説明

動力学バイオNEMSセンサ及び流体内に浸漬されるバイオNEMSセンサのアレー

バイオNEMS装置は、カンチレバーを支持体に連結する可撓性レッグを有しかつ先端に生物機能化部分を有するピエゾ抵抗カンチレバーを備えている。そのレッグに加えられるバイアス電流は、生物機能化された先端における許容可能な最高温度上昇によって制限される。カンチレバーの長さは、バックグランドのジョンソンノイズを最小にするように選択された大きさである。装置上の触媒された受容体は、結合速度係数が高められたリガンドに結合する。その触媒は受容体-リガンド結合の活性化エネルギーを低下させ、優先的にリガンドと結合するように強制進化(forced evolution)によって設計される。キャリヤ信号は、キャリヤ信号源に電磁気で結合されたカンチレバーに配置された磁気薄膜で注入される。複数の、NEMSの流体で結合されている変換器が、総合出力信号が誘導される複数の出力信号を、アバレージング(averaging)又はスレッショルディング(threshoiding)によって発する。NEMS装置は微小流体流動チャネル内に配置されて膜内に製造される。結合性分子が変換器の先端に結合されそしてフラフボールが結合性分子に結合されて減衰を増大する。

【発明の詳細な説明】
【技術分野】
【0001】
1.発明の技術分野
本発明は、純流体バイオNEMS装置(fluidic bioNEMS device)及びその装置の操作方法の技術分野に関する。
【背景技術】
【0002】
関連出願
本願は、2002年5月7日付けで出願された米国仮特許願第60/379,710号、同第60/379,660号、同第60/379,645号、同第60/379,552号、同第60/379,711号、同第60/379,543号、同第60/379,643号、同第60/379,708号及び同第60/379,681号に関連している。なおこれらの出願は本願に援用しかつその優先権を米国特許法35 USC 119に基づいて主張するものである。
【0003】
同時係属出願の援用
本願は、同時に出願された米国特許願(PAU.34)(発明の名称:An Apparatus And Method For Vacuum-Based Nanomechanical Energy,Force,And Mass Sensors)及び米国特許願(PAU.35)(発明の名称:A Method And Apparatus For Providing Signal Analysis Of A Bionems Resonator)をこれらがすべて記載されているように援用するものであることを特に理解されたい。さらに本願には、2002年5月3日付けで出願された米国特許願第10/138,538号(発明の名称:An Apparatus and Method For Ultrasensitive Nanoelectrochemical Mass Detection)及び2001年8月9日付けで出願された米国特許願第09/927,779号(発明の名称:Active NEMS Arrays for Biochemical Analyses)をこれらがすべて記載されているように援用するものである。
【発明の開示】
【発明が解決しようとする課題】
【0004】
2.従来技術の説明
近年、NEMSと化学力顕微鏡検査法(chemical force microscopy)(CFM)に多くの進歩がみられる。NEMSの研究によって、高周波数でかつ高いQ値にて共振できる長さが短くかつ厚さが薄い一群のカンチレバーが得られている。これらのNEMS装置は、理想的な条件(低いTと減圧の条件)で作動させると無類の感度を示す。いくつものグループが、水素結合と抗体-抗原相互作用から共有結合までの範囲の単一分子間の相互作用が発揮する力を分析するのに装置の大きさが非常に大きい方法(AFM,CFM)の研究を行っている。生物分子で修飾されて、修飾された表面又は修飾された磁気ビーズと相互に作用するAFMカンチレバーは抗原-抗体相互作用に対して100pN程度の力を示しそして共有結合に対し約1-10nNの力を示す。これらの画期的な実験は、確率限界で化学現象を測定する可能性を示しているが、小型で携帯可能でかつ堅牢な装置によってこの可能性を実現することが困難である証拠も示している。
【0005】
