる相対振幅の減衰も生じずに180°の相対位相偏移を生じるTFS、分かりやすくは位相差板である。上記の2つの場合、入力、出力、中間に位相差板を有する、またはさらには表11の関連するTFS遅延に対する2つの電子制御入力のうちの1つの対応する1を0に変えることを意味する。
【0082】
第3に、前述のサブセクションのアルゴリズムを使用して、ゲートを設計する。表12および13は、それぞれ、ゲート設計表およびゲートパラメータ表である。
【表12】

【表13】

【0083】
いずれかの数のRゲートを互いにカスケード接続するために、L1およびL0は、ゲートの入力および出力で同一となる。上記に設計される一般的なゲートは、この条件を満たさない。したがって、後続の(S)ゲートに異なる設計、カスケード接続設計を用いる。該Sゲートでは、入力レーザービームは、第1のゲートまたはいずれかの他のSゲートの出力である。これは、CまたはC´のいずれかの偏光状態である。したがって、ゲートのTFS1は、図2および図20の−(γ−β)の非制御遅延を生じるべきである。前述同様に、ゲートのTFS2は、γ−βの制御遅延を生じるべきである。このSゲート設計は、無制限にカスケード接続することができる。表11〜14と類似する、Sゲートの動作および真理値表が容易に作成される。これらは、ここでは提示されない。
【0084】
これらの場合もやはり、上述のように、2つの主なTESゲート構造の特殊型である、一定Δおよび一定ψの設計がある。前述セクションに、Rゲートである一定ψの設計の最も簡単なものが記載される。ここで、直線部分偏光子(LPP)ゲートである、一定Δの設計の最も簡単なものを記載する。
【0085】
上述のように、いかなる一般的な論理ゲートの設計も、入射レーザーを表す偏光状態の選択から始める。LPPゲートでは、これは、実軸、tanψ=α上の概点Aによって複素p平面内に表され、ここでαは、図5の原点からの距離、0Aである。第2のステップは、L11≡βのBおよびL12≡γのCの概点によって表される2つの偏光状態を選択するものである。同様に、β(γ)は距離0B(0C)である。したがって、L01≡0B´およびL02≡0C´であり、それぞれβおよびγ偏光と直交する。これら2つの偏光状態は、点B´およびC´によって表され、それぞれ、0B´=1/0Bであり、0C´=1/0Cである。
【0086】
上記に開示されるアルゴリズムを使用し、減算の代わりに除算を使用して、表15および表16を得る。
【表15】

【表16】

【0087】
表16は、それぞれの2つの制御状態に対するTFS1およびTFS2の設計パラメータを示す。表15の変換は、直線偏光光を異なる値のPを有する直線偏光光に変換することに留意されたい。これは、直線部分偏光子TFSを使用する、または液晶を電気光学的に使用することによって達成される。
【0088】
綿密に表15を調べることによって、TFS1設計が物理的に正確である、同一の所要の0および同一の所要の1であることが理解される。しかし、2つの異なる0および2つの異なる1を必要とすることから、TFS2では、設計は物理的に正確ではない。0(1)の1つの状態のみを有するために、2つを同一視する、
【数2】

とする。両方ともγ=β=±1をもたらす。したがって、点Aの位置に関わらず、B=C=(+1,0)かつB´=C´=(−1,0)、またはその逆である。第2の限定事象は、0および∞の2点の場合であり、これは、以下に記載される。
【0089】
前述同様に、3つのうちのいずれかを行い、一般的なXNOR LPPゲートを設計することができる。第1に、インバータによって上述のXORゲートの入力の1つを単純に反転することができる。第2に、インバータによってXORゲートの出力を反転することができる。これら2つの場合、インバータは、前述のサブセクションに記載される限定事象の180°の位相偏移と実質的に同等、(+1,0)および(−1,0)である、分かりやすくはLPPである、いかなる位相偏移も生じることなくγ+(1/γ)の相対振幅の減衰を生じる、分かりやすくはTFSである。上記の2つの場合、入力、出力、中間にLPPを有する、またはさらには表6の関連するTFS遅延に対する2つの電子制御入力のうちの1つの対応する1を0に変えることを意味する。上述のものと同一のアルゴリズムを使用して、表5および6と類似する表を同様に作成することができる。
【0090】
簡潔化のため、Rゲートのカスケード接続に関する記載は繰り返さない。図21の点A、B、およびCを適切に参照し、LPPゲートに対して同様に記載される。
【0091】
LPPゲート設計を限定することにより、完全に一致する0および1がB=Cの限定事象を導いた。0を大きさの制限のない
【数3】

の位相と定義し、1を同様に大きさの制限のない
【数4】

の位相として定義し、0および1に弛緩条件を用いて設計することができる。これは、設計プロセスにおけるより高い自由度を可能にし、試験、論理、または可逆論理設計に利用することができる独立情報を搬送する大きさを使用できるようにする。これは、別の公開に記載される。
【0092】
上記の記載から、レーザービームの論理状態を表すために、図20および図21の点AならびにBを組み合わせることで、洗練された設計構造が提供されることが明白になる。この場合、レーザービームは、ゲートの制御の1つであることに加え、光学システム内の情報をゲートの入力および出力として搬送する。第2の制御は、電子的なものであり、したがって単一電気信号(SES)ゲート構造である。今、図22では、レーザービームの論理状態1および0は、偏光状態BおよびB´によって表され、CおよびC´の偏光状態で表される単一TFSを出る。前に使用されたものと同一のアルゴリズムを使用してSESゲート構造の真理値表を得ることは容易であり、これは、XORゲートのものであることが理解される。XNORゲートは、前述のものと同様な方法、単純な反転または再設計によって得られる。
【0093】
本構造において、ゲートのカスケード接続は明白である。出力偏光状態は、CまたはC´のいずれかであり、入力は常にBまたはB´である。したがって、上述のように、偏光状態をBまたはB´に戻すために、ゲートの出力または入力に第2の非制御TFSが導入される。
