説明

再生粒子の製造方法

【課題】特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子を、安定して製造する。
【解決手段】古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕工程を経て、再生粒子を得る再生粒子の製造方法であって、前記燃焼工程が、第1燃焼工程と、第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼工程とを有する、少なくとも2段階の燃焼工程を有し、前記第1燃焼炉10として、前記主原料の供給から排出の移送方向について、主原料の温度を個別に制御可能な電気炉を使用し、主原料の温度が300℃以上〜500℃未満で燃焼処理を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、脱墨フロスを主原料として再生粒子を得る再生粒子の製造方法に関するものである。
【背景技術】
【0002】
紙パルプ工場の各種工程から排出される製紙スラッジは、無機充填剤及び無機顔料粒子をかなりの割合で含み、これらの製紙スラッジは、回収され、流動床炉やストーカー炉などの焼却炉で製紙スラッジ中の有機物を燃焼して製紙スラッジの減容化を図るとともに、エネルギーとして回収されている。
【0003】
しかしながら、製紙スラッジには、多量の無機物が含有されているため、燃焼しても多量の焼却灰(無機物)が残り、減容化にも限度がある。そこで、この焼却灰をセメント原料の助剤として活用することや、土壌改良材として活用すること等の努力もなされている。しかし、これらセメント原料の助剤や、土壌改良材のとしての焼却灰の使用量はわずかなものであり、結局、大部分の焼却灰は埋立て処分されているのが実情である。
【0004】
そこで、焼却によって熱エネルギーとして回収するだけでなく、製紙スラッジ中の無機物を製紙用填料、顔料、プラスチック用充填剤等として再利用することは、製紙業界において古紙利用率の向上とともに環境問題に関わる重要な改善課題である。
【0005】
しかしながら、製紙スラッジの焼却灰には燃焼されずに残った有機物がカーボンとして含まれるため白色度が低く、あるいは、無機物の焼結が進み、粒子径が不揃いで大きくなっており、そのままの状態では製紙用の填料や塗工用顔料、プラスチック用の充填剤等として使用するのに適さない。
そこで、特許文献1は焼却灰を再燃焼し、白色度を向上させてから使用する方法を開示している。
【0006】
しかしながら、特許文献1の焼却灰を再燃焼する方法の場合、未燃焼カーボンを完全に燃焼させるため再燃焼温度を500℃〜900℃に設定する必要があり、焼却灰の白色度は50%程度にまでしか向上せず、製紙用の填料や塗工用顔料として使用するに適するものとはならないことが知見された。また、再燃焼温度を900℃超に設定すると、焼却灰(無機物)が焼結、溶融し、極めて硬くなることが知見された。また、再焼却した焼却灰(以下、再焼却灰という)を填料として使用すると、この再焼却灰は非常に硬い性質をもつため、抄紙ワイヤーの摩耗進行が早く、抄紙ワイヤーの寿命が非常に短くなるため、実操業には使用できるものではなかった。また、この再焼却灰を塗工用顔料として使用すると、再焼却灰が非常に硬い性質であるため、摩耗による塗工設備の毀損が生じると共に、カレンダー処理を行ってもその塗工層表面の平滑性が劣るという問題が生じる。
【0007】
この点、再焼却灰を粉砕し、その粒子径を小さくして、摩耗の低減、平滑性の向上を図ることも考えられるが、内添填料として使用する場合には、抄紙時における歩留りが低いものになり、焼却灰自体がきわめて硬いため、粉砕のためのエネルギーコストが極めて高いものとなる。
【0008】
特許文献2では、製紙スラッジを、酸素含有ガスを注入した反応器内に供給し、250℃〜300℃、3000psig程度の加温加圧下で0.25時間〜5時間酸化して、製紙スラッジ中の無機物を製紙用の顔料として再生化する方法が提案されている。
【0009】
しかし、この方法は、製紙スラッジを液相のままで湿式空気酸化処理によるものであるため、有機物除去が十分でなく、また、得られた顔料の白色度が低く、粒子径も不揃いで、製紙用の填料や顔料として使用するには不適であり、しかも反応操作が複雑でコストが高いという問題がある。
【0010】
一方、特許文献3には、製紙スラッジをいぶし焼きしてPS炭とした後、さらにこれを内熱キルン炉で焼却して製紙用原料となる白土を生成させる方法が提案されている。しかし、この方法は製紙スラッジをいぶし焼きするため、製紙スラッジからエネルギーを有効に取り出すことができないばかりか、逆に投入エネルギーが必要になるという大きなデメリットがある。また、いぶし焼きにより、揮発分が除去され有機物が燃焼(酸化)し難い所謂「残カーボン」とよばれる状態となり、後工程での燃焼が困難になるとともに、残カーボンのために長い燃焼時間を掛けなければ高い白色度を得がたく、さらに、生成した白土も粒子径が不揃いで大きくなっており、また、内熱キルンで使用される重油バーナーからのカーボンやイオウ酸化物による汚染が生じ、製紙用顔料としては使用できないという問題がある。
【0011】
特許文献4のように、排水処理汚泥をロータリーキルン炉内で連続して乾燥・炭化・燃焼する方法が知られている。この方法において使用される排水処理汚泥は、種々の発生源を有する汚泥で構成されているため、発生源や発生量の変動により、得られる造粒・成形物質においても変動が生じる問題を有し、当該特許文献においては、燃焼に先立って、造粒・成形するのは、燃焼を均一に行うためであると考えられるものの、実施の形態に記載されている固形分濃度40%〜60%(換言すれば水分率60%〜40%)の状態でロータリーキルン炉内で連続して乾燥・炭化・燃焼する場合、汚泥の乾燥状態、炭化状態のいかんに係らず、キルン炉の回転によって汚泥粒子は強制的に処理が進行してしまう。従って、乾燥が不十分であると粒子内部に未燃分が多く残留しその結果燃焼が不完全となって白色度の低下を生じ、逆に過乾燥になると燃焼は完全となるが過燃焼を招き、得られた再生粒子の硬度が高くなり、この再生粒子を使用すると抄紙機でのワイヤー摩耗や紙を断裁する場合のカッター刃摩耗が生じやすくなるという問題を引き起こす。
【0012】
先行する特許文献1〜4に記載の製紙スラッジを原料とする場合における最も大きな問題点は、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿あるいは浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点である。
【0013】
これらの製紙スラッジのうち、例えば、抄紙工程でワイヤーを通過して流出したものは、紙力剤等が混入しており、また、抄紙工程における抄造物の変さらによって品質に変動が生じる。また、排水処理工程から回収した製紙スラッジには凝集剤が混入する他、工場全体の抄造物、生産量の変動、あるいは生産設備の工程内洗浄などにより大きな変動が生じる。
【0014】
パルプ化工程での洗浄過程から生じる製紙スラッジにおいては、チップ水分やパルプ製造条件で変動が生じる他、さまざまな填料、顔料とすることができない物質が混入し、品質変動が生じる。従って、全ての製紙スラッジを無選別に用いようとすると、製紙用の填料や塗工用顔料としての品質が大きく低下し、しかも品質の変動が極めて大きく、不安定なものとなる。
すなわち、従来公知の方法で得られる再生粒子は、製紙用の填料や塗工用顔料、プラスチック用等の充填剤として使用するには品質が適さず、品質安定性に欠けるものであった。
【特許文献1】特開平11−310732号公報