本発明で必要なことは、カンチレバーの大きさをNEMSの寸法まで小さくして、必要な時間的応答、小さい容積及び単細胞の性能を有する装置を構築するために必要な単一分子に対する感度を付与する何らかの方法である。NEMSカンチレバーを溶液中に室温で入れるには、勿論、CFM又はNEMSに通常採用されている検出戦略を改変することが必要であろう。流体は、NEMSカンチレバーを減衰させて(damp)共振を測定不可能にしそしてその溶液のエネルギーがカンチレバーに衝撃を与える。
【0006】
必要なことは、これら流体をこの検定法の構成要素として、起こりうる障害に対して活用することである。
【0007】
従来のCFMとは対照的に、本発明で必要なことは、単一の(少数の)化学結合の力をカンチレバーの曲がりを記録することで測定しようとしない方法である。
【0008】
必要なことは、一体のセンサを使って、他の方式で熱によって駆動されるカンチレバーの大きな運動に、化学結合が起こす制限によって化学結合の存在を検出できるNEMSカンチレバーの一タイプの設計である。
【0009】
本発明でさらに必要なことは、濃度に対し高い信頼性とともに高い感度も提供する体系的に異なる化学的修飾がなされたバイオNEMSカンチレバーのアレーを使用する手段である。
【0010】
さらに、本発明で必要なことは、揺動の「ノイズ」を信号と解釈するなんらかの方法と生体内で有用で堅牢な検定法を組み立てて利用する機会である。
【0011】
最近、マイクロアレー法によって、遺伝子発現の状態の分析のみならずタンパク質受容体とそのリガンドの分析が大きく進歩している。例えば、数千種類の標的のマイクロアレーが、医薬発見産業の使う主要技術になっている。これらのマイクロアレーは、フォトリソグラフィー、マイクロスタンピング法又はマイクロドッティング法で製造され、基板上にスポットのアレー(20-100□m)が形成される。このアレーは一般に、蛍光標識を付けた被検体をアレー上に注ぎ次いでアレーをマイクロ蛍光計で走査して結合量を測定することによって読み取られる。これらの方法はますます普及しているが、読取装置の大きさが大きいことと採用される蛍光分析法固有の制約のため、携帯できることと堅牢性の両方が必要な用途には全く不適当な方法になっている。さらに、それらは使い捨ての装置であるから連続監視を必要とする用途には容易に適応できない。結局これら装置は、かなりの容積の被検体に依存しているので、コンビナトリアル化学によって提供される医薬発見の最も強力な新しい進歩又は遺伝子発現の最も高い感度の検定法に対し不適当なものになっている。
【0012】
提案されている研究のもう一つの目的は、単一の生物分子のそれらの受容体との結合を検出できるナノスケールのバイオチップ(BioNEMS(バイオNEMS))の新しい技術を開発することである。増大している化学力顕微鏡検査法(CFM)に関する文献は、AFMを改変して、単一の水素結合及び単一の受容体-リガンドの相互作用から単一の共有結合に至る範囲の相互作用の結合力を測定するようにできることを示している。これら力の範囲はAFM装置の検出性能の範囲内に十分入っているが、溶液中のAFMカンチレバーには、生物リガンドとその受容体の結合と分離(unbinding)を高い信頼性で追跡できるようになるのに必要な時間的応答の特性がない。恐らく一層重要なことは、AFM/CFMを実行し空気で運ばれる振動及び表面の振動に対するAFMの周知の感度を得るためにかなりの大きさの装置が必要なことである。
【0013】
必要なことは、単一分子の相互作用の力を検出する際にCFMと同様に成功するが、NEMSの規模まで縮小して前記結合と分離の事象を追跡するのに十分迅速に応答できるようにするある種の技術である。化学力の大きさを考慮すると、バイオNEMSが作動する最も強力なモードは、結合の力を直接測定しないモードである。本発明で必要なことは、NEMSカンチレバーのポジション(position)の進行中の揺動を利用し一体のセンサを使って追跡してAFMで使用されている支持装置の必要性を除いたある種の手段である。
【課題を解決するための手段】
【0014】
本発明によって、NEMSカンチレバーの運動を利用して結合と分離の事象が追跡される。基本的な考えは、その先端にリガンド-受容体の対が結合していないカンチレバーがその状態で、リガンド-受容体の対で制限されているカンチレバーより一層劇的に揺動するという考えである。強いリガンド-受容体結合は、カンチレバーの運動を一部分、かなりの時間(リガンド-受容体の対に対し約ton)阻止することができ、弱い相互作用でさえもカンチレバーの運動の統計値を変化させる。