【0094】
単反射単一電気信号(SRSES)ゲート構造は、点BおよびCを作成することによって達成され、したがってB´およびC´は、互いに一致する。この方法により、入力および出力ビームは、それぞれ、CおよびC´の同一の偏光状態表現L1ならびにL0を有する。この場合、ゲートのカスケード接続は、ビームのいかなる追加操作も必要とせず、それぞれの種類に対して1種類のゲートのみを有し、Sゲート設計は必要ない。これは、両方のゲートの種類、RおよびLPPを保持する。
【0095】
Rゲートに関して、表17および表18は、ゲート設計および動作表を示し、TFSの遅延には、図23を参照する。ゲートがXORであることは、表17から明らかである。
【表17】

【表18】

【0096】
前述したように、本設計のXNORゲートは、容易に達成することができる。
【0097】
SRSES構造LPPゲートに関して、図24は、ゲート偏光状態表現を示す。表19および表20は、ゲート設計および動作、ならびにTFSの遅延を示す。表19から、TFS論理1は、大きさがγかつ相対位相角180°または大きさが1/γかつ同一相対位相角のいずれかであることに留意されたい。一方、この論理1の動作を生じるTFSは、正確性を保持するための動作、SRSES構造にγ=1という条件を要求する。これは、CおよびC´が両方とも単位円上にあり、それぞれ、点(+1,0)および(−1,0)であることを意味する。これの特別な場合は、以下のサブセクションに記載される。ゲートがXORであることは、表19から明らかである。
【表19】

【表20】

【0098】
前述したように、本設計のXNORゲートは、容易に達成することができる。
【0099】
γ条件が満たされる第2の事象は、γ=0または∞である限定事象である。これは、本文献に報告され、記載される唯一の事象である、L1およびL0として特別な場合のp偏光波ならびにs偏光波を導く。また、本事象は、以下のサブセクションにも記載される。
【0100】
図25は、それぞれの点(+1,0)および(−1,0)と一致する、特別な場合のCおよびC´を図示し、R設計とLPP設計との間の交差事象である。点(+1,0)は、+45°の直線偏光光の偏光状態を表す。同時に、これは、1の相対振幅の減衰およびゼロの相対位相偏移を生じるTFS、PPD素子を表す。これは、位相差板およびLPPの両方である。一方、点(−1,0)は、−45°の直線偏光光の偏光状態を表す。また、これは、1の相対振幅の減衰および±180°の相対位相偏移を生じるTFSを表す。これもまた、位相差板およびLPPの両方である。
【0101】
表21および表22は、ゲート設計および動作、ならびにゲートのTFS機能を示す。両方の表から明らかであるように、この場合のゲートの真理値表は、XORのものである。XNORは、前述したように、容易に得られる。
【表21】

【表22】

【0102】
0および90°での直線偏光光は、LPPゲートの限定事象である。2つの偏光状態は、それぞれ、原点および無限大の点によって表される。L1はs偏光光(90°偏光状態)であり、L0は、p偏光光(0偏光状態)、またはその逆であることは、直接導出される。制御信号のL1は、90°の回転であり、L0状態の制御信号は、0°の回転であり、動作またはPPDはない。これは、XORゲートを提供する。XNORゲートは、前述したように、簡単に導出される。
【0103】
また、該ゲートのカスケード接続に追加の要件事項がないことは、明らかである。前述したように、これは、本文献において以前に報告された偏光に基づいた論理表現の唯一の場合である。
【0104】
インバータゲートの構造は、非常に単純である。一般的な場合、これは、180°の相対位相偏移および偏光tanψの状態の逆数の相対振幅の減衰を生じる、単一TFSである。RゲートおよびLPL45構造では、インバータTFSは、180°の相対位相偏移のみを生じ、相対振幅の減衰は生じない。
【0105】
上述の光ゲート構造のいかなるカスケード接続も、時間的に連続ではないことを理解することが重要である。これは、同時カスケード接続である。したがって、すべての電気信号は、同時に入力され、レーザー出力−入力遅延は、光の速度によって決定される。今日の製造能力、およびより成長したステージに進むナノテクノロジーにより、ほぼフェムト秒の遅延が達成可能である。これは、今日可能なものとは桁違いのバンド幅をもたらす。
【0106】
また、多重入力構造は、記載される2入力設計から容易であることに留意することが重要である。これらは、文書サイズを制限するために、本通信には記載されていない。
【0107】
さらに、集積光構造(IOA)には、XOR、XNOR、およびインバータ動作のいずれかの数のブールステートメントが関与する。IOAは、別の公開の主題である集積構造を使用して、直接実装することができる。例えば、IOAは、いくつかの用途に言及するために、スイッチング、逆多重化、またはパリティチェックを行うように設計することができる。
【0108】
ゲートは、独立してまたは内部にカスケード接続することができる。それぞれの追加入力に対して1つの追加位相差板を追加することにより、2つ以上の入力を有するゲートを設計することができる。ブール関数A XOR B XOR Cを満たすゲートは、2つの位相差板および1つの偏光子によって表すことができる。偏光子は、それぞれ入力0および1を表す+45および−45での直線偏光光を生じ、一方、p1およびp2は、p平面内で、論理1は角度0であり、論理ゼロは180の角度である。一方、論理式A XOR B XNOR Cは、後者と非常に類似するが、第1の位相差板の出力の後にインバータを追加する必要があり、p2の論理0および1が置き換えられなければいけない。図示されるように、XOR、XNOR、インバータ、またはいずれかの後者の組み合わせに頼る多重入力論理式は、薄膜の追加層を追加することによって容易にカスケード接続することができる。
【0109】
