説明

光送信機

【課題】 2つ以上の光源を用いる光送信機の性能を向上させると共に、増幅回路の出力と光源とのインピーダンス整合を容易にする。
【解決手段】 光送信機は、変調電流が同時に直列に供給されるも、直流バイアス電流は別々に供給される2個の光源(201,202)を具えている。2つの光源の変調電流はインダクタンス(214,215,227)によって分離される。第1光源(201)は、その陽極にて入力端子(216)から来る変調信号を受信してから、2つの光源間の結合コンデンサ(226)を介して第2光源(202)へ変調信号を供給する。

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、直列に配置され、且つ同時に駆動される少なくとも2個の光源を具え、光信号を送信機から少なくとも1個の光受信機へと伝送する少なくとも1本の光ファイバーを含む、広帯域伝送ネットワークを経て光信号を伝送するための光送信機に関するものである。本発明は特にビデオ通信ネットワーク及びこれらのネットワークのリターンチャネルに適用するものである。
【0002】
【従来の技術】冒頭にて述べたような光送信機は米国特許第5,351,149号から既知である。この文献によると、いくつかのダイオードを直列に接続して、多くの光を発生させるようにすると共に、様々な方向へと伝送するようにし、直列配置のダイオード群を同じ直流電流源と、同じ交流電流源とに接続するようにしている。
【0003】
【発明が解決しようとする課題】本発明の目的は光送信機の性能を向上させると共に、増幅回路の出力と光源との間のインピーダンス整合を容易にすることにある。
【0004】
【課題を解決するための手段】斯かる目的のために、本発明による光送信機は当該光送信機が、直流バイアス電流を前記光源に別々に供給し、且つ交流変調電流を前記光源に直列に供給する手段を含み、前記光源をバイアスする前記別個の直流電流が、実際上、前記交流変調電流の流れを阻止するのに十分な値を有している少なくとも2個のインダクタンスを経て流れるようにする。本発明の好適例は従属請求項2〜10に記載した通りのものである。
【0005】
【発明の実施の形態】図1は直接直列に接続した2個の光源101及び102を含む本発明による光送信機の第1実施例の回路図である。光源101及び102はレーザダイオードとするが、光源は発光ダイオードに基づく構成のものとすることもできる。
【0006】レーザダイオード101によって放出される光出力は、このレーザダイオードの背面によって放出される光出力を受光するホトダイオード103を含む負帰還ループのおかげで一定に保たれる。ホトダイオード103は抵抗104及びポテンシオメータ105によって形成されるブリッジ回路に含まれる。差動増幅器106はブリッジ回路のアウトオブバランス信号を既知の方法にて増幅すると共に、トランジスタ107によってレーザダイオード101経て流れる平均電流を制御する。
【0007】同様に、レーザダイオード102によって放出される平均光出力も、各素子108〜111がダイオード101の調整回路の素子103〜106にそれぞれ対応する別の負帰還ループによって一定に保たれる。レーザダイオード102を経て流れる平均電流は2個のトランジスタ112と113によって制御される。トランジスタ113が導通している場合には、これに流れる電流がダイオード101から来る電流に加えられ;トランジスタ112が導通する場合には、このトランジスタ112がダイオード101から来る電流の一部を吸収し:これによりダイオード101及び102におけるバイアス電流の値を互いに無関係とすることができる。
【0008】インダクタンス114及び115は、レーザの直流バイアス電流を流すための回路に交流変調電流が流れるのを阻止する。従って、ポテンシオメータ105及び110を調整することにより各レーザによって放出される光出力を独立して調整することができる。
【0009】変調信号は、送信機の入力端子116に供給され、増幅手段117を通過してから、結合コンデンサ118を経て、直列に配置した光源101と102のアセンブリへと供給される。増幅器117の出力と光源アセンブリとのインピーダンス整合は、光源と直列に抵抗125を挿入するか、又は例えばインピーダンスアップ−コンバータ(図示せず)による他の既知の方法のいずれかによって得られる。光源を直列に接続することは、このインピーダンス整合を容易にする。その理由は、1個の光源又は直列の2つの光源でもそのインピーダンスは通常の増幅器のインピーダンスよりも常に極めて小さいからであり、光源のインピーダンスは一般に数オームである。
【0010】例えば、抵抗119とコンデンサ121とによって形成されるか、又は抵抗120とコンデンサ122とによって形成され、光源101及び102の各端子にそれぞれ接続されるダイポールを用いて、2つの各光源の電気−光変換効率を等しくすることができる。
