説明

Fターム[2K002EA30]の内容

光偏向、復調、非線型光学、光学的論理素子 (16,723) | 構造 (1,699) | 光学要素との組合せ (846)

Fターム[2K002EA30]に分類される特許

1 - 20 / 846




【課題】同一の光路切替装置により、信号光を制御光の本数以上の複数の光路に切り替える。
【解決手段】光路切替装置は、照射側端面近接7芯バンドル光ファイバー1の端面の内、中心に載置された光ファイバー端面から出射する信号光1000および6つの周辺光ファイバー端面の1つから単独または隣接する2つから同時に出射される制御光1011,1012等がコリメートレンズ2および集光レンズ3を介して熱レンズ形成素子4に収束・照射され、熱レンズ形成素子4を通過した信号光がコリメートする受光レンズ6と、くさび型プリズム部分を含む12角錐台プリズム7と、結合レンズ8とを介して、結合レンズ8から出射した直進または光路切替された信号光が、受光素子である13芯バンドル光ファイバー9の光ファイバー端面900〜912のいずれかに、制御光照射の有無と制御光の組合せに応じて選択的に入射する。 (もっと読む)


【課題】新規な方法で出射光の線幅を狭くする。
【解決手段】光源10は、第1分極反転構造22に第1入射光を出射する。第1分極反転構造22は、第1入射光を波長変換して高調波を出射する。ファイバーカプラ30は、第1分極反転構造22から出力された高調波を、光源装置からの出射光と、フィードバック光とに分岐する。第2分極反転構造42は、フィードバック光が入射される。第2分極反転構造42は、フィードバック光を波長変換して、第2入射光を出射する。第2入射光は、第1入射光と同一波長を有する。第2入射光は、第1波長変換部に入射される。 (もっと読む)


【課題】励起光間の相互作用を低減する。
【解決手段】光信号を送信する光送信局10と、光信号を伝送する光伝送路30−1〜30−4と、光伝送路を介して光信号を受信する光受信局11と、光伝送路を増幅媒体として光信号をラマン増幅する励起光を供給する複数の励起光源12−1〜12−3と、励起光を光伝送路に入射するとともに、光送信局と光受信局とで協働して光伝送路について複数の区間を形成する複数の光カプラ15−1〜15−3とをそなえた光伝送システムにおいて、複数の励起光源は、複数の励起光のうち他の励起光をラマン増幅する一の励起光と当該他の励起光とが複数の区間のうちそれぞれ異なる区間を増幅媒体として光信号をラマン増幅するように、各励起光を複数の光カプラを介して光伝送路に入射する。 (もっと読む)


【課題】波長390〜420nm領域において強い二光子吸収特性を示す二光子吸収材料を提供し、同波長領域での三次元微細光造形や三次元メモリ等において、小型でエネルギー消費の少ないレーザー光源の利用を可能にする。
【解決手段】一般式(1)で示されるベンゼン誘導体には、波長390〜420nm領域において強い二光子吸収特性を備えており、この波長領域のレーザー光源を利用する二光子吸収材料として有用である。


(1) (もっと読む)


【課題】SBS抑制効果を有し、また、小型かつ構造が単純な波形整形器を提供する。
【解決手段】非線形係数が5/W/km以上を有するラマン利得媒質と、ポンプLDと、前記ポンプLDからの出力光を前記ラマン利得媒質に入力するためのカプラとからなり、入力されたパルスを整形もしくは圧縮することを特徴とする波形整形器を提供する。 (もっと読む)


【課題】コヒーレント光受信器においては、チャネル間にスキューが生じると十分な復調ができず、受信性能が劣化する。
【解決手段】本発明のコヒーレント光受信器は、局所光源と、90°ハイブリッド回路と、光電変換器と、アナログ−デジタル変換器と、デジタル信号処理部を有し、90°ハイブリッド回路は、多重化された信号光を局所光源からの局所光と干渉させて複数の信号成分に分離した複数の光信号を出力し、光電変換器は、光信号を検波して検波電気信号を出力し、アナログ−デジタル変換器は、検波電気信号を量子化して量子化信号を出力し、デジタル信号処理部は、量子化信号を高速フーリエ変換処理するFFT演算部と、高速フーリエ変換処理した結果から算出された複数の信号成分間の伝播遅延差を補償するスキュー補償部と、量子化信号を復調する復調部とを備える。 (もっと読む)