カスケード接続されたシステム全体の末端、またはそれぞれのゲートの末端では、出力が容易に特定され、電気信号に変えられる。単純な場合、これは、+45度および−45度の直線偏光出力を生じるように設計され、1つの場合の透過または反射を最大化し、一方その他を最小化するように薄膜系システムを設計することができる。後者は、単純な光検出器の使用と併せて、光検出器が、高読み取り値が論理1を表し、低読み取り値が0を表す、電気出力を生じることを可能にする。後者は、新しい光2値論理実装と現在の半導体系2値論理システムの統合を可能にする。入力および出力での統合は、新しい光学素子に優れた万能性を提供し、現在の設計を大幅に変更することなく、新しいシステムの利点を利用するハイブリッド技術の創造を可能にする。さらに、光学系素子と半導体系素子との間の通信は、いかなる問題にも直面しない。
【0110】
上述され、当該技術分野に精通する者によって理解されるように、本発明の実施形態は、方法または装置として構成されてもよい。したがって、本発明の実施形態は、ハードウェア全体、ソフトウェア全体、またはいかなるソフトウェアとハードウェアの組み合わせも含む、様々な手段からなってもよい。さらに、本発明の実施形態は、記憶媒体に統合されたコンピュータ読取可能なプログラム命令(例えば、コンピュータソフトウェア)を有するコンピュータ読取可能な記憶媒体上のコンピュータプログラム製品の形態であってもよい。ハードディスク、CD−ROM、光学記憶装置、または磁気記憶装置を含む、いかなる適したコンピュータ読取可能な記憶媒体を利用してもよい。
【0111】
方法、装置、およびコンピュータプログラム製品のブロック図およびフローチャート図解を参照して、本発明の例示的な実施形態が記載されている。ブロック図およびフローチャート図解のそれぞれのブロック、およびブロック図ならびにフローチャート図解のブロックの組み合わせは、それぞれ、コンピュータプログラム命令を含む様々な手段によって実装することができることを理解されたい。これらのコンピュータプログラム命令は、コンピュータまたはその他のプログラム可能なデータ処理装置上で実行される命令が、フローチャートのブロックに指定される機能を実行するための手段を生成するように機械を製造するために、汎用コンピュータ、特殊用途コンピュータ、またはその他のプログラム可能なデータ処理装置に読み込まれてもよい。
【0112】
また、これらのコンピュータプログラム命令は、コンピュータ読取可能なメモリに格納された命令が、フローチャートのブロックに指定される機能を実行するためのコンピュータ読取可能命令を含む製品を製造するように、特定の方法でコンピュータまたはその他のプログラム可能なデータ処理装置を機能させることができるコンピュータ読取可能なメモリに格納されてもよい。また、コンピュータプログラム命令は、コンピュータまたはその他のプログラム可能な装置上で実行される命令が、フローチャートのブロックに指定される機能を実行するためのステップを提供するように、コンピュータで実行されるプロセスを生じる、コンピュータまたはその他のプログラム可能な装置上で実行される一連の動作ステップをもたらすために、コンピュータまたはその他のプログラム可能なデータ処理装置に読み込まれてもよい。
【0113】
したがって、ブロック図およびフローチャート図解のブロックは、指定の機能を実行するための手段の組み合わせ、指定の機能を実行するためのステップの組み合わせ、ならびに指定の機能を実行するためのプログラム命令手段を支援する。ブロック図およびフローチャート図解のそれぞれのブロック、ならびにブロック図およびフローチャート図解のブロックの組み合わせは、指定の機能またはステップを実行する特殊用途ハードウェア系コンピュータシステム、または特殊用途ハードウェアとコンピュータ命令の組み合わせによって実行することができることもまた理解されたい。
【0114】
前述の説明および関連図面に提示される指導の利益を有する、これらの発明に付随する、本明細書に記載される本発明の多数の修正およびその他の実施形態が当業者の頭に浮かぶであろう。例えば、本発明の原理は、まだ設計されていないゲートを含む、いかなる目的のためのいかなる真理値表も有する、いかなる種類のいかなる論理ゲートを設計するためにも使用することができる。
【0115】
したがって、本発明は、開示される特定の実施形態およびその修正に限定されず、その他の実施形態が添付の特許請求の範囲の範囲内に含まれることが意図されることが理解される。さらに、光学素子の実用的な実装において、結果としてエラーをもたらすエラーが生じる場合があることが理解される。例えば、図5のビーム52a、52b、および52cが同一でない場合がある、または追加例として、ビーム56および57が、除去する必要がある場合に完全に除去されない場合がある。しかしながら、ある程度のエラーの範囲は許容可能である、または追加の素子によって、開示される素子が意図されるように動作するように修正されてもよいことが理解される。
【0116】
本明細書で特定の用語が採用されるが、これらは、一般的かつ記述的意味でのみ使用され、制限を目的とするものではない。

【特許請求の範囲】
【請求項1】
入力偏光ビームを第1のビームおよび第2のビームに分割するステップであって、前記第1のビームおよび前記第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する、分割するステップと、
第1の相対偏光角で前記第1のビームを偏光するステップと、
第2の相対偏光角で前記第2のビームを偏光するステップと
を含む方法であって、
前記入力偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、
前記第1の相対偏光角と前記第2の相対偏光角の差は、180度またはほぼ180度であり、
前記入力偏光ビームの相対偏光角は、前記第1の相対偏光角または前記第2の相対偏光角のいずれかと同等またはほぼ同等であることを特徴とする方法。
【請求項2】