【0015】
大きさが小さいNEMS装置まで小さくするといくつもの利点がもたらされる。用語「NEMS」は本明細書で使用する場合、1ミクロン又は1ミクロン未満の寸法を少なくとも一つ有する装置を意味する。「NEMS」装置は1ミクロンを超える他の寸法を1又は2以上有する場合も有りうる。さらに大きさが1ミクロン以下の装置と1ミクロンを超える装置とを特徴付ける明確な境界線がないことが多いことは分かるであろう。用語「NEMS」のより重要な意味は、問題の装置が、サブミクロンの装置又は作動に独特の特性を、サブミクロンの大きさまで縮小した類似の装置と共有していることである。すでに述べたようにNEMS装置は、その大きさが小さいことから結合と分離の動力学に対して劇的に一層良好に応答できる。この高い周波数応答は、受容体-リガンドの相互作用の確率的性質を追跡するのに重要であり、大部分の受容体-リガンドの対は、劇的に相互に作用し、結合し、数マイクロ秒~数秒の範囲内の時間(厳密な受容体-リガンドの対によって)結合したままであり次いで分離する。高い周波数応答(〜MHz)は、検定法が生物分子の相互作用を追跡しなければならないときに重要である。個々の膜チャネルの開閉を分析するパッチクランプ(ギガオームシール)法の性能によって、ニューロンの機能の根底にある物理生化学に関する我々の理解が劇的に変化し、その結果パッチクランプ法だけが膜チャネルの巨大集団を記録することから分子の機序の解読を試みることができたのである。生物分子の分析法は現在、大量の必要物質を必要とするとともに最も高感度の検定法でさえ固有の期間のスミアリング(smearing)によって制約されていて全く同じ状態であると我々は考えている。こうしてバイオNEMSは、本発明によって平衡を保持され、我々の生物分子分析法を正確に確率限界まで進ませる。
【0016】
この方法の能力の一つは、この方法が、通常はAFMの主な制約であるカンチレバーの熱運動を駆動力として活用することである。さらに、カンチレバー運動のノイズは、カンチレバーの大きさが小さくなるにつれて低下する。その上、NEMS装置は、大きさが小さいから検出器のアレー(>500カンチレバー)を、小さい有効容積(active volume)(<100pL)で構築できる。この後者の利点は、単細胞中に存在するRNA、タンパク質及び第二メッセンジャーのレベルを検出する技術の将来の可能性を提供するので非常に重要である。
【0017】
本発明のバイオNEMS法は、AFM/CFMと比較して、大きさを著しく小さくしてしかも装置が作動するのに必要な性質を提供する。カンチレバーの運動のセンサはNEMSカンチレバーと一体になっているので、AFMに使われているカンチレバー運動の光学的検出法によって課される大きさと密度の制約が無くなる。その結果、バイオNEMSカンチレバーは、AFMで実用されているものよりはるかに小さくしかつ劇的により緊密にパックすることができる。
【0018】
NEMS検出法について下記章で述べるように、ピエゾ抵抗変換器(piezoresistive transducer)を組み込むと、液状水中でNEMSカンチレバーの運動を記録するのに必要な感度よりはるかに大きい感度を提供する。その結果、適正に組み込むことによって、カンチレバーの運動を追跡するのに必要な検出器、その運動を解釈するのに必要な論理、及び得られた結果を伝達するのに必要な回路を一つの装置に装填することができる。現在の「DNA Chip」又は「Proteomics Chip]法は、その評判とは対称的に、化学種の結合を解釈するため、長さと幅が数cmのセンサ容器に対し嵩高で重い読取り器を必要とする。ここで述べるバイオNEMS法は、用語「チップ]と一致するパッケージサイズ(ほぼDIPの寸法)を約束するので、他の方法では不可能か又は実用できない各種の用途を提供する。
【0019】
提案されている研究の目的は、カンチレバーの熱で駆動される運動を活用してその運動を受容体-リガンドの相互作用で変調することである。溶液中のNEMSカンチレバーの物理学及び確率論的生化学の知識を利用してカンチレバーの運動を解釈する。したがって、このクラスの実用的なバイオNEMSを構築するには、NEMSの組立てを担当している研究者、装置表面の生化学的修飾を担当している生物学者、NEMS装置の流体力学に参画している物理学者及びアレーからデータを引き出して分析することに優れている情報科学者の緊密な協力が必要である。