【0011】2つ以上の光源を直列に接続し得ることは明らかである。この場合における平均バイアス電流及び交流変調電流の双方に関連する光源への給電方法は前述した場合と同じであり、光源と増幅器の出力とのインピーダンス整合はかなり簡単である。
【0012】図2は2個のレーザダイオード201及び202を含む第2実施例を示す。各レーザダイオード201と202によって放出される光出力は、図1の回路図のものと同様に形成される2つの負帰還ループによって一定に保たれ、且つ調整することもできる。インダクタンス214及び215は、レーザダイオードの直流バイアス電流を流すための回路に交流変調電流が流れるのを阻止する。光源を発光ダイオードとする場合には、これらのダイオードに電力を別々に供給する。
【0013】変調信号は、送信機の入力端子216に供給され、増幅手段217を経て流れてから、結合コンデンサ218を経て、交流変調に関する限り、コンデンサ226及びインダクタンス227が存在することにより、直列に配置される2個の光源201、202のアセンブリへと供給される。増幅器217の出力と光源のアセンブリとのインピーダンス整合は抵抗225を挿入することによって得られる。前述したように、抵抗219とコンデンサ211とによって形成されるダイポールか、又は抵抗220とコンデンサ222とによって形成されるダイポールを含む回路によって2つの光源のいずれか一方の光源の光出力への電流変換効率を調整することができる。
【0014】図2の回路は図1の回路と同じ特性を有すると共に、2つの各レーザのハウジングにおける直流電位をゼロとすることができ、これにより不慮の短絡の恐れ(レーザダイオードのハウジングがダイオードの電極の1つに電気的に接続されることはよくある)をなくすことができると云う実用上の追加の利点を有する。さらにこの図2の回路は回路アセンブリの周波数応答を最適にすることができる。実際上、インダクタンス227はレーザダイオード202の寄生キャパシタンスと並列に接続されて、“Q”ファクタが低い反共振回路を形成する。従って送信機の効率が所望通りに高められる周波数にて反共振を得るようにインダクタンス227の値を調整することにより周波数レスポンスの低下を補償することができる。
【0015】前記2つの実施例のいずれにも光源の出力に光結合器を追加するのが有利である。図3は図2のものと全く同様で、2つのレーザダイオード301及び302を具えている送信機の回路図である。各ダイオード301及び302は光をファイバー304及び305の始端区分にそれぞれ送ってから、光結合器303を経て2本の光ファイバー306及び307へと放出する。光結合器303の機能は、2つのレーザダイオードによって放出される光出力を2本のファイバー306及び307へと分け、各ファイバーが各ダイオードによって放出される光出力のほぼ半分の出力を受取るようにすることにある。光ファイバ306及び307の各々は、1個又は多数の遠隔光受信機へ光信号を転送し、従ってこれらのファイバーは光伝送ネットワークの出発点を成す。光源の数及びファイバーの数を増やすことができることは明らかである。
【0016】ファイバーでの色分散と、レーザの波長が互いに接近し過ぎている場合に各レーザによって放出される放射間に起り得る干渉とにリンクされる問題をなくすために、レーザの伝送波長の差を信号の許容伝送品質に合致させるようにすることが重要である。必要ならば、どちらかのレーザの直流バイアス電流又は温度を制御して、伝送波長について上述した条件を適えるようにすることができる。
【0017】図3の回路の利点は信頼性が高まることにある。レーザの1つが故障した場合に、光送信機は低い光出力で機能し続ける。実際上、ダイオードレーザ又は発光ダイオードは故障した場合に、大抵の場合低インピーダンスを呈し、不良ダイオードの存在は他のダイオードの適切な機能にとって障害にはならない。2つあるうちの一方の光源の故障によってネットワークに存在する各受信機により受信される光信号は3dB低減するに過ぎない。このようにして得られる強調信頼性は、レーザダイオードが光送信機では最もよく故障する部品であることからして重要なことであり、しかもこの増強信頼度と引き替えの追加のコストは、一方の送信機が故障した場合に他方をバックアップとして用いる2つの完全な送信機を用いるようにする従来の解決策のコストよりも遥かに安くて済む。
