説明

内燃機関用ピストン及びこれを備えた内燃機関

【課題】内燃機関用ピストンにおいて、頂面部(噴射燃料衝突部)がより短時間に通常運転時の安定温度まで達するようにして、初期稼働時からより早く正常な燃焼となるようにする。
【解決手段】ピストン1の頂面部(噴射燃料衝突部)を構成する材料に対して、熱伝導率の低い低熱伝導率層3をピストンの本体側に配置し、低熱伝導率層よりも熱伝導率の高い高熱伝導率層4を、ピストンの頂面側に配置したことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、筒内噴射エンジン(ガソリン・ディーゼル)等の内燃機関用ピストンにおいて、運転初期時に発生する排気ガスの浄化を目的として、短時間に温度を安定させる性能を有した燃焼室(頂面)により、噴射燃料が早期に安定的に気化するよう促進することが可能な内燃機関用ピストン及びこれを備えた内燃機関に関する。
【背景技術】
【0002】
近年、BRICs(ブリックス)に代表される途上国が目覚ましい経済発展を遂げている一方、環境への影響も懸念されている。
特に経済発展の象徴ともいえる自動車の保有台数は確実に増加しており、低コストでの環境に配慮できる技術が求められ、自動車の環境への配慮技術として燃費改善(CO削減)・排気ガス削減技術は各社ともしのぎを削って開発を行っている。
その様な中、内燃機関においては、燃焼効率が高い筒内噴射式エンジンが増えている。
しかし、筒内噴射式エンジンはインジェクターより噴射した燃料が燃焼室内に配置されたピストン頂面に衝突気化して燃焼するという構造上、始動初期、特にピストン頂面の温度が低い間は噴射した燃料の気化が十分に行われず、結果として燃焼が悪く排気ガスが汚いとの問題がある。
この問題は、従来の燃費測定方法である「10・15」の場合、エンジンの暖気運転が終わってからのホットスタートのみで測定の場合には特に問題とはならなかったが、今後導入が予定されている2015年度基準の測定方法である「JC08」はホットスタートと暖気運転前のコールドスタートの両方で測定される。その結果、エンジンが冷えた状態での性能も要求されることになる。
筒内噴射式エンジンは、それを解決する為に、筒内噴射とポート噴射の2つのインジェクターを設置して、状況にあわせて噴射を変更させ最適化を図る等の工夫がなされている。しかし、種類の異なる2つのインジェクターを設置するとエンジン機構等が複雑になり、コストアップに繋がる問題がある。
【0003】
このような問題を解決するため、ピストン頂面に低熱伝導率シートを設けることにより、燃焼による熱がピストン本体側へ逃げるのを防ぎ、燃焼室内の温度を高くする提案が特許文献1においてなされている。
しかしながら、特許文献1に開示される構造では、排気の工程で燃焼室内の熱が排出され、ピストン頂面に設けた低熱伝導率シートによりピストン自体の温度も上がりづらい
うえ、低温の燃料がインジェクターより噴射されるため、燃料が気化しづらく安定温度に達するまで時間がかかるという問題があった。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−267599号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明は、内燃機関用ピストンにおいて、頂面部(噴射燃料衝突部)がより短時間に通常運転時の安定温度まで達するようにして、初期稼働時からより早く正常な燃焼となるようにすることを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本発明者等は鋭意検討の結果、以下の通り解決手段を見出した。
本発明の内燃機関用ピストンは、請求項1に記載の通り、ピストンを構成する材料に対して熱伝導率の低い低熱伝導率層を前記ピストンの本体側に配置し、前記低熱伝導率層よりも熱伝導率の高い高熱伝導率層を、前記ピストンの頂面側に配置したことを特徴とする。
請求項2記載の発明は、請求項1記載の発明において、前記ピストンの頂面において凹部を設け、前記高熱伝導率層及び前記低熱伝導率層を前記凹部内に形成したことを特徴とする。