【特許文献2】特公昭56−27638号公報
【特許文献3】特開昭54−14367号公報
【特許文献4】登録3812900号公報
【発明の開示】
【発明が解決しようとする課題】
【0015】
本発明が解決しようとする主たる課題は、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子を、安定して製造することにある。
本発明者らは、かかる課題に対し、特開2008−127704号において、紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕工程を経て、再生粒子を得る再生粒子の製造方法であって、前記乾燥と燃焼工程が、前記脱水後の原料の乾燥と燃焼を一連で行う先の第1燃焼炉と第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼炉を有する、少なくとも2段階の燃焼工程を有し、その後に粉砕し、再生粒子を得る操作を有する再生粒子の製造方法を提案した。
【0016】
さらに、その具体的な提案内容は、第1燃焼炉(内熱キルン炉)内の酸素濃度が0.2%〜20%となるように、500℃〜650℃の熱風を吹き込み、第2燃焼炉では、内熱キルン炉からの燃焼物を、550℃〜750℃の温度で燃焼するものである。
【0017】
しかしながら、古紙パルプを製造する脱墨工程においてパルプ繊維から分離された脱墨フロスは、本発明が得ようとする再生粒子の原料となる微細な無機微粒子を含有すると共に、古紙パルプとして利用が困難な微細繊維や塗工紙に多用される有機高分子であるラテックス、印刷により付与されたインキ成分を多く含み、燃焼処理においては脱墨フロスそのものが自ら燃焼反応(酸化)を生じ燃焼するため、先の出願で提案した熱風による加熱処理以上の発熱が生じ、原料の過剰燃焼を引き起こす問題がみられることを知見した。
【0018】
過剰な燃焼は、次記の問題を招いている。(1)高温燃焼により原料が黄変化し白色度の低下を招く。(2)原料の溶融によりゲーレナイト等の硬質物質(参考:特願2007−22377)を生じやすくなり、抄紙設備でのワイヤー摩耗度が上昇する。(3)原料の溶融による凝集体を形成するため、後の微粉砕工程において粉砕エネルギーの増加、処理効率が低下する。(4)原料の表面が高温に晒され、原料内部よりも先に溶融されるため、原料内部まで燃焼反応(酸化反応)が進まず、有機物(カーボン)が残留する(結果として白色度の低下を招く)。
【0019】
本発明者らは、前記問題を解決する手段として、過剰な燃焼をコントロールする方策に着目し、鋭意検討を行った結果、第1次燃焼炉において、燃焼温度を原料である脱墨フロスが自燃せず、脱墨フロス中に含有される有機成分がガス化し発生する燃焼ガス(可燃焼ガス)を放出するに必要なだけの第1次燃焼炉の炉内温度に留め、有機成分ガスの燃焼反応(酸化反応)のみを促進させることが、前記問題を解決できることを見出し、本発明を完成するに到ったものである。
【0020】
さらに、第1次燃焼炉内において、脱墨フロス中に含有される有機成分を炭化させないで、有用な燃焼ガス(可燃焼ガス)を発生させるために必要な酸素濃度0.2%〜20%を確保するとともに、自燃が生じ易い燃焼ガスの冷却化を図り、脱墨フロスの過剰燃焼を防止するため、熱風供給に加え、原料となる脱墨フロスの含有水分を高める方策が有効であることを見出している。本発明者らの知見によると、第1次燃焼炉内の酸素濃度0.2%〜20%を確保することは、燃焼が促進される炉内環境となるため、脱墨フロスの過剰燃焼が発生しやすくなる。
【0021】
しかし、原料となる脱墨フロスの脱水後の水分を、40%以上、望ましは90%未満、より好適には40%〜70%、最適には45%〜70%の高含水状態で第1次燃焼炉内に供給することが、脱墨フロスの過剰燃焼を防止するために適していることを知見した。その理由は、第1次燃焼炉内に高含水状態で供給することで、第1次燃焼炉内において水の蒸発により、炉内温度が低下し、脱墨フロスの自燃を抑え、発生する燃焼ガス(可燃焼ガス)のみの発生を促進し、過剰な第1次燃焼炉内温度の上昇を抑制することができるものと考えられる。
他方、より好適には、第2次燃焼炉内の内壁に、その一端側から他端側に向けて、螺旋状リフター及び/または軸心と平行な平行リフターを配設することで、原料の均一な燃焼と、品質の均一化を図ることができる。
【0022】
先に述べた発明者等の知見によると、第1次燃焼炉では、低い燃焼温度で原料脱墨フロスを燃焼反応に晒し、均質な第1次燃焼炉出口原料を得たのち、残留する白色度を低下させる原因となる炭素分をできる限り燃焼させる必要があるため、原料を緩慢に燃焼させる必要があり、可能な限り均一な燃焼を連続的に実施するには、第2次燃焼炉内での原料搬送速度を適宜コントロールする方策が最も好適と考えられ、その手段として、リフター設備を用い、原料の搬送速度を調整可能にすることができることも見出した。しかるに、公知のリフターは鉄素材で一般に製造されているため、鉄分がコンタミとして原料中に含有され、鉄の酸化により白色度を低下させる問題を招く。そこで、本発明者らは、ステンレス製のリフターを第2次燃焼炉に設けることで、前記鉄の酸化問題を生じることなく、白色度の低下がないなど、高品質の再生粒子を製造できる技術を見出した。
【0023】
なお、第2次炉の構造としては、外熱または内熱キルンどちらも適宜採用することができる。外熱キルンはバーナーの直火が原料に直接晒されないため、過焼を防止でき、均一な焼成品質(高い白色度が得られる)一方、内熱キルンは、内部に貼り付けた耐火物が断熱性を持つと同時に遠赤外線を放出し、少ない熱量で加温できるメリットがある。本発明の課題である、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子を、安定して製造するには、第2燃焼炉においては、緩慢に未燃物を残さないように満遍なく加熱させる必要が有るため、好適には、内部に貼り付けた耐火物が断熱性を持つと同時に遠赤外線を放出し、少ない熱量で加温できる内熱キルン炉の使用が好ましい。第2燃焼炉の構造については、これら諸条件を鑑みて適宜選択できるが、いずれに方式についてもリフターを設けることが最適である。
【0024】
そこで、本出願人は、特願2008−96768号として、第1燃焼工程を300℃以上〜500℃未満で燃焼処理を行うことを提案し、その有効性は十分に確認済みである。
【0025】
しかしながら、本発明者らのその後の研究によれば、特願2008−96768号の具体例に従って、第1燃焼炉として熱風による燃焼炉を使用した場合、次記の課題が残されていることが明らかとなった。
【0026】
すなわち、図3に概略的に示した燃焼炉3に、原料4を第1側Xから装入し、反対の第2側Yから熱風1を吹込み、排ガス2は第1側Xから排気させる形態の場合、概略、温度勾配は第1側Xから第2側Yに向かって低下する。しかし、原料中には複数の成分が含有されるので、一部の成分が着火温度に達すると着火する場合があり、その火が排ガス2に同伴して飛び火し、その飛び火個所で部分的な着火燃焼が生じ、表面部分のみが高温となり、内部は低温のままである燃焼ムラが生じる。かかる燃焼ムラがある状態で最終的に排出される第1次燃焼品を、第2燃焼炉に送って、じっくり燃焼させるとしても、本発明者らは、第2燃焼品として均一な燃焼品を得ることができないことを知見した。
【0027】
この原因をさらに追求したところ、脱墨フロスの燃焼過程では、図4の吸熱−発熱特性線図に示すように、約300℃〜400℃の温度範囲内において、典型的に3つの発熱ピークP1〜P3がみられる(時として4つの場合がある)。そして、約600℃で炭酸カルシウムの分解が生じ、吸熱反応により発熱特性は急激な低下傾向を示す。