【0018】図4は2つの光源401及び402を含む他の実施例を示す。ここでのレーザ光源も、制御ホトダイオードを含み、伝送光出力を調整し得る負帰還ループを有する。変調信号は光送信機の入力端子416に供給され、増幅手段417を通過してから、結合コンデンサ418及びインピーダンス適合抵抗425を経て光源401へと供給される。次いで変調信号は結合コンデンサ426及び遅延線427を経て第2光源402へと伝送される。これに対し、増幅器428は直流成分とは別にホトダイオード403から到来する信号の交流成分を増幅する。増幅器428の出力信号は可変利得電力増幅器430の入力端子へと送られ、この増幅器は他方の入力端子429にて、光送信機の入力端子416に現われる信号に相当するも、遅延線432によって遅延され、且つ減衰器433によって減衰された信号を受信する。従って、差動増幅器430の出力端子には、この差動増幅器の入力端子が適切に割当てられているものとすれば、レーザダイオード401によって伝送される光信号に悪影響を及ぼすひずみ及び雑音に比例し、且つこうしたひずみ及び雑音とは逆極性の“誤差信号”が得られる。この誤差信号は、この場合、コンデンサ431を経て第2レーザダイオード402へと伝送される。このように、レーザダイオード402には2つの電流、即ち:−遅延線427から到来し、且つ光送信機の入力端子416に供給される信号に比例する電流と、−コンデンサ431から到来し、且つレーザダイオード401によって発生されるひずみ及び雑音に極性以外は比例する誤差電流と;の和電流が供給される。
【0019】前記2つの電流の和は、図示の場合のように、これらの信号電流を伝送する2本の導体を単に接続するか、方向性結合器を用いるか、他の任意の既知の手段によって得ることができる。
【0020】レーザダイオード401及び402はファイバー434及び435のそれぞれの始端区分に光を送出する。始端区分のファイバー434は追加のファイバー長によって形成させる光遅延素子436を具えており、この追加のファイバー長の長さを調整して、光がこの追加のファイバ長を通って進む際に受ける光の遅延量が、電気信号が遅延線427を経て進む際にこうむるこの電気信号の遅延量に等しくなり、各レーザダイオードによって放出される光信号が光結合器437の入力端子にて同相にて得られるようにする。この場合、レーザダイオード401によって発生される雑音又はひずみは、信号がホトダイオード403とコンデンサ431との間に位置させた信号処理回路を通過する際にこうむるこの信号の遅延量が、電気遅延線427の遅延量及び光遅延線436の遅延量にも等しい場合に、差動増幅器430の利得を適切に調整することによって補償することができる。
【0021】レーザダイオード401の特性は電流Iと放出光出力P1 との次の関係式によって表わされる。
1 =η・I+a1 ・I2 +b1 ・I3ここに、η,a1 ,b1 は係数である。レーザダイオード402の特性も電流Iと放出光出力P2 との次の関係式によって表わされる。
2 =η・I+a2 ・I2 +b2 ・I3ここに、a2 ,b2 は係数である。差動増幅器430の利得をGとすると、この差動増幅器の出力信号、即ち、誤差信号の値は次式にて表わされる。
E=−G・a1 ・I2 +b1 ・I3こうした条件では、利得Gの値をG=1+a2 /a1 とすることによって、光送信機の出力における二次ひずみを相殺することができる。同様に、差動電力増幅器430の利得の値をG=1+b2 /b1 とすれば、光送信機の出力における三次ひずみを相殺することができる。最後に、差動増幅器430の利得の値をG=1とすれば、光送信機の出力における雑音を最小にすることができる。
【0022】従って、それぞれの遅延を適切に調整し、且つファイバー内での色分散による影響及び各レーザによって放出される放射間の干渉に対して、上述したような手段を講じるものとすれば、雑音や、二次ひずみや、三次ひずみを最小とするように差動増幅器430の利得を選定することができる。
【0023】各レーザダイオードによって放出された光出力は、光結合器437を通過した後に、2つのファイバー438及び439へと分けられる。前述したように、光結合器から出て、ネットワークを形成するファイバーの数は必ずしも2本に限定する必要はないこと明らかである。図1〜図4の回路では、レーザダイオードの陰極をハウジングに接続するようにしているが、陽極をハウジングに接続する場合には、電源の極性及び使用するトランジスタの極性を変えれば十分である。
【図面の簡単な説明】
【図1】 本発明による光送信機の第1実施例を示す回路図である。
【図2】 本発明による光送信機の第2実施例を示す回路図である。
【図3】 本発明による図2の光送信機に光結合器を加えた例を示す回路図である。
【図4】 本発明による光送信機のさらに他の実施例を示す回路図である。
【符号の説明】
101,102;201,202 光源(レーザダイオード)
103,108;203,208 ホトダイオード
104,109;204,209 抵抗
105,110;205,210 ポテンシオメータ
106,111;206,211 差動増幅器
107;207,212 トランジスタ
112,113 トランジスタ
114,115;214,215,227 インダクタンス
116;216 送信機の交流変調信号用入力端子
117;217 増幅手段
118;218,226 結合コンデンサ
119,120;219,220 抵抗
121,122;221,222 コンデンサ
125;225 インピーダンス整合用抵抗