【0020】
ここで述べるバイオNEMS研究の努力には基礎科学から応用科学までの分野にわたっていくつもの目標があり、新しいナノスケールの純流体技術の開発を目指している。我々の目標は、バイオNEMS構築の技術を開発し解釈し次いで改良しそしてその新規な用途を示すことである。
【0021】
用途の例としは下記のものがある。
・溶液中のNEMSの性能に関する基礎試験。
・単一分子化学に関する基礎試験。
【0022】
・ホルモン、成長因子及び第二メッセンジャーに関する細胞試験。細胞からの成長因子の放出は、一般に、伝統的な方法で直接分析するには濃度が低すぎかつ容積が小さすぎる。
・医薬発見のための試験のコンビナトリアル化学合成の出力に対するセンサとしてのバイオNEMSの使用。
【0023】
・DNA配列検出用の高感度「遺伝子チップ」又は生物学的危険のセンサとしての使用。
・環境毒素の濃度のモニタとしての使用。
【0024】
本発明は、支持体及びその支持体に結合されてその支持体から延びる長さがlで幅がwでありかつ先端を有するピエゾ抵抗カンチレバーであって、幅が狭くした幅bで長さがl1の制限部分及び前記先端もしくは先端の近くに生物機能化(biofunctionalized)部分を有するピエゾ抵抗カンチレバーを備えてなるサブミクロンのバイオNEMS装置と定義される。その制限部分は、狭くした幅bを有し支持体に結合された複数のレッグで構成されている。好ましくは、二つのレッグが設置されw−2bの距離をおいて互いに分離されている。
【0025】
このバイオNEMS装置は、さらにカンチレバーの制限部分に加えられるバイアス電流の電源を備えており、そのバイアス電流の大きさは、前記生物機能化先端において許容可能な最大の温度上昇によって制限される。
【0026】
また本発明は、長さがlでありかつピエゾ抵抗バイオNEMS装置が発する信号強度に関連するバックグランドのジョンソンノイズを最小化するように選択された大きさの振動カンチレバーを少なくとも一つ有する流体内に浸漬されるピエゾ抵抗バイオNEMS装置の改良に関する。一実施態様で、その信号強度は、流体中のピエゾ抵抗バイオNEMS装置の熱機械的ノイズのレベルに基づいている。このピエゾ抵抗カンチレバーは、幅がwでありかつ狭くした幅bを有する制限部分を有し、その狭くした幅bは、ピエゾ抵抗バイオNEMS装置が発する信号強度に関連するジョンソンノイズを減らすように選択されている。
【0027】
本発明はさらに、流体に浸漬される生物機能化バイオNEMS装置の改良を特徴とするものであり、そのバイオNEMS装置上には、対象のリガンドと結合する受容体、及びその受容体とともに、その受容体と対象のリガンドとの結合速度係数を高める触媒が配置されている。その触媒は受容体-リガンドの結合の活性化エネルギーを低下させる。一実施態様で、受容体は、対象のリガンドと優先的に結合するように強制進化(forced evolution)によって設計される。
【0028】
また本発明は、キャリヤ信号源、支持体、その支持体に結合されてその支持体から延びるピエゾ抵抗カンチレバー及びそのカンチレバーが前記信号源からのキャリヤ信号によって駆動されるようにカンチレバー上に配置されかつ前記信号源に電磁気で結合されているエレメントを備えてなるサブミクロン装置と定義される。そのエレメントはカンチレバー上に配置された磁気膜で構成され、そして前記キャリヤ信号源は前記磁気膜に結合される電磁信号を発する。
【0029】
さらに本発明は、複数のNEMS共振器すなわちNEMS変換器(これら変換器は各々出力信号を発する)及び複数の前記NEMS変換器からの複数の対応する出力信号を処理して総合出力信号(collective output signal)を得る手段すなわち回路を備えた装置である。この手段は、前記総合出力信号が平均値になるように前記複数の出力信号を平均する。この手段は、これら複数の出力信号の予め定められた画分(fraction)が予め定められた時間内に閾値を超えるかどうかを確認する。これら複数のNEMS変換器は生物機能化されているので、前記手段はNEMS変換器一つだけと比べてリガンド捕獲速度の増大を指示する総合出力信号だけを発するだけで、リガンド捕獲速度を効率的に増大する。