請求項3記載の発明は、請求項1又は2記載の発明において、前記高熱伝導率層の熱伝導率を150W/m・K〜400W/m・K、前記低熱伝導率層の熱伝導率を0.1W/m・K〜100W/m・K、前記ピストンの熱伝導率を100W/m・K〜150W/m・Kとしたことを特徴とする。
請求項4記載の発明は、請求項1乃至3の何れか1項に記載の発明において、前記低熱伝導率層を、ジルコニア、アルミナ及びステンレスの少なくとも何れかから構成し、前記低熱伝導率層において、前記ピストンの本体側の気孔率を前記ピストンの頂面側の気孔率よりも大きくしたことを特徴とする。
また、本発明の内燃機関は、請求項5に記載の通り、請求項1乃至4の何れか1項に記載の内燃機関用ピストンを備えたことを特徴とする。
【発明の効果】
【0007】
本発明の内燃機関用ピストンによれば、ピストン頂面におけるインジェクターより噴射された燃料が衝突する部分の最表面は熱伝導率が高い材料で構成されているため、短時間で燃焼の熱を吸収する。また、高熱伝導率層からピストン内部への熱伝達は、高熱伝導率層の下の低熱伝導率層により妨げられる。その結果、最表面の高熱伝導率層に熱が籠もるため短時間で高熱伝導率層が高温となり、高熱伝導率層が蓄熱層として機能する。この蓄熱層によりピストン頂面が温められるため噴射された燃料の気化を短時間で安定させることができ、燃焼室の温度が従来よりも短時間に上がることができる。
【図面の簡単な説明】
【0008】
【図1】本発明の内燃機関用ピストンの断面図
【図2】図1の変更例の内燃機関用ピストンの断面図
【図3】実施例1及び比較例の内燃機関用ピストンの表面温度変化を示すグラフ
【図4】実施例2及び比較例の内燃機関用ピストンの表面温度変化を示すグラフ
【発明を実施するための形態】
【0009】
以下、本発明の内燃機関用ピストンについて、図面を参照しつつ具体的に説明する。
図1の断面図に示される本発明の内燃機関用ピストン1は、シリンダとともに筒内噴射式エンジンを構成する。
【0010】
ピストン1は、例えば、アルミニウム−珪素合金やアルミ−銅合金等の母材を鋳鍛造等により公知の形状に形成したものである。インジェクターから噴射される燃料が直接衝突するピストン1の頂面の中央部に、ピストン1の軸と直交する方向において断面円形状の凹部2が設けられている。凹部2の底面は、低熱伝導率層3と高熱伝導率層4とが下側から順に積層されている。
尚、凹部2の形状は、噴射された燃料が直接衝突する位置であれば特に限定されず、凹部2の深さも2つの層3,4が形成できる程度の深さであれば特に限定されない。
また、ピストン1の頂面に凹部2を設けずに、ピストン1の頂面全体を低熱伝導率層3と高熱伝導率層4とで被覆することも可能であるが、ピストン1の頂面全体の温度が上がってしまい異常燃焼を起こす可能性があるので望ましくない。
【0011】
また、図1で説明した実施の形態は、凹部2の底面において低熱伝導率層3及び高熱伝導率層4とを形成したものであるが、図2に示すように、凹部2の内周面に対して、ピストン1側から低熱伝導率層3を介して高熱伝導率層4を積層するようにしてもよい。
【0012】
上記ピストン1を構成する材料の熱伝導率としては特に制限はないが、通常は100W/m・K〜150W/m・K程度のものとなる。
高熱伝導率層4は、短時間で燃焼による熱を吸収できるものとするため、ピストン1を構成する材料よりも熱伝導率が高い材料で構成する必要がある。例えば、ピストン1を構成する材料がアルミニウム−珪素合金であれば、高熱伝導率層4としては、ピストン1と同じアルミニウム−珪素合金に銅を加えて熱伝導率を高めたものや、ピストン1と同じアルミニウム−珪素合金の組成から珪素やニッケルの量を減らして純アルミニウムに近づけることで熱伝導率を高めたもの、銅、アルミ−銅合金、銅−アルミ合金等を用いることができる。また、ピストン1がアルミ−銅合金であれば、高熱伝導率層4としては、ピストン1を構成する材料よりも銅の含有量を上げた合金を用いることができる。