【0028】
この特性に注目すると、脱墨フロス中の有機成分のそれぞれが発熱ピークP1〜P3で「順次」燃焼することを示している。したがって、「順次」燃焼する成分について、炉内で順次燃焼させ、その成分を「順次」揮発させて炉内から排出するようにすれば、次の燃焼成分は確実に燃焼し、未燃が生じないものとなる。
【0029】
しかし、図3の概略図からも推測できるように、熱風を吹き込む燃焼炉の場合、熱風が比較的速い速度で炉内を通過するので、被燃焼物の表面層部分の温度勾配が小さくなる傾向にある。また、被燃焼物の内部の温度勾配も大きいものではない。そして、前述のように、被燃焼物の表面層部分と内部との温度差が大きいものとなる。
【0030】
さらに、脱墨フロス中の有機成分ごとの燃焼に伴う揮発速度は同一でなく、かなりの速度差が認められるために、当該成分の燃焼が生じても、他の有機成分の揮発が優先してしまうことがあり、当該成分が残留する傾向になることがある。その結果、当該成分が分解されないまま、残留し、最終的に得られる製品において白色度が低いものとなるなどの難点がある。
【0031】
なお、以上の現象は、種々の実験結果から推測されるものであるが、その同一の現象が生じていることまでの確認は、対象品の性質上、そして燃焼理論が未確立かつ複雑なために取れていないことを断っておく。
【課題を解決するための手段】
【0032】
したがって、本発明の課題は、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子を、安定して製造することを主たる課題とし、特に、高品位な再生粒子を安定して製造することにある。
ここに提案する本発明は、次のとおりである。
〔請求項1記載の発明〕
古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕工程を経て、再生粒子を得る再生粒子の製造方法であって、
前記燃焼工程が、第1燃焼工程と、第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼工程とを有する、少なくとも2段階の燃焼工程を有し、
前記第1燃焼炉として、前記主原料の供給から排出の移送方向について、主原料の温度を個別に制御可能な電気炉を使用し、主原料の温度が300℃以上〜500℃未満で燃焼処理を行う、ことを特徴とする再生粒子の製造方法。
【0033】
〔請求項2記載の発明〕
前記電気炉が、本体が横置きで中心軸周りに回転するキルン炉であり、前記移送方向のゾーンごと、投入電力を制御可能な電気加熱手段を有する請求項1記載の再生粒子の製造方法。
【0034】
〔請求項3記載の発明〕
前記電気炉は、少なくとも前記主原料の移送路に面する部分に耐火材を設けない請求項1または2記載の再生粒子の製造方法。
【0035】
〔請求項4記載の発明〕
前記移送方向のゾーンが少なくとも3ゾーン形成されている請求項4記載の再生粒子の製造方法。
【0036】
〔請求項5記載の発明〕
前記電気炉内の酸素濃度が0.2%〜20%となる燃焼する請求項1〜5のいずれか1項に記載の再生粒子の製造方法。
【0037】
〔請求項6記載の発明〕
第2燃焼工程での第2燃焼炉が、本体が横置きで中心軸周りに回転する内熱キルン炉であり、前記第1次燃焼電気炉にて生じる燃焼排ガスを、第2次炉の助燃ガスとして用いる請求項1〜6のいずれか1項に記載の再生粒子の製造方法。
【発明の効果】
【0038】
本発明によれば、特に製紙用の填料または塗工用顔料として必要な特性を備えた再生粒子を、安定して、すなわち過剰燃焼を回避しながら製造することができる。
本発明においては、主原料の温度が300℃以上〜500℃未満で燃焼処理を行うことで、過燃焼を防止でき、しかも、主原料の供給から排出の移送方向について、主原料の温度を個別に制御可能な電気炉を使用して、原料の供給側から排出側に向かって、温度を高めるようにすることにより、原料(被燃焼物)の表層部分及び内部に対し、供給側から排出側に向けて大きい温度分布を確実に与えることにより、原料(被燃焼物)中の有機成分を順次燃焼及び揮発させ、もって、製品の白色度が高く、かつムラがなく、前述の「硬質物質」の発生も抑制できるなどの利点がもたらされる。
【発明を実施するための最良の形態】
【0039】
次に、本発明の実施の形態の説明に先立ち、本発明の位置付けについて説明する。
たとえば、製紙用スラッジを燃焼する場合、(1)特開2003−119695号公報記載の発明では、乾燥物を炉内の酸素濃度が0.1体積%以下となる実質的に酸素が存在しない貧酸素状態で、具体的には間接加熱炉(外熱燃焼炉)によって乾燥及び炭化処理する。次に炭化物に含まれる有機物由来の炭素を酸化させて脱炭素する、具体的には間接加熱炉によって白化処理する方法が提案されている。また、同発明は、後者の白化処理については内熱ロータリーキルン炉を使用することも教示している。
【0040】
他方、本出願人は、(2)特開2002−275785号として、炭化後に再燃焼のためにロータリーキルン炉を使用することも教示している。
【0041】
さらに、本出願人は、(3)特許3808852号として、「原料スラッジとして脱墨スラッジを用い、これを乾燥させる乾燥工程と、前記乾燥させた脱墨スラッジをサイクロン型燃焼炉の炉上部から炉内に供給し、旋回下降させつつ燃焼させ未燃分を含む一次燃焼物を得る一次燃焼工程と、前記サイクロン型燃焼炉に連通し、その下端からの未燃分を含む一次燃焼物を受けて、機械的な攪拌により酸素との接触を促進させながら、前記一次燃焼工程の燃焼熱を利用して所定の白色度となるまで燃焼させる二次燃焼工程とを含む、ことを特徴とする脱墨スラッジからの白色顔料または白色填料の製造方法。」を提案した。
【0042】
また、(4)特開2004−176208号においては、「塗工紙製造工程の排水処理汚泥」から填料を製造するに際し、成形汚泥を「一つのロータリーキルン炉内で乾燥、炭化、燃焼」を行うことを提案している。
【0043】
上記(1)(2)及び(4)は、古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とするものではなく、前述の製紙スラッジを主原料とするものである。そして、得られる再生粒子は、本発明のような、再生粒子「凝集体」とは異なるものと考えられる。
【0044】
一方、(3)の方法によれば、本発明によって得られるものと同様な再生粒子を得ることができる。しかし、同方法ではサイクロン式流動燃焼炉を使用し、乾燥物を燃焼し、次いで二次燃焼を行っている。
【0045】
しかし、サイクロン式流動燃焼炉自体の形式に由来するものと考えられるが、サイクロン式は数十〜数百ミクロンの原料と空気を旋回流として供給口から供給し、空気の旋回作用により空気と効果的に混合されながら燃焼させるため、原料に含有される微粒子が、排ガスとともに系外に排出され製品歩留りが低下する問題、主原料である脱墨フロスの燃焼時間(加熱時間)が短時間であることにより未燃焼分が生じやすい問題、最終的に得られる燃焼物の品質(特に形状)が一定でなく、燃焼物の白色度もバラツキが生じる場合があることが知見された。
【0046】
そこで、本発明者は先の述べたように、特願2008−96768号として、第1燃焼工程を300℃以上〜500℃未満で燃焼処理を行うことを提案し、その品質の安定した再生粒子を安定して製造できる有効性は十分に確認済みである。
【0047】
本発明は、さらなる改良として、主原料の供給から排出の移送方向について、主原料の温度を個別に制御可能な電気炉を使用して、原料の供給側から排出側に向かって、温度を高めるようにすることにより、原料(被燃焼物)の表層部分及び内部に対し、供給側から排出側に向けて大きい温度分布を確実に与えることにより、原料(被燃焼物)中の有機成分を順次燃焼及び揮発させ、もって、製品の白色度が高く、かつムラがなく、前述の「硬質物質」の発生も抑制できる製造方法を提供するものである。