前記第1のビームの偏光または前記第2のビームの偏光は、ビームを生成しない、もしくはほぼ存在しないビームを生成することを特徴とする請求項1に記載の方法。
【請求項3】
制御入力に基づき、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相をゼロまたは180度で偏移するステップをさらに含むことを特徴とする請求項1に記載の方法。
【請求項4】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、前記制御入力が前記第1の論理状態に対応する場合、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項3に記載の方法。
【請求項5】
前記第1のビームを偏光することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光し、偏移することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項4に記載の方法。
【請求項6】
前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項3に記載の方法。
【請求項7】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、
前記制御入力が前記第2の論理状態に対応する場合、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項6に記載の方法。
【請求項8】
前記第1のビームを偏光し、偏移することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光し、偏移することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項7に記載の方法。
【請求項9】
制御入力に基づき、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相をゼロまたは180度で偏移するステップをさらに含むことを特徴とする請求項1に記載の方法。
【請求項10】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、
前記制御入力が前記第2の論理状態に対応する場合、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項9に記載の方法。
【請求項11】
前記第1のビームを偏光し、偏移することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項10に記載の方法。
【請求項12】
前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項9に記載の方法。
【請求項13】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、
前記制御入力が前記第1の論理状態に対応する場合、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップをさらに含むことを特徴とする請求項12に記載の方法。
【請求項14】
前記第1のビームを偏光し、偏移することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光し、偏移することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項13に記載の方法。
【請求項15】
第1の制御入力に基づき、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相をゼロまたは180度で偏移するステップと、
第2の制御入力に基づき、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相をゼロまたは180度で偏移するステップと
をさらに含むことを特徴とする請求項1に記載の方法。
【請求項16】
前記第1の制御入力および前記第2の制御入力は、同一であることを特徴とする請求項15に記載の方法。
【請求項17】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、
前記第1の制御入力が前記第2の論理状態に対応する場合、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップと、
前記第2の制御入力が前記第2の論理状態に対応する場合、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップと
をさらに含むことを特徴とする請求項15に記載の方法。
【請求項18】
前記第1のビームを偏光し、偏移することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光し、偏移することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項15に記載の方法。
【請求項19】
前記第1の相対偏光角は、第1の論理状態を表し、前記第2の相対偏光角は、第2の論理状態を表し、
前記第1の制御入力が前記第1の論理状態に対応する場合、前記第1のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップと、
前記第2の制御入力が前記第1の論理状態に対応する場合、前記第2のビームを偏光することによって生成される、いずれかの得られるビームの2つの垂直偏光成分間の位相を180度で偏移するステップと
をさらに含むことを特徴とする請求項15に記載の方法。
【請求項20】
前記第1のビームを偏光し、偏移することによって生成される、いずれかの得られるビームと、前記第2のビームを同一点に偏光し、偏移することによって生成される、いずれかの得られるビームと、を導くステップをさらに含むことを特徴とする請求項19に記載の方法。
【請求項21】