【0030】
隣接する変換器のアレーを形成する、流体中に浸漬される複数のNEMS変換器を備えた流体中で作動する装置であって、そのNEMS変換器が各々出力信号を発し、二つの隣接するNEMS変換器の運動が各々、隣接するNEMSが浸漬されている流体を通じて結合される装置として、本発明を説明する。二つの隣接するNEMS変換器で構成された第一及び第二のNEMS変換器の運動の相互相関:C12=<x1(0)x2(t)>が下記式:

(式中、kBはボルツマン定数であり、Tは流体の温度であり、tは時間でありそしてX12は第一変換器に作用する力F1に対する第二変換器の変位x2(t)を示すサスセプティビリティー(susceptibility)である)で定義され、その結果第二変換器のポジションの総合平均(ensemble average)が下記式:

で定義される)で定義される。
【0031】
本発明は、流体の流れを運ぶ微小流体の流動チャネル及びその流体流動チャネル内に配置された少なくとも一つのNEMS変換器を備え、その流体の特性をそのNEMS変換器で検出する、流体内で作動する装置である。そのNEMS変換器は生物機能化されており、そしてNEMS変換器が検出する流体の特性は、そのNEMS変換器が生物機能化されているリガンドが流体内に存在しているか又は存在していないかという特性である。
【0032】
本発明の装置はさらに複数のNEMS変換器を備えそれら変換器は各々前記流動チャネル内に共通に配置されている。本発明の装置はさらに、複数のNEMS変換器が分布されている複数の流動チャネルを備えている。その複数のNEMS変換器は表面が形成されているか(surface fabricated)又は膜が形成されている。
【0033】
本発明には、ウェーハ層、そのウェーハ層の上のエッチング停止層、そのエッチング停止層の上のNEMS装置層及びそのNEMS装置層の上のピエゾ抵抗層を含むヘテロ構造体を提供するステップを含む膜からバイオNEMS装置を製造する方法が含まれている。ウェーハ層を通ってエッチング停止層までトレンチエッチングを行い、NEMS装置が画成される膜になる領域を画成する。
エッチング停止層を、トレンチの底部から装置層まで除いて膜を製造する。導電性接点を、電子ビームリソグラフィーによって、前記膜のピエゾ抵抗層上に選択的に製造する。前記膜のピエゾ抵抗層上の生物機能化されることになる領域を電子ビームリソグラフィーで選択的に形成させる。NEMS装置は、前記生物機能化されることになる領域を含む前記膜のピエゾ抵抗層上に、電子ビームリソグラフィーによって選択的に形成される。この膜を、選択的にプラズマエッチングしてマスクされていない部分を除いて懸架NEMS装置を画成する。この膜の回りに配置されたエラストマー層中に、流動チャネルを選択的に成形する。そのNEMS装置上の選択された領域を生物機能化する。
【0034】
ヘテロ構造体を提供するステップはさらに、ウェーハ層を、エラストマー層との接着性を促進するため研磨して薄くするステップを含んでいる。膜を選択的にプラズマエッチングしマスクされていない部分を除いて懸架NEMS装置を画成するステップは、NEMS装置層のマスクされていない部分を選択的に垂直にプラズマエッチングして除くステップを含んでいる。膜の回りに配置されたエラストマー層に流動チャネルを選択的に成形するステップは、流動チャネルを画成するためのフォトレジスト層を選択的に配置し、その選択的に配置されたフォトレジスト層上にエラストマー層を配置し次いでそのフォトレジスト層を除いて流動チャネルを画成するステップを含んでいる。
【0035】
本発明は、流体中に浸漬される先端を有する共振膜、その先端に結合された結合性分子、及びその結合性分子に結合されて流体から膜に加えられるノイズを消散させる減衰力を提供するフラフボールを備えてなる流体中で作動するNEMS装置を開示する。
【0036】
また本発明には、上記NEMS装置を作動させる方法が含まれている。
【0037】