【0048】
第1次燃焼炉における被燃焼物の燃焼時間(滞留時間)が30分を超え90分以下、より好適には40分〜80分の、最適には50分〜70分が望ましい。第1次燃焼炉では、脱水後の原料の乾燥及び燃焼を行うほか、脱水後の原料の乾燥を別の乾燥機により行い、専ら燃焼のみを行うものでもよい。
【0049】
次に、第1燃焼炉から得られる燃焼物を再度燃焼する第2燃焼炉では、燃焼時間(滞留時間)が、60分以上の、より好適には60分〜240分、特には90分〜150分、最適には120分〜150分が望ましい。第2燃焼炉は内熱の燃焼炉のほか、外熱による第2燃焼炉を用いることができる。特に、本体が横置きで中心軸周りに回転するキルン炉を好適に使用でき、内熱キルン炉のほか、外熱(間接加熱)キルン炉、特に燃焼温度を容易に調整可能な外熱電気炉も採用できる。
【0050】
また、後に図面と共に説明する実施の形態では、第1燃焼炉として外熱電気キルン炉、第2燃焼炉として内熱キルン炉を選択し詳説するが、ロータリーキルン炉に限定されることなく、流動床炉、ストーカー炉、サイクロン炉、半乾留・負圧燃焼式炉等、公知の装置を用いることもできる。また、第1燃焼炉として外熱電気キルン炉のヒータからの分類としては、抵抗加熱炉、誘電加熱炉、直通電電気炉などを使用できる。さらに、ロータリーキルン炉は、主にその傾斜勾配による重力移送原理を利用するものであるが、移送手段として、後述のリフターを利用できるほか、炉体が回転しない形式のものを使用でき、その場合の移送手段としては、炉体の長手方向に沿って設けた一つ以上のスクリュウコンベアや、一つ以上のパドルコンベア、あるいはプッシャーなどを利用できる。
【0051】
本発明において好適な態様は、先の第1燃焼炉を外熱電気炉で行い、後の第2燃焼炉としての好適には内熱(たとえば熱源として重油の他、第1燃焼炉にて回収した燃焼ガス)で行うものである。さらに、この第2燃焼炉としては電気を熱源にした間接加熱方式の燃焼炉等の公知の燃焼方法を採用することもできる。
【0052】
第2燃焼炉として好適に用いることができる内熱キルン炉により燃焼すると、その端部から燃焼物を所定の十分な滞留時間をもって、他端部の排出口から排出でき、さらに内部に貼り付けた耐火物が断熱性を持つと同時に遠赤外線を放出し、少ない熱量で加温できるので、燃焼が均一なものとなり、燃焼のバラツキを生じさせないものとなる。さらに、キルン炉内壁の回転による摩擦によって燃焼物が緩やかに攪拌されるため、微粉化を生じにくい。その結果、最終的な燃焼物の品質及び形状が安定したものとなるのである。
【0053】
本発明者等の知見では、第1燃焼炉においては300℃以上〜500℃未満の従来に比して低温で加温操作することにより、原料中から、原料に含有される有機物が燃焼ガス化し、燃焼ガスを燃焼(酸化)させることが、得られる再生粒子の品質安定化、白色度向上に対する寄与が大きいことを見出している。
上記のとおり、乾燥、燃焼の工程を、好適には外熱電気キルン炉と内熱キルン炉にて、少なくとも2段階の燃焼炉により行うことで、均一で安定的な再生粒子が得られる。
【0054】
好適な燃焼炉として用いられるロータリーキルン炉は、内部耐火物を円周状でなく、六角形や八角形とすることで燃焼物を滑らすことなく持ち上げて攪拌することができるが、現実には、キルン炉として円筒形であり、燃焼物攪拌用のリフターを設けることが、原料の均一な燃焼と、品質の均一化を図ることができる点で最適である。これは、第1燃焼炉及び第2燃焼炉において、本発明に従って低温でじっくり原料全体を燃焼することを意図することとも関係すると考えられる。
【0055】
ここで、本発明者らが好適な再生粒子を得るに当り、最も注力した燃焼炉の選択について説明する。
従来から慣用的に用いられてきた燃焼炉は、ストーカー炉(固定床)、流動床炉、サイクロン炉、キルン炉の4種に大別でき、本発明者らは、それぞれの焼却炉で再生粒子の製造の検討を重ねたところ、次記の事項が明らかとなった。
・ストーカー炉(固定床)については、脱墨フロスの燃焼度合い調整が困難であり、燃焼物が不均一である上に、灰分の多い脱墨フロスの燃焼では火格子間のクリアランスから落塵を生じるため適さない。火格子を通し燃焼物の下に空気を吹上げ燃焼させるため、炭酸カルシウムなどが飛灰となり排ガスとともに排ガス設備へ送られるため、歩留の低下が問題となる。
【0056】
・流動床炉については、炉内の流動媒体に珪砂のような粒子状の流動媒体を使用するため、珪砂が再生填料へ混入し品質の低下を招く問題を有する。均一な攪拌ができない。硅砂を流動層混合して燃焼させた後、硅砂と燃焼物を分離し、硅砂は燃焼炉へ戻し燃焼物のみを取り出すが、燃焼物も硅砂と同程度の粒径が生じるため分離できない。硅砂と浮遊した状態で燃焼させているため、燃焼の度合い調整が困難であり、品質のばらつきが発生する。燃焼炉のストーカ(階段状)を、所定幅で、燃焼物が通過しながら燃焼するため灰の攪拌が不十分で幅方向で燃焼にバラツキが発生する。また、硬度の高い珪砂との摩擦、衝突により燃焼物が微粉化され飛灰となって系外へ排出され歩留りが低下する。
【0057】
・サイクロン炉については、炉内を一瞬で通過するため燃焼物中の固定炭素を十分に燃焼できず白色度の低下に繋がる、さらに、風送により細かい粒子はサイクロンで分離されず排ガスと一緒に排ガス処理工程に回るため歩留が低下する。
【0058】
前記諸問題について鋭意検討を重ねた結果、燃焼炉としてはキルン炉にて燃焼させることが最も好適な燃焼手段として選択され、さらに以下の理由から、本発明において最適な実施の形態である、先の第1燃焼炉を外熱キルン、後の第2燃焼炉を内熱キルンとすることは次記の理由から好適であることを見出している。
【0059】
外熱キルン炉は、キルン炉の外側に加熱設備を設けた構成となるため、キルン炉の構造が複雑になるとともに、燃焼物を間接的に乾燥、燃焼させるゆえに多量の熱源が必要になり、乾燥・燃焼効率が低くなり、生産性が悪いとも評価できる。しかし、製品の白色度を高め、かつムラがなく、前述の「硬質物質」の発生も抑制することの観点からは、きわめて有効である。
【0060】
また、外熱キルン炉を2次燃焼炉に使用した場合には、残カーボンを燃焼するにおいて、炉内温度を高温で十分な燃焼時間を保持することが必要であり、また外熱により炉の外壁部分は高温に晒されるものの、炉の中央部分は低温になりやすい傾向があるため、燃焼熱を外熱キルン炉内に均一に伝えることが困難であり、さらに炉内に断熱材を有さないため炉全体の温度の変動を抑えることが困難であるため、燃焼物の過燃焼や燃焼ムラが生じやすい問題を呈する。
【0061】
さらに、炉の中央部分は低温になりやすい傾向があるため燃焼熱が十分に燃焼物の芯部まで伝わらない問題が発生し、製品段階で白色度の低下やバラツキが生じ、得られる燃焼物の品質の均一化が困難な問題が生じる。
以上の観点からも、第1燃焼炉を外熱電気キルン炉、後の第2燃焼炉を内熱キルン炉とすることが望ましいのである。
【0062】
次に、本発明の実施の形態の一例を、図面を参照しながら説明する。
〔概要〕
本形態の再生粒子の製造設備フローは、脱水工程、乾燥・燃焼工程、粉砕工程を有するが、さらに、脱墨フロスの凝集工程または造粒工程や、各工程間に分級工程等を設けてもよい。
【0063】
図1に、再生粒子の製造設備フローの一部構成例(乾燥・燃焼工程、及び燃焼工程を含む設備例)を示した。本設備には、各種センサーが備わっており、被燃焼物や設備の状態、処理速度のコントロール等を行っている。
【0064】