入力偏光ビームを受信するステップであって、前記入力変更ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、第1の相対角度は、第1の論理状態を表し、第2の相対角度は、第2の論理状態を表し、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記入力偏光ビームの相対偏光角は、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等であるステップと、
制御入力に基づき、前記入力偏光ビームの2つの垂直偏光成分間の位相をゼロまたは180度で偏移するステップと
を含むことを特徴とする方法。
【請求項22】
前記制御入力が前記第1の論理状態に対応する場合、前記入力偏光ビームの2つの垂直偏光成分間の位相をゼロ度で偏移するステップと、
前記制御入力が前記第2の論理状態に対応する場合、前記入力偏光ビームの2つの垂直偏光成分間の位相を180度で偏移するステップと
をさらに含むことを特徴とする請求項21に記載の方法。
【請求項23】
前記制御入力が前記第1の論理状態に対応する場合、前記入力偏光ビームの2つの垂直偏光成分間の位相を180度で偏移するステップと、
前記制御入力が前記第2の論理状態に対応する場合、前記入力偏光ビームの2つの垂直偏光成分間の位相をゼロ度で偏移するステップと
をさらに含むことを特徴とする請求項21に記載の方法。
【請求項24】
入力偏光ビームを受信するステップであって、第1の座標は、第1の論理状態を表すために第1の相対角度および第1の相対的な大きさに対応し、第2の座標は、第2の論理状態を表すために第2の相対角度および第2の相対的な大きさに対応し、前記第2の相対的な大きさは、前記第1の大きさを反転したものと同等またはほぼ同等であり、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記入力偏光ビームの相対偏光角は、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等であるステップと、
入力偏光ビームを第1のビームおよび第2のビームに分割するステップであって、前記第1のビームおよび第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有するステップと、
前記第1のビームの相対偏光角が前記第2の相対角度と同等またはほぼ同等である場合、前記第1のビームを光学的に除去するステップと、
前記第2のビームの相対偏光角が前記第1の相対角度と同等またはほぼ同等である場合、前記第2のビームを光学的に除去するステップと
を含むことを特徴とする方法。
【請求項25】
第1の相対的な大きさおよび第1の相対偏光角を有する入力偏光ビームを受信するステップであって、前記入力偏光ビームは、前記第1の相対偏光角および前記第1の相対的な大きさに基づく第1の論理状態または第2の論理状態を表すステップと、
前記入力偏光ビームを第1のビームおよび第2のビームに分割するステップであって、前記第1のビームおよび前記第2のビームは、同等またはほぼ同等であり、前記入力偏光ビームと同一の論理状態を表すステップと、
前記第1のビームの相対偏光角が前記第2の論理状態を表す場合、前記第1のビームを光学的に除去するまたはほぼ光学的に除去するステップと、
前記第2のビームの相対偏光角が前記第1の論理状態を表す場合、前記第2のビームを光学的に除去するまたはほぼ光学的に除去するステップと
を含むことを特徴とする方法。
【請求項26】
第3のビームを生成するために、制御入力に基づき、前記第2のビームを調整するステップであって、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第1の論理状態を表すステップをさらに含み、前記調整するステップは、前記制御入力が第1の論理状態を表す場合、前記第2のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップとを含むことを特徴とする請求項25に記載の方法。
【請求項27】
第3のビームを生成するために、前記第1のビームを調整するステップであって、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第2の論理状態を表し、前記調整するステップは、前記第1のビームの相対偏光角を180度調整するステップと、前記第1のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと、
第4のビームを生成するために、制御入力に基づき、前記第2のビームを調整するステップであって、前記第4のビームは、前記第4のビームの相対偏光角に基づく前記第1の論理状態を表し、前記調整するステップは、前記制御入力が第2の論理状態を表す場合、前記第2のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと
をさらに含むことを特徴とする請求項25に記載の方法。
【請求項28】
第3のビームを生成するために、制御入力に基づき、前記第1のビームを調整するステップをさらに含み、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第2の論理状態を表し、前記調整するステップは、前記制御入力が第1の論理状態を表す場合、前記第1のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むことを特徴とする請求項25に記載の方法。
【請求項29】
第3のビームを生成するために、制御入力に基づき、前記第1のビームを調整するステップであって、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第2の論理状態を表し、前記調整するステップは、前記制御入力が第1の論理状態を表す場合、前記第1のビームの相対偏光角を180度調整するステップと、前記第1のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと、