【課題】挿入損失や偏波依存性損失が少ない波長選択光スイッチ装置を提供すること。
【解決手段】光ファイバ11からの入射光を偏波ダイバーシティ部15を介して波長分散合成素子19に入射する。波長合成素子19は入射光をその波長に応じて異なった方向に分散させレンズ20に加える。レンズ20では入射光を波長に応じて帯状にxy平面に展開する。液晶ビーム偏向素子21は波長分散方向に配列された画素構造であり、選択すべき波長に応じた位置の画素を反射状態とする。液晶ビーム偏向素子21で選択された光は同一の経路を介して光ファイバ14より出射される。そして出射光についてはs偏光成分とp偏光成分について同一の波長帯の光路差を出力光軸補正板17で調整することにより、挿入損失や偏波依存性損失を少なくする。 (もっと読む)


【課題】光学部品の外径精度に誤差があっても、基板上に形成された光導波路との間の光結合を低光損失で簡単に結合できること。
【解決手段】レーザ光源は、レーザ素子102と、レーザ素子102のレーザ光を波長変換して出射する波長変換素子104とが基板101上に配置されてなる。導波路部103は、フォトリソグラフィ工程により基板101上に形成され、レーザ素子102および波長変換素子104は、導波路部103に位置決めされて基板101上に配置される。レーザ素子102のレーザ光は導波路部103を導波した後、波長変換素子104に入射する。 (もっと読む)


【課題】量子ビット状態を記憶し操作するように構成されたメモリのコンポーネントを提供する。
【解決手段】コンポーネントは、量子ドット分子、励起子、第1電気接点17、第2電気接点19、電源26及び電源コントローラー21を含んでいる。量子ドット分子は、第1レイヤ1において提供される第1量子ドット3と、第2レイヤ5において提供される第2量子ドット7と、を含んでいる。励起子は量子ドット分子内に電子及び正孔の束縛状態を含んでいる。励起子のスピン状態は量子ビット状態を形成する。電場が量子ドット分子を横切って提供されることが可能になるために、第1電気接点17は第1量子ドット3の下に提供され、第2電気接点19は第2量子ドット7の上に提供される。電源コントローラー21は、量子ドット分子内での励起子が直接配置と間接配置との間で切り換えられるように、量子ドット分子を横切って電場を調整するように構成されている。 (もっと読む)


【課題】発振スペクトル分布が狭いレーザ光を実現可能なモード同期レーザ光源装置を提供する。
【解決手段】
注入電流Iが注入されてキャリアが生成されかつキャリアの消費によりレーザ光Pのパルスを増幅すると共にキャリアの密度変化によりレーザ光Pのパルス強度に依存する自己位相変調と等価な位相変調を生じる半導体光増幅器1と、半導体光増幅器1から射出されるレーザ光Pのパルスの発振波長を可変とする掃引用変調部3と、掃引用変調部3により変調されたレーザ光Pのパルスを半導体光増幅器1に帰還させてレーザ発振現象を生じさせるリング共振器6と、異常分散領域で用いられかつリング共振器6を導波中のレーザ光Pのパルスの波長に依存してレーザ光Pのパルスの帰還時間を変化させる分散補償器5とを有する。 (もっと読む)


【課題】広い領域で電場振幅分布がほぼ一様なテラヘルツ波を効率良く発生できるテラヘルツ波発生装置を提供する。
【解決手段】第1の電磁波Lを射出する電磁波源1と、第1の電磁波Lの照射により第2の電磁波Lを発生する非線形光学結晶6と、第1の電磁波Lを非線形光学結晶6に照射する光学系(2,3,4,5)と、を備え、第2の電磁波Lは、パルス状のテラヘルツ波であり、第1の電磁波Lは、テラヘルツ波よりも波長が短いパルス状の電磁波であり、光学系(2,3,4,5)は、非線形光学結晶6内で非線形光学効果によって第2の電磁波Lを発生するための位相整合条件を満たすように、非線形光学結晶6内で第1の電磁波Lのパルスフロントを傾斜させるように構成され、非線形光学結晶6は、第2の電磁波Lの射出方向に対する厚さがほぼ均一な平行平板形状からなる。 (もっと読む)


【課題】光ファイバと導波路の相対位置を容易に決めることができるようにする。
【解決手段】光ファイバ100の一部には、導波路取付部102が形成されている。導波路取付部102は、光ファイバ100の一部を、光ファイバ100のコア120を通る断面で光ファイバ100の延伸方向に切り欠くことにより、形成されている。導波路取付部102には、第1凹部122が形成されている。第1凹部122は、光ファイバ100のコア120を除去することにより、形成されている。そして、リッジ構造の導波路220が、第1凹部122に填め込まれている。 (もっと読む)