図示しない、古紙パルプを製造する脱墨工程においてパルプ繊維から分離された脱墨フロスは、種々の操作を経て、同じく図示しない公知の脱水設備により脱水される。脱水後の原料は、40%以上、望ましは90%未満、特には45%〜70%、より好適には50%超〜60%の高含水状態とすることが望ましい。
【0065】
かかる脱水後の原料Mは、望ましくは、粉砕機(または解砕機)により40mm以下の粒子径に粉砕しておく。かかる原料Mが貯槽5から切り出されて、本体が横置きで中心軸周りに回転する外熱キルン炉である、第1燃焼炉(電気炉)10の一方側から熱媒体を流通させる装入路を有する装入機11により装入される。第1燃焼炉10の他方側には排出チャンバー18が設けられている。
【0066】
第1燃焼炉10は、横向きであり、好ましくは下向き傾斜とされ、内筒13が回転駆動モータ12によって、回転される。内筒13の外周には外筒14が設けられ、それらの間に、被燃焼物の移送方向に沿って、そのゾーンごと、投入電力を制御可能な電気加熱手段15,15…が設けられている。図示例では、A〜Dの4ゾーンに分割配置されている。
【0067】
第1燃焼炉10は、少なくとも主原料(被燃焼物)の移送路に面する部分に、放射熱による過剰燃焼の原因となる耐火材を設けない、したがって、実施の形態では内筒13には耐火材を設けないで、鉄皮のみで構成されている。
【0068】
また、移送方向のゾーンごと、炉内の排ガスを排出する排ガス手段16,16…が設けられている。排ガス手段16,16…の分割ゾーンは、A〜Dの4ゾーンごと対応しているのが望ましいが、必ずしも対応しなくともよい。これらのゾーンは3以上であるのが望ましい。特に、図4からも推測できるように、主原料(被燃焼物)の燃焼温度が、300℃〜400℃の温度範囲内で少なくとも1つの分岐をもっている、特に2以上の分岐をもっているのが望ましい。
【0069】
連続運転操作中の温度分布としては、たとえばAゾーンが180℃〜250℃、Bゾーンが220℃〜320℃、Cゾーンが300℃〜380℃、Dゾーンが350℃〜430℃の温度範囲として選択でき、装入側から排出側に向かって温度が高まる温度勾配を取ることができる。
【0070】
ここで、第1燃焼炉10内は、酸素濃度が0.2%〜20%となるようにするのが望ましい。炉内の燃焼温度としては、300℃〜500℃未満であればよい。
【0071】
先にA〜Dの4ゾーンの温度例を示したが、Aゾーン〜Bゾーンの装入側温度は、乾燥を主目的とする温度であり、燃焼ゾーンの温度としては、300℃以上500℃未満が必要なのである。この意味で燃焼温度としては、380℃〜500℃未満、特に380℃〜450℃が望ましい。
【0072】
排ガス手段16,16…からの排ガス(燃焼ガス)25は、第2燃焼炉20内に装入される。
排ガスには、微量ながらタール分も含んでいるため、必要に応じ、ガス冷却器等(図示せず)により冷却される。このとき、排ガス中に含有される水蒸気の凝集により、タール成分はガス冷却器などの設備に付着することなく分離される。タール分を分離することで、第2燃焼炉において排ガスを燃焼ガスとして有効に利用できると共に、第2燃焼炉までの配管内でタール成分による汚れや、詰まりなどの問題を回避できるとともに、含有する水分による燃焼時のエネルギー損失をカバーできる。タール成分は、別途燃料として有効に利用できる。
【0073】
第1燃焼炉10において乾燥及び燃焼処理を経た燃焼物は、本体が横置きで中心軸周りに回転する内熱キルン炉である、第2燃焼炉20に装入される。この装入される燃焼物の粒径としては、40mm以下が好適である。第2燃焼炉20としては、第1燃焼炉10と同様なリフター構造を有する(ただし、排ガス手段16は不要である。)ものを使用できる。いずれにしても、炉の内壁に設けられた断熱材にて炉内全体の温度を十分な高温で保持コントロールが容易で、遠赤外線を放出し、少ない熱量で加温できる内熱燃焼炉が好適であり、したがって、電気ヒーターにより間接的に第1燃焼炉10から得られる燃焼物を、いわばじっくり燃焼させる内熱式の第2燃焼炉20であることが望ましい。
【0074】
第2燃焼炉20においては、酸素濃度を調整する空気あるいは酸素の供給機構(図示せず)を用いると共に、ガスと重油の混焼バーナーを用いることで、排ガス手段16,16から得た排ガス(燃焼ガス)を高効率に利用でき、エネルギー損失の低減を図ることができる。ガスと重油の混焼バーナー21を用いた熱風炉22により、燃焼物の十分な燃焼を図るには、供給する空気中の酸素濃度が5%〜20%、望ましくは10%〜20%、特に望ましくは10%〜15%となるように燃焼するのが望ましい。第2燃焼炉20内での燃焼温度としては、550℃〜780℃、望ましくは600℃〜750℃が望ましい。また、第2燃焼炉内での滞留時間は60分以上、より好適には60分〜240分、特には90分〜150分、最適には120分〜150分が、残カーボンを完全に燃焼させるに望ましい。
【0075】
燃焼が終了した再生粒子は、冷却機34により冷却された後、振動篩機などの粒径選別機36により選別され、湿式粉砕機等を用いた粉砕工程で目的の粒子径に調整された燃焼物が燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
【0076】
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものを原料とした燃焼物であってもよい。
【0077】
以上、概要を説明したが、その詳細及び応用例などを以下に説明する。
〔原料〕
古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。
そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、再生粒子の製造方法において未燃物の変動要因となるビニールやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。従って、脱墨フロスは、工場排水工程や製紙原料調成工程等、他の工程で発生する製紙スラッジと比べ、極めて安定した品質の再生粒子を製造するための原料となる。
【0078】
本発明で云う脱墨フロスとは、古紙パルプを製造する古紙処理工程において、主に、古紙に付着したインクを取り除く脱墨工程で、パルプ繊維から分離されるものをいう。
【0079】
〔脱水工程〕
脱墨フロスの更なる脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、脱墨フロスは、脱水手段たる例えばスクリーンによって、脱墨フロスから水を分離して脱水する。スクリーンにおいて、水分を90%〜97%に脱水した脱墨フロスは、例えばスクリュープレスに送り、さらに所定の水分に脱水することが好適である。
【0080】
脱水後の原料の水分率が70%を超えると、第1燃焼炉における乾燥・燃焼処理温度の低下を招き、加熱のためのエネルギーロスが多大になるとともに、原料の燃焼ムラが生じやすくなり均一な燃焼を進めがたくなる。さらに、排出される排ガス中の水分が多くなり、ダイオキシン対策における再燃焼処理効率の低下と、排ガス処理設備の負荷が大きくなる問題を有する。また、脱水後の原料の水分率が40%未満と低いと、脱墨フロスの過剰燃焼の原因となる。また、脱水処理エネルギーの削減にも寄与する。
【0081】
以上の説明で明らかにしたように、脱墨フロスの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき脱墨フロスのフロックが硬くなりすぎるおそれがない。脱水処理においては、脱墨フロスを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子の白色度を下げる問題を引き起こす。