第4のビームを生成するために、前記第2のビームを調整するステップであって、前記第4のビームは、前記第4のビームの相対偏光角に基づく第5の論理状態を表し、前記調整するステップは、前記第2のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと
をさらに含むことを特徴とする請求項25に記載の方法。
【請求項30】
第3のビームを生成するために、第1の制御入力に基づき、前記第1のビームを調整するステップであって、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第2の論理状態を表し、前記調整するステップは、前記制御入力が第2の論理状態を表す場合、前記第1のビームの相対偏光角を180度調整するステップと、前記第1のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと、
第4のビームを生成するために、第2の制御入力に基づき、前記第2のビームを調整するステップであって、前記第4のビームは、前記第4のビームの相対偏光角に基づく前記第1の論理状態を表し、前記調整するステップは、前記制御入力が第2の論理状態を表す場合、前記第2のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと
をさらに含むことを特徴とする請求項25に記載の方法。
【請求項31】
前記第1の制御入力および前記第2の制御入力は、同一であることを特徴とする請求項30に記載の方法。
【請求項32】
第3のビームを生成するために、第1の制御入力に基づき、前記第1のビームを調整するステップであって、前記第3のビームは、前記第3のビームの相対偏光角に基づく前記第2の論理状態を表し、前記調整するステップは、前記制御入力が第1の論理状態を表す場合、前記第1のビームの相対偏光角を180度調整するステップと、前記第1のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと、
第4のビームを生成するために、第2の制御入力に基づき、前記第2のビームを調整するステップであって、前記第4のビームは、前記第4のビームの相対偏光角に基づく前記第1の論理状態を表し、前記調整するステップは、前記制御入力が第1の論理状態を表す場合、前記第2のビームの相対偏光角を180度調整するステップと、前記第2のビームの前記相対振幅を前記第1の相対振幅の逆2乗に調整するステップと、を含むステップと
をさらに含むことを特徴とする請求項25に記載の方法。
【請求項33】
前記第1の制御入力および前記第2の制御入力は、同一であることを特徴とする請求項32に記載の方法。
【請求項34】
2つの2値論理状態を表す方法であって、
第1の相対偏光角および第1の相対的な大きさを有するビームによって第1の論理状態を表すステップと、
第2の相対偏光角および第1の相対的な大きさを有するビームによって第2の論理状態を表すステップと
を含み、
前記第1の相対偏光角と前記第2の相対偏光角との差は、180度またはほぼ180度であり、
前記第2の相対的な大きさは、前記第1の相対的な大きさを反転したものと同等またはほぼ同等であることを特徴とする方法。
【請求項35】
入力偏光ビームを、事前に選択された相対偏光角に基づく2つの2値論理状態のうちの1つを表すビームに変換するための方法であって、
第1の相対偏光角αを有する第1の偏光ビームを受信するステップであって、前記第1の偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であるステップと、
第2のビームを生成するために、第1の制御入力に基づき、前記第1の偏光ビームの2つの垂直偏光成分間の位相を(β−α)+180°または(β−α)で偏移するステップであって、βは、事前に選択された角度であり、(β−α)+180°は、第1の論理状態を表し、(β−α)は、第2の論理状態を表すステップと
を含むことを特徴とする方法。
【請求項36】
第3のビームを生成するために、第2の制御入力に基づき、第2のビームおよび前記第2のビームの2つの垂直偏光成分間の位相を(γ−β)+180°または(γ−β)で偏移するステップであって、γは、事前に選択された角度であり、(γ−β)+180°は、第1の論理状態を表し、(γ−β)は、第2の論理状態を表すステップをさらに含むことを特徴とする請求項35に記載の方法。
【請求項37】
前記偏移するステップは、論理演算を行うために実行され、前記第1および第2の制御入力は、前記論理演算への論理入力であり、前記第3のビームは、前記論理演算の論理出力であることを特徴とする請求項36に記載の方法。
【請求項38】
前記論理演算は、XOR論理演算であることを特徴とする請求項37に記載の方法。
【請求項39】
前記論理演算は、XNOR論理演算であることを特徴とする請求項37に記載の方法。
【請求項40】
第4のビームを生成するために、前記第3のビームを−(γ−β)で偏移するステップと、
第5のビームを生成するために、第3の制御入力に基づき、前記第4のビームおよび前記第2の偏光ビームの2つの垂直偏光成分間の位相を(γ−β)+180°または(γ−β)で偏移するステップと
をさらに含むことを特徴とする請求項36に記載の方法。
【請求項41】
前記第2の偏移するステップは、論理演算を行うために実行され、前記第3のビームおよび前記第3の制御入力は、前記論理演算への論理入力であり、前記第5のビームは、前記論理演算の論理出力であることを特徴とする請求項40に記載の方法。
【請求項42】
前記論理演算は、XOR論理演算であることを特徴とする請求項41に記載の方法。
【請求項43】
前記論理演算は、XNOR論理演算であることを特徴とする請求項41に記載の方法。
【請求項44】
入力偏光ビームを、相対偏光角に基づく2つの2値論理状態のうちの1つを表すビームに変換するための方法であって、
第1の相対偏光角および第1の相対振幅αを有する第1の偏光ビームを受信するステップと、