高熱伝導率層4の好ましい熱伝導率は150W/m・K〜400W/m・Kである。この数値よりも低いと昇温に時間がかかるためである。
【0013】
低熱伝導率層3は、高熱伝導率層4から伝わる熱がピストン1側に伝わるのを妨げる役割を果たすものなので、ピストン1よりも熱伝導率の低い材料で構成する必要がある。例えば、低熱伝導率層3としては、アルミナ(Al)、ジルコニア(ZrO)等のセラミックやステンレス鋼、チタン合金、ニッケル合金等を用いることができる。
低熱伝導率層3の好ましい熱伝導率は0.1W/m・K〜100W/m・Kである。この数値よりも高いと断熱効果が低くなるからである。
また、更に、低熱伝導率層3においてピストン1側への熱伝導を抑えるために、低熱伝導率層3を多孔状に形成してもよい。具体的に、アルミナ(Al)、ジルコニア(ZrO)やステンレスを材料として選択して、その気孔率を5%〜30%とすればよい。また、低熱伝導率層3において、ピストン1の本体側の気孔率をピストン1の頂面側の気孔率よりも大きくするというように、低熱伝導率層3内において、ピストン1の頂面側には、比較的高い熱伝導率の層を配置し、ピストン1の本体側には比較的低い熱伝導率の層を配置するようにしてもよい。
【0014】
上記した低熱伝導率層3及び高熱伝導率層4の厚みは0.01mm〜0.1mm程度とすることが好ましい。高熱伝導率層4の厚みが0.5mmより厚いと剥離し易くなり、0.01mmより薄いと昇温効果が得られないからである。低熱伝導率層3の厚みが0.5mmより厚いと剥離し易くなり、0.01mmより薄いと断熱効果が得られないからである。
【0015】
次に、低熱伝導率層3及び高熱伝導率層4の形成方法について説明する。
低熱伝導率層3及び高熱伝導率層4を構成することになる材料を固相状態のまま不活性ガスと共に超音速流で基材に衝突させ、超音速で衝突した材料が臨界速度に達して粒子自体が塑性変型することで皮膜を形成させるコールドスプレー法により形成することができる。
このコールドスプレー法を用いて、低熱伝導率層3及び高熱伝導率層4を形成するには、例えば、不活性ガスとして窒素ガスを用い、低熱伝導材料であるステンレス鋼(SUS316)、高熱伝導率材料である銅(純金属)を順に超音速流で凹部2に衝突させることにより形成することができる。
【0016】
また、コールドスプレー法以外にも、作動ガス中で、アノード陽極とカソード陰極間に直流アーク放電により10000℃を超える高温高速のプラズマジェットを発生させ、この中に金属やサーメット、セラミックスなどの粉末を投入し、溶融、加速させることで成膜するプラズマ溶射処理によって形成することも可能である。
このプラズマ溶射処理を用いて、低熱伝導率層3及び高熱伝導率層4を形成するには、例えば、作動ガスとしてアルゴンを用い、まず鋳鍛造により形成されたピストン1の凹部2の内表面をショットブラストを用いて粗くした後、プラズマ溶射でニッケルアルミ(H5201)を成膜して下地処理を行い、次にニッケルアルミの膜の上にプラズマ溶射でジルコニア(DTS−Z72)又はH316(SUS316)と銅(Metco55、)の膜を順に成膜することにより製造することができる。
【0017】
また、低熱伝導率層3及び高熱伝導率層4との間、或いは、ピストン1と低熱伝導率層3との間には、他の目的で別の材料からなる層を設けてもよい。
具体的には、ピストン1と低熱伝導率層3の間にボンド層を形成すれば、低熱伝導率層3のピストン1への密着性を高めることができるので望ましい。また、低熱伝導率層3と高熱伝導率層4の間にボンド層を形成すれば、低熱伝導率層3及び高熱伝導率層4の熱膨張の差を緩和させることができる。
ボンド層は、例えば、低熱伝導率層3又は高熱伝導率層4の形成前にボンド層の材料となる、例えば、MCrAlY、ニッケル95%−アルミ5%合金等を凹部内に形成することができる。ピストン1と低熱伝導率層3との間のボンド層としては、低熱伝導率層3のピストン1への密着性を高めるために、MCrAlYを用いることが望ましい。また、低熱伝導率層3と高熱伝導率層4の間のボンド層としては、熱膨張の差を緩和させるために、MCrAlYを用いるのが好ましい。ボンド層の厚みとしては薄い方がよいため、0.001mm〜0.1mm程度とすることが好ましい。