【0082】
脱墨フロスの脱水工程は、本発明における再生粒子の製造工程に隣接することが生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行った物を搬送することも可能であり、トラックやベルトコンベア等の搬送手段によって定量供給機まで搬送し、この定量供給機から乾燥・燃焼工程に供給する。
【0083】
かかる脱水後の原料10は、第1燃焼炉に供給する操作において、望ましくは、粉砕機(または解砕機)により平均粒子径40mm以下の粒子径に揃えることが好ましく、より好ましくは平均粒子径が3mm〜30mm、さらに好ましくは平均粒子径が5mm〜20mmの範囲に成るように調整することが好ましく、好適には粒子径が50mm以下の割合が、70重量%以上に成るように粉砕しておくことがより好ましい。脱墨フロス中に含まれる炭酸カルシウムの熱変化を来たさない燃焼処理を図るため、原料の粒子径は均一であることが好ましいところ、平均粒子径が3mm未満では過燃焼になりやすく、40mmを超える平均粒子径では、原料芯部まで均一に燃焼を図ることが困難な問題を有するためである。
【0084】
前記平均粒子径と粒子径の割合は、攪拌式の分散機で充分分散させた試料溶液を用いて測定した。各燃焼行程における粒子径は、JIS Z 8801−2:2000に基づき、金属製の板ふるいにて測定した。
【0085】
〔第1燃焼工程〕(乾燥、燃焼工程)
かかる原料Mが貯槽5から切り出されて、第1燃焼炉10に供給される。第1燃焼炉10は本体が横置きで中心軸周りに回転する外熱電気キルン炉方式からなり、外熱電気キルン炉10の一方側から装入機11により装入される。一方側から装入され、外熱キルン炉10の回転に伴って前記他方側に順次移送される原料の乾燥及び燃焼を行うようになっている。
【0086】
すなわち、本乾燥・燃焼工程は、脱水物を、本体が横置きで中心軸周りに回転する、外熱キルン炉によって乾燥・燃焼することにより、供給口から排出口に至るまで、緩やかに乾燥と有機分の燃焼が行え、燃焼物の微粉化が抑制され、凝集体の形成、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。また、乾燥を別工程に分割し、吹き上げ式の気流乾燥機を設けることもできる。
【0087】
ここで、外熱キルン炉10内の酸素濃度は0.2%〜20%が好ましく、より好ましくは1%〜17%、最も好ましくは7%〜15%となるようにするのが望ましい。
【0088】
酸素濃度は、原料の燃焼(酸化)により消費されるため、燃焼の状況により酸素濃度に変動を生じる。酸素濃度が過度に低いと、十分な燃焼を図ることが困難である。燃焼炉内の酸素は、原料の燃焼等によって消費され酸素濃度が低下するが、燃焼させるための熱風発生装置等により、空気などの酸素含有ガスを送風し、あるいは排気することで、酸素濃度を維持、調節可能であり、さらに酸素含有ガスを送風し、あるいは排気することで、燃焼炉内の温度を細かく調節可能になり、原料をムラなく万遍に燃焼することができる。
【0089】
第1燃焼炉においては、容易に燃焼可能な有機物を緩やかに燃焼させ、燃焼しがたい残カーボンの生成を抑える目的から燃焼温度300℃〜500℃未満の温度範囲で燃焼することが好ましい。過度に温度が低いと、有機物の燃焼が不十分であり、過度に温度が高いと過燃焼が生じ、炭酸カルシウムの分解による酸化カルシウムが生成し易くなる。さらに、熱風の温度が500℃以上の場合は、硬い・柔らかい等さまざまな性質を有する燃焼物の粒揃えが進行するよりも早く乾燥・燃焼が局部的に進むため、粒子表面と内部の未燃率の差を少なく均一にすることが困難になる。
【0090】
なお、本発明における第1燃焼炉の燃焼温度300℃〜500℃としては、キルン外側鉄皮表面の温度を、公知の非接触放射温度計により、第5図の9時又は3時の位置(中央位置)を睨んで測定することにより得られるものである。キルンの回転により、装入物Mがほぼ中央位置まで持ち上げられるため、その内容物の温度との相関が高いものとなるから、その位置での温度測定が有効なのである。また、第2燃焼炉の燃焼温度は、公知の非接触放射温度計により炉内の内容物を睨むことにより測定可能である。
【0091】
A〜Dゾーンの温度の制御に際しては、電気ヒータの設置ゾーンを区画し実質的に遮蔽し、各電気ヒータへの投入電力量をコントロールすることに行うことができる。なお、破損を生じない範囲で、キルンの外壁の冷却を図りながら、温度コントロールも可能である。
【0092】
第1燃焼炉は、脱墨フロス中に含有される燃焼容易な有機物を緩慢に燃焼させ、残カーボンの生成を抑制するため、好適には前記条件で30分〜90分の滞留時間で燃焼させることが好ましい。より好ましくは、40分〜80分が有機物の燃焼と生産効率の面で好ましい。最も好ましくは、50分〜70分の範囲が恒常的な品質を確保するために好ましい。燃焼時間が30分未満では、十分な燃焼が行われず残カーボンの割合が多くなる。燃焼時間が90分を超えると、原料の過燃焼による炭酸カルシウムの熱分解が生じ、得られる再生粒子が極めて硬くなる。
【0093】
特に、次工程の第2燃焼工程内に供給する燃焼物の未燃率を、2質量%〜20質量%に乾燥・燃焼することが好ましく、より好ましくは未燃率を、5〜17質量%、特に好ましくは未燃率を、7質量%〜12質量%にすることが望ましい。
【0094】
未燃率を、2質量%〜20質量%にすることで、第2燃焼工程での燃焼を時間をかけ効率よく行うことができるとともに、内熱炉における安定した加熱により、硬度が低く白色度が80%以上、少なくとも70%以上の高白色度の燃焼物を得ることができる。未燃物が2質量%未満では、先の第1次燃焼炉におけるエネルギーコストが高いものとなるとともに、燃焼物の硬度が比較的高くなっている場合があり、第2燃焼炉出口における白色度の低下等の品質低下を来たす場合がある。
【0095】
〔第2燃焼工程〕
内熱キルン炉10において乾燥及び燃焼処理を経た燃焼物は、移送流路を通して、本体が横置きで中心軸周りに回転する外筒24を有する第2燃焼炉としての内熱キルン炉20に装入される。
この第2燃焼炉20(第1燃焼炉10も以下に説明する同様の構造とすることができる。その構造は図示していない。)では、燃焼物を、内熱で加温しながらキルン炉内壁に設けたリフターにより、原料の燃焼炉内での搬送を制御し、緩慢に燃焼させることで、さらに均一に未燃分を燃焼する。
【0096】
第2燃焼炉20における燃焼においては、第1燃焼炉10で燃焼しきれなかった残留有機物、例えば残カーボンを燃焼させるため、第1燃焼炉において供給される原料の粒子径よりも小さい粒子径に調整された燃焼物を用いることが好ましい。乾燥・燃焼工程後の燃焼物の粒揃えは、平均粒子径が10mm以下となるように調整するのが好ましく、さらに好適には平均粒子径1mm〜8mmとなるように調整するのがより好ましく、平均粒子径を1mm〜5mmとなるように調整するのが特に好ましい。
【0097】
第2燃焼炉20入り口での平均粒子径が1mm未満では、過燃焼の危惧があり、平均粒子径が10mmを超える粒子径では、残カーボンの燃焼が困難であり、芯部まで燃焼が進まず得られる再生粒子の白色度が低下する問題を引き起こす。第2燃焼炉20での安定生産を確保するためには、平均粒子径が1mm〜8mmの燃焼物が70%以上に成るように粒子径を調整することが好ましい。従って、得られる再生粒子の品質を均一にするという観点における実用化可能性に、有益である。さらに、本形態のように、分級を乾燥後とすると、小径な粒子の燃焼物を確実に除去することができ、また、処理効率も向上する。
【0098】