第2のビームを生成するために、前記第1の偏光ビームの前記相対振幅を1/αに縮小拡大し、第1の制御入力に基づき、前記第1の偏光ビームの2つの垂直偏光成分間の位相を0°または180°で偏移するステップであって、0°は、第1の論理状態を表し、180°は、第2の論理状態を表すステップと
を含むことを特徴とする方法。
【請求項45】
第3のビームを生成するために、第2の制御入力に基づき、前記第2のビームおよび前記第2のビームの2つの垂直偏光成分間の位相を0°または180°で偏移するステップをさらに含むことを特徴とする請求項44に記載の方法。
【請求項46】
前記偏移するステップは、論理演算を行うために実行され、前記第1および第2の制御入力は、前記論理演算への論理入力であり、前記第3のビームは、前記論理演算の論理出力であることを特徴とする請求項44に記載の方法。
【請求項47】
前記論理演算は、XOR論理演算であることを特徴とする請求項46に記載の方法。
【請求項48】
前記論理演算は、XNOR論理演算であることを特徴とする請求項46に記載の方法。
【請求項49】
第1の偏光ビームを受信するステップであって、前記第1の偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、前記第1の相対角度は、第1の論理状態を表し、第2の相対角度は、第2の論理状態を表し、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記第1の偏光ビームの前記相対偏光角βは、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等であるステップと、
第2のビームを生成するために、制御入力に基づき、前記第1の偏光ビームおよび前記第2のビームの2つの垂直偏光成分間の位相を(γ−β)+180°または(γ−β)で偏移するステップであって、γは、事前に選択された角度であり、(γ−β)+180°は、第1の論理状態を表し、(γ−β)は、第2の論理状態を表すステップと
を含むことを特徴とする方法。
【請求項50】
前記偏移するステップは、論理演算を行うために実行され、前記第1の偏光ビームおよび前記制御入力は、前記論理演算への論理入力であり、前記第2のビームは、前記論理演算の論理出力であることを特徴とする請求項50に記載の方法。
【請求項51】
前記論理演算は、XOR論理演算であることを特徴とする請求項51に記載の方法。
【請求項52】
前記論理演算は、XNOR論理演算であることを特徴とする請求項51に記載の方法。
【請求項53】
入力偏光ビームを受信するステップであって、第1の相対角度および相対的な大きさは、第1の論理状態を表し、第2の相対角度および相対的な大きさは、第2の論理状態を表すステップと、
入力偏光ビームを第1のビームおよび第2のビームに分割するステップであって、前記第1のビームおよび前記第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有するステップと、
前記第1のビームの相対偏光角が前記第2の相対角度と同等またはほぼ同等である場合、前記第1のビームを光学的に除去するまたはほぼ光学的に除去するステップと、
前記第2のビームの相対偏光角が前記第1の相対角度と同等またはほぼ同等である場合、前記第2のビームを光学的に除去するまたはほぼ光学的に除去するステップと
を含むことを特徴とする方法。
【請求項54】
入力偏光ビームを第1のビームおよび第2のビームに分割するための手段であって、前記第1のビームおよび前記第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する手段と、
第1の相対偏光角で前記第1のビームを偏光するための手段と、
第2の相対偏光角で前記第2のビームを偏光するための手段と
を備える装置であって、
前記入力偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、
前記第1の相対偏光角と前記第2の相対偏光角の差は、180度またはほぼ180度であり、
前記入力偏光ビームの相対偏光角は、前記第1の相対偏光角または前記第2の相対偏光角のいずれかと同等またはほぼ同等であることを特徴とする装置。
【請求項55】
入力偏光ビームを受信するための手段であって、前記入力偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、第1の相対角度は、第1の論理状態を表し、第2の相対角度は、第2の論理状態を表し、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記入力偏光ビームの相対偏光角は、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等である手段と、
制御入力に基づき、前記入力偏光ビームの2つの垂直偏光成分の位相をゼロまたは180度で偏移するための偏移手段と
を備えることを特徴とする装置。
【請求項56】
入力偏光ビームを受信するための手段であって、第1の座標は、第1の論理状態を表すために第1の相対角度および第1の相対的な大きさに対応し、第2の座標は、第2の論理状態を表すために第2の相対角度および第2の相対的な大きさに対応し、前記第2の相対的な大きさは、前記第1の大きさを反転したものと同等またはほぼ同等であり、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記入力偏光ビームの相対偏光角は、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等である手段と、
入力偏光ビームを第1のビームおよび第2のビームに分割するための手段であって、前記第1のビームおよび前記第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する手段と、
前記第1のビームの相対偏光角が前記第2の相対角度と同等またはほぼ同等である場合、前記第1のビームを光学的に除去するための手段と、