本発明の装置と方法は、文法的な流暢さのために作用面からの説明でもって記述してきたし、また記載していくが、請求の範囲は、米国特許法第112条でことさらに規定されていない限り、いかなる形でも「手段」又は「ステップ」の限定解釈により必然的に限定して解釈されるべきでないこと、請求の範囲により規定される定義の意味及び均等の全範囲が司法上の均等論の下に与えられるべきであること、そして請求の範囲が米国特許法第112条の下で明言的に規定されている場合は、米国特許法第112条の下で全法定均等物が与えられるべきであることを、まさにその旨理解されたい。ここで図面に移ることにより、この発明はよりよく思い描くことができ、そこでは同じ要素は同じ番号で参照されている。
【0038】
次に、請求の範囲に定義されるこの発明の具体的な祥解例として提示する好適な実施態様についての以下の詳細な説明に移ることにより、この発明及びその種々の実施態様をよりよく理解することができよう。請求の範囲によって定義される発明は、以下に記述する具体的に祥解された実施態様よりも範囲が広いこともあり得ると、ここでは正にそのように理解している。
【発明を実施するための最良の形態】
【0039】
例示実施態様は、流体中のピエゾ抵抗バイオNEMS装置に印加できる電流バイアスのレベルに対する制約に関する実施態様である。達成できる力感度は、応答度がバイアス電流に比例すする場合すなわちR=IGであれば、明らかに、耐えられる最大レベルの電流バイアスによって決まる。バイアス電流の最大の実用的レベルは、許容できるとみなされるバイオNEMSの最大の温度上昇によって決まる。
顕微鏡写真の図12aの斜視図と図12bの上面図に例示を目的として示すバイオNEMSの変換器すなわちカンチレバー10は、「そのベースにカットオフを有する飛込み板」の形態を有するものとして類比できると考えるべきである。しかし、変換器10の形態は全く一般的なものであって、あらゆるタイプのカンチレバー、二重にクランプされたビーム、パドル又は他のあらゆるサブミクロンの振動構造体を含んでいると特に解すべきである。装置10の形態によって、図12bに示すように幅がbのレッグ20を1又は2以上有しそして長さlと幅wに依存しているカンチレバー16の流体による減衰特性(fluidic damping characteristic)を制限することなくカンチレバー16の曲げ剛性を高めるか又は可変式に設計できる制限領域12内に最大化が起こる。またカンチレバー16には通常の電極(図示せず)が設置され、その電極によって、バイアス電流を提供する通常の外部測定回路(図示せず)が、レッグ20の曲がったときのそのレッグのピエゾ抵抗の変化を測定できると解すべきである。さらに外部駆動力は、用途と設計上の選択によって、カンチレバー16に通常の方式で加えても加えなくてもよい。
【0040】
好ましい実施態様にはレッグ20が二つある。我々は、長さがl幅がw及び厚さがtで、減圧下の共振周波数がω0/2TTそして力定数がKであるカンチレバー16の生物機能化先端14において1K程度の温度上昇に耐えられると想定している。
【0041】
我々は、この問題を、一次元の問題として、ビーム16の長さがl1で断面積がAの制限領域、支持末端17にて支持基板18に流入する熱で処理する。例示実施態様では、カンチレバー16はシリコンで製造されそして水中に浸漬されると想定されるが、いかなるナノ機械加工可能な材料も使用できるしいかなる周囲流体も考慮できる。カンチレバー16の支持体に対する接続部17からカンチレバー先端14の方への距離xを測定する。x>l1の場合、装置10が浸漬されている水又は流体に対する熱損失の概略推定値は、関係式

(式中、Pはビーム16の断面積Aの周長である)で得ることができる。


及び

(式中、kSi=1.48x102W/mKはシリコンの熱伝導率であり、kH2O=0.607W/mKは水の熱伝導率である)を推定する。消散領域x<l1では、我々は

を持っている。温度は熱フラックス(heat flux)であるからl1にて連続しているので、x>l1の場合、温度は単調に低下するにちがいないという境界条件を我々は持っている。
【0042】
我々は表1に示す三つの例示装置10を検討する。第一のカンチレバー16の場合、その単純な熱伝導率による計算は、生物機能化先端14の1Kの温度上昇は定常バイアス電流I=250μAで得られこのとき約10,670μA Wの電力消費があることを示している。12Kという最大の温度上昇が、制限領域内の基板18の端縁から約2.3μm離れた制限領域12内に起こる。第一の装置は、このバイアス電流に対して約8μV/nmという応答度R=IGを生じる。
【0043】