内熱キルン炉20での内熱源としては、内熱キルン炉20内への均一な加温コントロールが容易で長手方向の温度制御が容易な重油とガスの混焼バーナー加熱方式の内熱炉が好適であり、したがって、重油とガス併用の加熱バーナーによる内熱キルン炉20であることが望ましい。
【0099】
重油とガスの混焼バーナーを使用することにより、第1燃焼炉にて生成された、排ガス(燃焼ガス)を有効利用でき、温度の調整を細かくかつ内部の温度を均一にコントロール可能になり、凝集体の形成、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。
【0100】
さらに電気炉は、電気ヒーターを炉の流れ方向に複数設けることで、任意に温度勾配を設けることが可能であると共に、燃焼物の温度を一定時間、一定温度保持することが可能であり、第2燃焼炉20において、第1燃焼炉10からの燃焼物中の残留有機分、特に残カーボンを第2燃焼炉20で炭酸カルシウムの分解を来たすことなく未燃分を限りなくゼロに近づけることができ、低いワイヤー摩耗度で、高白色度の再生粒子を得ることができる。
【0101】
内熱キルン炉20においては、酸素濃度が5%〜20%、より好ましくは10%〜20%、最も好ましくは、10%〜15%となるようにするのが望ましい。酸素濃度は、第2焼成炉に適宜の手段により酸素または空気投入量のコントロールによって行うことができる(具体的な形態の図示は省略してある)。
内熱キルン炉20内の酸素濃度が、5%未満では、燃焼困難な残カーボンの燃焼が進まない問題を生じる。
温度としては、550℃〜780℃、より好ましくは600℃〜750℃である。
【0102】
第2燃焼炉20は先に述べたように、第1燃焼炉で燃焼しきれなかった残留有機物、特に残カーボンを燃焼させる必要があるため、第1燃焼炉よりも高温で燃焼させることが好ましく、燃焼温度が550℃未満では、十分に残留有機物の燃焼を図ることが困難であり、燃焼温度が750℃を超える場合は、燃焼物中の炭酸カルシウムの酸化が進行し、粒子が硬くなる問題が生じる。
【0103】
また、滞留時間は60分以上の、より好適には60分〜240分、特には90分〜150分、最適には120分〜150分が望ましい。特に残カーボンの燃焼は炭酸カルシウムの分解をできる限り生じさせない高温で、緩慢に燃焼させる必要があり、滞留時間が60分未満では、残カーボンの燃焼には短時間で不十分であり、240分を超えると、炭酸カルシウムが分解する問題が生じる。
【0104】
さらに、燃焼物の安定生産を行うにおいて滞留時間を60分以上、過燃焼の防止、生産性の確保のため240分以下で燃焼させることが好適である。
【0105】
この内熱キルン炉20から排出される燃焼物の粒子径としては、10mm以下、より望ましくは平均粒子径が1mm〜8mm以下、最も好ましくは平均粒子径が1mm〜4mmに調整することが好適である。
【0106】
燃焼が終了した再生粒子は好適には凝集体であり、冷却機34により冷却された後、振動篩機などの粒径選別機36により目的の粒子径のものが燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
【0107】
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものの燃焼品であってもよい。
【0108】
〔粉砕工程〕
本発明に基づく再生粒子の製造方法においては、必要に応じ、さらに公知の分散・粉砕工程を設け、適宜必要な粒子径に微細粒化することで塗工用の顔料、内添用の填料として使用できる。
【0109】
一例では、燃焼後、得られた粒子は、ジェットミルや高速回転式ミル等の乾式粉砕機、あるいは、アトライター、サンドグラインダー、ボールミル等の湿式粉砕機を用いて粉砕する。填料、顔料用途等への最適な粒子径については、本形態の再生粒子は、平均粒子径0.1μm〜10μmであるのが好ましい。
【0110】
粉砕工程後における再生粒子の粒子径は、粒径分布測定装置(レーザー方式のマイクロトラック粒径分析計:日機装製)により体積平均粒子径を測定した。
【0111】
〔付帯工程〕
本製造設備において、より品質の安定化を求めるためには、再生粒子の粒子径を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
【0112】
また、乾燥工程の前段階において、脱水処理を行った脱墨フロスを造粒することが好ましく、さらには、造粒物の粒子径を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、攪拌式、押し出し式等の設備が好適である。
【0113】
本製造方法の原料としては、再生粒子の原料と成り得るもの以外は予め除去しておくことが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計またはライニングし、摩滅等により鉄分が系内に混入することを防止するとともに、さらに、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。
【0114】
さらに、本発明に基づく再生粒子の製造方法による再生粒子は、X線マイクロアナライザーによる微細粒子の元素分析において、カルシウム、シリカ及びアルミニウムの比率が酸化物換算で30〜82:9〜35:9〜35の質量割合で含むことが好ましく、より好ましくは、40〜82:9〜30:9〜30の質量割合、さらに好ましくは、60〜82:9〜20:9〜20の割合である。
【0115】
カルシウム、シリカ及びアルミニウムを酸化物換算で30〜82:9〜35:9〜35の質量割合で含ませることで、比重が軽く、過度の水溶液吸収が抑えられるため、脱水工程のおける脱水性が良好であり、乾燥・燃焼工程における未燃物の割合や、燃焼工程における焼結による過度の硬さを生じる恐れを低減できる。
【0116】
本発明の割合に調整するための方法としては、脱墨フロスにおける原料構成を調整することが本筋ではあるが、乾燥・燃焼工程、燃焼工程において、出所が明確な塗工フロスや調成工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。
【0117】
例えば、脱墨フロスを主原料に、再生粒子中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、シリカの調整には、不透明度向上剤としてホワイトカーボンが多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、クレーの使用の多い上質紙抄造工程における排水スラッジを用いることができる。
【0118】
また、本製造方法で得られる再生粒子は、示差熱熱重量同時測定装置による示差熱分析において、700℃近傍で生じる炭酸カルシウムの分解(酸化カルシウムへの変化)における減量(率)が50%以上と成るように、本発明に基づいて脱墨フロスを燃焼制御することで、より正確にカルシウム成分の酸化の進行を抑制し、粒子が硬くなることを防止することができるので好ましい。
【0119】
〔第2燃焼炉のリフターについて〕
先に採用理由と共に述べたように、第2次燃焼炉内の内壁に、その一端側から他端側に向けて、螺旋状リフター及び/または軸心と平行な平行リフターを配設することで、原料の均一な燃焼と、品質の均一化を図ることができる。
【0120】
そして、特に、被燃焼物の装入側から排出側に向けて、螺旋状リフターと、軸心と平行な平行リフターとの順で配設するのが望ましい。