前記第2のビームの相対偏光角が前記第1の相対角度と同等またはほぼ同等である場合、前記第2のビームを光学的に除去するための手段と
を備えることを特徴とする装置。
【請求項57】
第1の相対的な大きさおよび第1の相対偏光角を有する入力偏光ビームを受信するための手段であって、前記入力偏光ビームは、前記第1の相対偏光角および前記第1の相対的な大きさに基づく第1の論理状態または第2の論理状態を表す手段と、
前記入力偏光ビームを第1のビームおよび第2のビームに分割するための手段であって、前記第1のビームおよび前記第2のビームは、同等またはほぼ同等であり、前記入力偏光ビームと同一の論理状態を表す手段と、
前記第1のビームの相対偏光角が前記第2の論理状態を表す場合、前記第1のビームを光学的に除去するまたはほぼ光学的に除去するための手段と、
前記第2のビームの相対偏光角が前記第1の論理状態を表す場合、前記第2のビームを光学的に除去するまたはほぼ光学的に除去するための手段と、を含むことを特徴とする装置。
【請求項58】
2つの2値論理状態を表すため装置であって、
第1の相対偏光角および第1の相対的な大きさを有するビームによって第1の論理状態を表すための手段と、
第2の相対偏光角および第1の相対的な大きさを有するビームによって第2の論理状態を表すための手段と
を備え、
前記第1の相対偏光角と前記第2の相対偏光角の差は、180度またはほぼ180度であり、
前記第2の相対的な大きさは、前記第1の相対的な大きさを反転したものと同等またはほぼ同等であることを特徴とする装置。
【請求項59】
入力偏光ビームを、事前に選択された相対偏光角に基づく2つの2値論理状態のうちの1つを表すビームに変換するための装置であって、
【請求項60】
事前に選択された相対偏光角に基づき、入力偏光ビームを2つの2値論理状態のうちの1つを表すビームに変換するための方法であって、
第1の相対偏光角αを有する第1の偏光ビームを受信するステップであって、前記第1の偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であるステップと、
第2のビームを生成するために、第1の制御入力に基づき、前記第1の偏光ビームの2つの垂直偏光成分間の位相を(β−α)+180°または(β−α)で偏移するステップであって、βは、事前に選択された角度であり、(β−α)+180°は、第1の論理状態を表し、(β−α)は、第2の論理状態を表すステップと、
第1の相対偏光角αを有する第1の偏光ビームを受信するための手段であって、前記第1の偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1である手段と、
第2のビームを生成するために、第1の制御入力に基づき、前記第1の偏光ビームの2つの垂直偏光成分間の位相を(β−α)+180°または(β−α)で偏移するための手段であって、βは、事前に選択された角度であり、(β−α)+180°は、第1の論理状態を表し、(β−α)は、第2の論理状態を表す手段と
を備えることを特徴とする方法。
【請求項61】
入力偏光ビームを、相対偏光角に基づく2つの2値論理状態のうちの1つを表すビームに変換するための装置であって、
第1の相対偏光角および第1の相対振幅αを有する第1の偏光ビームを受信するための手段と、
第2のビームを生成するために、前記第1の偏光ビームの前記相対振幅を1/αに縮小拡大し、第1の制御入力に基づき、前記第1の偏光ビームの2つの垂直偏光成分間の位相を0°または180°で偏移するための手段であって、0°は、第1の論理状態を表し、180°は、第2の論理状態を表す手段と
を備えることを特徴とする装置。
【請求項62】
第1の入力偏光ビームを受信するための手段であって、前記第1の偏光ビームの2つの垂直偏光成分の振幅の比率は、1またはほぼ1であり、前記第1の相対角度は、第1の論理状態を表し、第2の相対角度は、第2の論理状態を表し、前記第1の相対角度と前記第2の相対角度の差は、180度またはほぼ180度であり、前記第1の偏光ビームの前記相対偏光角βは、前記第1の相対角度または前記第2の相対角度のいずれかと同等またはほぼ同等である手段と、
第2のビームを生成するために、制御入力に基づき、前記第1の偏光ビームおよび前記第2のビームの2つの垂直偏光成分間の位相を(γ−β)+180°または(γ−β)で偏移するための手段であって、γは、事前に選択された角度であり、(γ−β)+180°は、第1の論理状態を表し、(γ−β)は、第2の論理状態を表す手段と
を備えることを特徴とする装置。
【請求項63】
入力偏光ビームを受信するための手段であって、第1の相対角度および相対的な大きさは、第1の論理状態を表し、第2の相対角度および相対的な大きさは、第2の論理状態を表す手段と、
入力偏光ビームを第1のビームおよび第2のビームに分割するための手段であって、前記第1のビームおよび前記第2のビームは、前記入力偏光ビームの相対偏光角と同等またはほぼ同等である同一またはほぼ同一の相対偏光角を有する手段と、
前記第1のビームの相対偏光角が前記第2の相対角度と同等またはほぼ同等である場合、前記第1のビームを光学的に除去するまたはほぼ光学的に除去するための手段と、
前記第2のビームの相対偏光角が前記第1の相対角度と同等またはほぼ同等である場合、前記第2のビームを光学的に除去するまたはほぼ光学的に除去するための手段と
を備えることを特徴とする装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公表番号】特表2009−537865(P2009−537865A)
【公表日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2009−511081(P2009−511081)
【出願日】平成19年5月18日(2007.5.18)
【国際出願番号】PCT/US2007/011892
【国際公開番号】WO2007/136740
【国際公開日】平成19年11月29日(2007.11.29)
【出願人】(508342367)
【Fターム(参考)】