【課題】単一のレーザ光から複数の波長のレーザ光を生成しつつ各レーザ光により多光子励起効果を高効率で発生させる。
【解決手段】極短パルスレーザ光を射出する単一のレーザ光源2と、極短パルスレーザ光のうち少なくとも一部の波長を変換することにより波長の異なる複数のパルスレーザ光を生成する波長変換手段3と、該波長変換手段3によって生成された各パルスレーザ光の周波数分散量を調節する分散調節手段51〜53と、該分散調節手段51〜53によって周波数分散量が調節された複数のパルスレーザ光を射出する導入光学系8とを備え、分散調節手段51〜53が、導入光学系8から光学装置の照射光学系に導入されて標本に照射される各パルスレーザ光が標本上において略フーリエ限界パルスに近づくように各パルスレーザ光の周波数分散量を調節するレーザ光源装置1を提供する。 (もっと読む)


【課題】受信感度の劣化を防ぐことのできる波長選択型のコヒーレント受信器を提供する。
【解決手段】受信波長多重信号光を減衰させる減衰手段と、所定波長の局発光源と、減衰した前記信号光と前記局発光とを干渉させ、第1干渉光と前記第1干渉光とは異なる第2干渉光とを出力する干渉手段と、前記第1干渉光に対する第1の光電変換手段と、前記第2干渉光に対する第2の光電変換手段と、前記第1の光電変換出力と第2の光電変換出力の差を出力する出力手段と、前記信号光の強度に対する前記第1の電気信号の光電気変換効率と前記信号光の強度に対する前記第2の電気信号の光電気変換効率が異なることによる前記差信号の雑音成分の強度が、前記差信号の信号成分の強度に対して所定の割合以下となるように、前記減衰手段を制御して前記信号光を減衰させる、又は前記光源を制御して前記局発光を増大させる監視制御手段と、を備える。 (もっと読む)


【課題】本発明は、モード多重伝送システムにおいて長距離大容量伝送を実現するものである。
【解決手段】本発明に係るモード多重伝送システムは、モード合波装置及びモード分波装置を備え、モード合波装置は、信号光とポンプ光との非線形効果によって信号光の第一高次モード以上の伝搬光を生成し、複数モードの伝搬光が一波長に多重化されたモード多重信号光に変換し、モード分波装置は、ポンプ光とモード多重信号光との非線形効果によってモード多重信号光に含まれる信号光の基本モード光を生成し、波長の異なる複数の信号光に変換する。 (もっと読む)


【課題】高精度の波長制御を要することなくデータ信号を得る。
【解決手段】分散媒質1には、データ信号によって変調されたサブキャリア変調信号に基づいて位相変調された搬送光ECが入力される。抽出部2は、分散媒質1から出力される光からデータ信号を抽出する。 (もっと読む)


【課題】出力ポート間に生じるクロストークを抑制した光信号選択スイッチを提供すること。
【解決手段】本発明に係る光信号選択スイッチは、少なくとも1つの入力ポートと、複数の出力ポートと、前記少なくとも1つの入力ポートから出射される光信号を集光する集光レンズと、前記集光レンズにより集光された光信号に位相シフトを与える偏向手段であって、当該位相シフトが与えられた光信号が前記集光レンズを介して前記出力ポートに結合するように該光信号を反射する偏向手段とを備える。前記偏向手段によるある出力ポートにおける位相シフト波形の周期は、前記偏向手段による他の出力ポートにおける位相シフト波形の周期の1/i倍(iはゼロ以外の整数)と相違することを特徴とする。
前記特徴により、ある出力ポートにおいて他の出力ポートの2次以上の高次回折光が結合されることがないため、ポート間クロストークを抑制することができる。 (もっと読む)


【課題】DQPSK変調された光信号を復調する光受信器において、1ビット遅延回路を空間光学系で構成し、差動出力光の光路長差が無く、かつ同じ方向に出力可能であり、さらに空間光学系の大きさを小型化した光受信器を提供する。
【解決手段】第1の干渉計(主として第1ビームスプリッター)の周囲に、差動出力光の出射方向を同じにし、光路長の差をゼロにする第1の光路補正手段を設け、次に、第1の干渉計(第1の光路補正手段を含む)の周囲に第2の干渉計(主として第2ビームスプリッター)を配置する。さらに、第2の干渉計の周囲に、差動出力光の出射方向を同じにし、光路長の差をゼロにする第2の光路補正手段を設ける。また、第2の干渉計においては、第1の干渉計に組み込まれた第1ビームスプリッターで2つに分岐した光波を、第2の干渉計を構成する第2ビームスプリッターで合波し干渉させ、差動出力光を発生させるよう構成している。 (もっと読む)


1 - 20 / 846