この構成によると、装入側から投入された内容物が、まず螺旋状リフターにて他端側に向けて適正量ずつ送り込まれながら持ち上げられて落下する間に、原料に起因する有機成分がガス化し発生する燃焼ガス(可燃焼ガス)と効率的に接触し、さらに引き続いて平行リフターにて持ち上げられて落下する動作を繰り返すことで燃焼ガス(可燃焼ガス)と効率的に接触するため、熱交換効率よく内容物を燃焼させることができる。特に、螺旋状リフターにて平行リフターに送り込まれる内容物の量がコントロールされることで、平行リフター部分における内容物の持ち上げ・落下が適正に行われ、内容物の燃焼を均一かつ効率的に行うことができる。また、耐火物の損傷の恐れがないことから、焼成物の純度の低下がなく、その生産能力も向上できる。
【0121】
また、螺旋状リフターと平行リフターを、例えば耐熱性を有するステンレス鋼板などの金属製とすると、比較的温度が低いので高価な耐熱材料を用いなくても十分に耐久性と強度を確保できるとともに、耐火物製のリフターなどに比して伝熱効率が高いので、一層熱効率を向上することができる。
【0122】
上記の実施の形態例を図2によって説明すると、被燃焼物は、図2では、第2燃焼炉20の左側から装入され、回転駆動手段(図示せず)にて回転駆動可能に構成され、他端側から排出される。
【0123】
第2燃焼炉20は、円筒状の外筐32Aの内面に耐火キャスタブルや耐火レンガから成る耐火壁32Bを内張りして構成されている。第2燃焼炉20の耐火壁32Bの内面には、投入側において、第2燃焼炉20の軸心に対して45°〜70°の傾斜角で傾斜した複数条(図示例では8条)の螺旋状リフター4が等間隔に突設され、さらにこの螺旋条リフター4の配設領域の他端側に、第2燃焼炉20の軸心と平行な適当長さの平行リフター5Aが周方向に等間隔置きに複数(図示例では8つ)かつ軸心方向に複数列(図示例では8列)千鳥状に配列して突設されている。
【0124】
また、平行リフター5Aは、図示の右側に排出部に向かって連続的に形成されている(図示せず)。この場合、装入側では低温であるので、ステンレス鋼板などの耐熱性と耐腐食性のある金属板にて形成するのが望ましく、排出部側では高温となるので、排出側の平行リフター5Aは耐火物製とすることができる。
【0125】
本実施形態では、螺旋状リフター4はその長手方向に適当間隔おきに配設した取付ブラケット6に固定されて配設されている。また、各平行リフター5Aは、それぞれの取付ブラケット5Bに固定されて配設されている。
なお、必要ならば、螺旋状リフターまたは平行リフターの一方のみを設けることでもよい。
【実施例】
【0126】
本発明の実施例及び比較例を示す。
本実施例においては、第1燃焼工程を本体が横置きで中心軸周りに回転する外熱電気キルン炉(表において単に「外熱キルン」と記載してある。)を用い、第2燃焼炉を重油・ガスの混焼バーナーによる燃焼手段を有する、本体が横置きで中心軸周りに回転する内熱キルン炉を用いた。
なお、第2燃焼炉における重油・ガスの混焼バーナーのガスには、第1燃焼工程で生成した排ガス(燃焼ガス)を供給し助燃に用いた。
【0127】
各種要因を変化させて、得られた再生粒子の品質を調べたところ、表1〜表4に示す結果が得られた。結果によれば、本発明の方法が比較例に対し優れていることが判る。
品質の評価は次記のように行った。
(未燃率):電気マッフル炉を予め600℃に昇温後、ルツボに試料を入れ約3時間で完全燃焼させ、燃焼前後の重量変化から未燃分を算出した。
(ワイヤー摩耗度):プラスチックワイヤー摩耗度(日本フィルコン製 3時間)、スラリー濃度2重量%で測定した。
(生産性評価):原料の脱水効率、生産性、粉砕に必要な電力を4段階評価し、 最も効率の良かった条件を◎、良かったものを〇、水効率、生産性、粉砕のいずれかに問題を見出したものを△、実操業困難なものを×とした。
(品質安定性):所定の方法で得られた微粒子の、白色度、粒子径、一定時間間隔における生産量の各項目について、変動程度を測定し、変動が少ない順にランク付けを行い、上位9位までを◎、10位から20位を〇、21位から25位を△、それ以下を×とした。
(見た目):目視で再生粒子の色を比較判断し、白色と灰色に区分した。
【0128】
【表1】

【0129】
【表2】

【0130】
【表3】

【0131】
【表4】

【0132】
なお、比較例7における脱水工程では、スクリーンによって、脱水処理した製紙スラッジ※1)をそのまま第1次燃焼炉に投入したものである。さらに比較例5〜9における「製紙スラッジ」とは、製紙工場の各製造部門から排出される総合排水処理設備における余剰汚泥を使用したものである。
【0133】
(考察)
表1〜表4の結果から、製紙スラッジを使用する場合に比較して、脱墨フロスを使用すること、第1燃焼炉の温度が300℃以上〜500℃未満であること、第1燃焼炉及び第2燃焼炉との組み合わせによること必須であることが判る。また、各実施例内での相対評価として脱水水分、第1燃焼炉内の酸素濃度、滞留時間、第1燃焼炉内の温度勾配、第1燃焼工程後の未燃率、第2燃焼炉の型式など、上記説明でより好適であると説明した条件において、より優れていることが判る。なお、△の評価は問題があるとしても実施可能の範囲内であることを断っておく。
【産業上の利用可能性】
【0134】
本発明は、脱墨フロスを主原料として燃焼し、再生粒子を製造する方法として、適用可能である。
【図面の簡単な説明】
【0135】
【図1】本発明に係る製造設備の概要図である。
【図2】本発明に係る第2燃焼炉の概要図で、(a)は縦断面図、(b)は内面の展開図です。
【図3】熱風を加熱手段とする場合に内熱炉に基づく燃焼態様の説明図である。
【図4】燃焼反応の説明概要図である。
【図5】第1燃焼炉の温度測定位置の概要説明図である。
【符号の説明】
【0136】
M…原料、10…外熱(電気)キルン炉(第1燃焼炉)、20…内熱キルン炉(第2燃焼炉)。

【特許請求の範囲】
【請求項1】
古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料として、前記主原料を脱水、乾燥、燃焼及び粉砕工程を経て、再生粒子を得る再生粒子の製造方法であって、
前記燃焼工程が、第1燃焼工程と、第1燃焼炉にて燃焼された脱墨フロスを再度燃焼する、後の第2燃焼工程とを有する、少なくとも2段階の燃焼工程を有し、
前記第1燃焼炉として、前記主原料の供給から排出の移送方向について、主原料の温度を個別に制御可能な電気炉を使用し、主原料の温度が300℃以上〜500℃未満で燃焼処理を行う、ことを特徴とする再生粒子の製造方法。
【請求項2】
前記電気炉が、本体が横置きで中心軸周りに回転するキルン炉であり、前記移送方向のゾーンごと、投入電力を制御可能な電気加熱手段を有する請求項1記載の再生粒子の製造方法。
【請求項3】
前記電気炉は、少なくとも前記主原料の移送路に面する部分に耐火材を設けない請求項1または2記載の再生粒子の製造方法。
【請求項4】
前記移送方向のゾーンが少なくとも3ゾーン形成されている請求項3記載の再生粒子の製造方法。
【請求項5】
前記電気炉内の酸素濃度が0.2%〜20%となる燃焼する請求項1〜4のいずれか1項に記載の再生粒子の製造方法。
【請求項6】
第2燃焼工程での第2燃焼炉が、本体が横置きで中心軸周りに回転する内熱キルン炉であり、前記第1次燃焼電気炉にて生じる燃焼排ガスを、第2次炉の助燃ガスとして用いる請求項1〜5のいずれか1項に記載の再生粒子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−47856(P2010−47856A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−211362(P2008−211362)
【出願日】平成20年8月20日(2008.8.20)
【出願人】(390029148)大王製紙株式会社 (2,041)
【Fターム(参考)】