【特許請求の範囲】
【請求項1】 直列に配置され、且つ同時に駆動される少なくとも2個の光源を具え、光信号を送信機から少なくとも1個の光受信機へと伝送する少なくとも1本の光ファイバーを含む、広帯域伝送ネットワークを経て光信号を伝送するための光送信機において、当該光送信機が、直流バイアス電流を前記光源に別々に供給し、且つ交流変調電流を前記光源に直列に供給する手段を含み、前記光源をバイアスする前記別個の直流電流が、実際上、前記交流変調電流の流れを阻止するのに十分な値を有している少なくとも2個のインダクタンスを経て流れるようにしたことを特徴とする光送信機。
【請求項2】 2個の光源を直接直列に接続し、且つ前記送信機がプッシュプル回路を含み、該回路の出力端子を前記2つの光源の共通接続点に接続して、前記プッシュプル回路の出力が前記光源の一方に電流を加えたり、一方の光源から電流を取り出したりするようにしたことを特徴とする請求項1に記載の光送信機。
【請求項3】 前記光送信機が2つの光源の間に結合コンデンサを含み、第1光源がその一方の電極にて前記変調信号を受信し、且つ該変調信号を前記結合コンデンサによって第2光源へと伝送するようにしたことを特徴とする請求項1に記載の光送信機。
【請求項4】 前記光送信機が前記第1光源を分極させるべく前記直流電流を大地に戻すインダクタンスを含むようにしたことを特徴とする請求項3に記載の光送信機。
【請求項5】 前記光源をレーザダイオードとすることを特徴とする請求項1に記載の光送信機。
【請求項6】 前記光源を発光ダイオードとすることを特徴とする請求項1に記載の光送信機。
【請求項7】 前記光送信機が、該送信機の各光源によって放出される光出力を受信すると共に、該光出力を前記ネットワークを形成するファイバーに分配する光結合器を含むようにしたことを特徴とする請求項1に記載の光送信機。
【請求項8】 前記光送信機が、第1光源によって放出された光変調信号を、前記送信機の入力端子に現われる信号を適切に遅延させた信号と比較して、前記第1光源によって放出された光信号に悪影響を及ぼしているひずみ及び雑音に比例する誤差信号を発生させる手段を含むようにしたことを特徴とする請求項8に記載の光送信機。
【請求項9】 前記光送信機が、第2光源に前記誤差信号と、伝送すべき信号との和信号を供給する手段と、後者の伝送すべき信号を遅延させ、前記第1光源によって放出される信号をできるだけ正確に補正するようにする手段と、2つの各光源からの光信号を適切に遅延させた後に、前記光信号の伝送ネットワークに供給するために光結合器によって合成する手段とを含むようにしたことを特徴とする請求項8に記載の光送信機。
【請求項10】 前記光送信機が前記誤差信号の増幅度を調整する手段を含むようにしたことを特徴とする請求項8に記載の光送信機。

【図1】
image rotate


【図2】
image rotate


【図3】
image rotate


【図4】
image rotate


【公開番号】特開2000−106546(P2000−106546A)
【公開日】平成12年4月11日(2000.4.11)
【国際特許分類】
【出願番号】特願平11−145796
【出願日】平成11年5月26日(1999.5.26)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【氏名又は名称原語表記】Koninklijke Philips Electronics N.V.
【住所又は居所原語表記】Groenewoudseweg 1,5621 BA Eindhoven, The Netherlands