【0018】
尚、コールドスプレーを用いて1層を形成し、プラズマ溶射を用いて1層を形成することも可能である。また、ステンレス材料を使用する場合には、コールドスプレーのみで2層形成することも可能である。
【実施例】
【0019】
以下、本発明の実施例を比較例とともに検討する。
(実施例1)
ピストン本体の頂面の中央部に、ピストン軸と垂直な断面が円形状で半径15mm、深さ5mmの凹部を備えた半径45mmのピストンをアルミ−珪素合金(AC8A)から鋳鍛造で形成し、凹部の底面に、厚み0.01mm〜0.1mmの安定化酸化ジルコニアZrO+8%Yからなる低熱伝導率層と、厚み0.01mm〜0.1mmの銅からなる高熱伝導率層とをプラズマ溶射で順に積層させて内燃機関用ピストンを作製した。
【0020】
(実施例2)
実施例1で用いたピストンの凹部の内周面に対して、厚みが0.01mm〜0.1mmのステンレスからなる低熱伝導率層(ステンレス)と、厚み0.01mm〜0.1mmの銅からなる高熱伝導率層とをプラズマ溶射で順に積層させて内燃機関用ピストンを作製した。
【0021】
(比較例)
実施例1のピストンに低熱伝導率層及び高熱伝導率層が形成されていないものを比較例の内燃機関用ピストンとした。
【0022】
実施例1及び2並びに比較例の内燃機関用ピストンを筒内噴射式エンジン(内燃機関)のシリンダ内に設置してインジェクターより燃料をピストンに向けて噴射させた場合の表面温度変化を測定したグラフを図3及び図4に示す。
このグラフから比較例と比べて実施例1及び2の内燃機関用ピストンの方が初期段階から表面温度が上がり、より早く正常な燃焼となることがわかった。
【0023】
実施例2のプラズマ溶射処理に代えて、各層をコールドスプレーで形成した結果、また、1層とコールドスプレーにより形成して残りの1層をプラズマ溶射処理により形成しても同様の結果が得られることがわかった。
【産業上の利用可能性】
【0024】
本発明は、以上説明したように、筒内噴射エンジン用ピストン頂面(燃焼室)に熱伝導率の異なる性質を持つ2層を設けることで、短時間で安定した温度に達し、エンジン始動初期時の排ガス浄化に効果があるので、産業上の利用可能性を有するものである。
【符号の説明】
【0025】
1 ピストン
2 凹部
3 低熱伝導率層
4 高熱伝導率層

【特許請求の範囲】
【請求項1】
ピストン頂面ピストンを構成する材料に対して熱伝導率の低い低熱伝導率層を前記ピストンの本体側に配置し、前記低熱伝導率層よりも熱伝導率の高い高熱伝導率層を、前記ピストンの頂面側に配置したことを特徴とする内燃機関用ピストン。
【請求項2】
前記ピストンの頂面において凹部を設け、前記高熱伝導率層及び前記低熱伝導率層を前記凹部内に形成したことを特徴とする請求項1に記載の内燃機関用ピストン。
【請求項3】
前記高熱伝導率層の熱伝導率を150W/m・K〜400W/m・K、前記低熱伝導率層の熱伝導率を0.1W/m・K〜100W/m・K、前記ピストンの熱伝導率を100W/m・K〜150W/m・Kとしたことを特徴とする請求項1又は2に記載の内燃機関用ピストン。
【請求項4】
前記低熱伝導率層を、ジルコニア、アルミナ及びステンレスの少なくとも何れかから構成し、前記低熱伝導率層において、前記ピストンの本体側の気孔率を前記ピストンの頂面側の気孔率よりも大きくしたことを特徴とする請求項1乃至3のいずれか1項に記載の内燃機関用ピストン。
【請求項5】
請求項1乃至4の何れか1項に記載の内燃機関用ピストンを備えたことを特徴とする内燃機関。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−246802(P2012−246802A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−117811(P2011−117811)
【出願日】平成23年5月26日(2011.5.26)
【出願人】(390008822)アート金属工業株式会社 (39)