表1の第二カンチレバー16の場合、我々は制限領域12で同じ12Kの最大温度上昇を得ることができるが、これは末端14の0.04Kという温度上昇と一致し、75μAの電流に対して起こる。この装置10の場合、我々はゲージ率がG=5.2 x109Ω/mと予想している。したがって、予想応答度は390μV/nmである。
【0044】
最後に、表1の第三のカンチレバーの場合、制限領域12の12Kの最大温度上昇と先端14の0.04Kの最大温度上昇を利用して我々は22μAの電流を得ることができる。この装置の場合、我々はG=5.3x1010Ω/mと予想している。したがって予想応答度は1.2mV/nmである。
【0045】
【表1】

【0046】
バイオNEMSにおける流体による結合のスケーリング
装置10が、浸漬されている流体内の流体に結合された熱機械的ノイズによって駆動される用途の場合、この信号が、装置10のバックググランドのジョンソンノイズに対して最大化されることは有利である。これら二つの熱ノイズ源の相対強度は、カンチレバー16の寸法で決まる。これらの寸法は、力ドメインの流体結合熱機械的ノイズのスペクトル密度を決定する流体による減衰の大きさ並びにカンチレバー16の(減衰、有効質量、ゲージ率、ばね定数及び先端における同じ発熱量に対して起こりうる電流による)応答関数の両方に関与している。
【0047】
厚さtが固定している場合、信号強度の実質的な改良は、カンチレバーのレッグ20の幅を小さくすることによって達成することができ、このことは、装置10の信号強度の測定値(nV/Hz1/2)を、幅がb=0.4μm及びb=0.1μmの装置の熱機械的ノイズとジョンソンノイズの周波数に対してグラフ化した図1のグラフに示してある。カンチレバー16の全長lと幅wを大きくすると流体への結合が増大し、流体による減衰と冷却効率の両者が増大し、S/N比も改善される。
【0048】
カンチレバー16の長さlを増大したときの効果を、各実施例でb=0.1μm、t=130nm及びw=5μmと共通にしておいて挿入表に示したように長さlが異なるカンチレバー16について図2のグラフに示した。周囲流体はジエチレングリコールであった。図2は流体によって減衰する熱機械的ノイズのグラフであり、カンチレバーの長さが増大するにつれてバックグランドのジョンソンノイズに対して減衰が増大することを示している。長さが35μmの場合、流体によって減衰する熱機械的ノイズのピークの大きさはバックグランドのジョンソンノイズより大きい。カンチレバーの各長さに対して、バイアス電流は、先端14の推定温度上昇が1℃を超えないようにかつレッグ20の最高温度が50℃を超えないように選択した。利用したバイアス電流と推定温度上昇は表2に示してある。
【0049】
【表2】

【0050】
流体結合熱機械的ノイズの大きさは、カンチレバーの寸法に依存していることに加えて流体の粘度に依存していることに注意しなければならない。図3は、異なる粘度を有する流体の水、ジエチレングリコール、グリセリン及びエチレングリコールに対する、バイアス電流250μA におけるb=0.6μm、t=130nm、w=2.5μm、l=15μm及びl1=0.6μmのカンチレバー16のジョンソンノイズと熱機械的ノイズの電圧ドメインの予想信号を示す。
【0051】
受容体-リガンド反応の確率の増大
一実施態様で、図4に線図で示すようにカンチレバー16の先端14又はその近傍に生物受容体分子24を結合させて装置10を生物機能化する。NEMS装置10の基本的特徴の一つは、弾性カンチレバー16の「機能化」領域に結合させた生物受容体分子24を使うことであるから、受容体-リガンド結合反応の対象の標的リガンド22に対する速度定数(反応の確率)が可能な最高の価であることが重要である。しかし、進化はこの特性を選択しないので、生物学的に発現される受容体分子24は一般にその標的リガンドに対し最高の可能な速度定数を持っていないことは広く知られている。したがって、NEMS装置10の用途で対象の受容体24に対する結合速度定数を高める各種の方法を試験することは有効である。
【0052】
一つの可能な方法は、特定の種の受容体24と密接に会合させるとその受容体-リガンドの結合の活性化エネルギーを低下させる特異的分子を見つけることによって触媒反応の同等物を使用する方法である。速度定数したがって反応の確率は活性化エネルギーに対し非常に鋭敏で例えば幾何級数的に依存しているので、このエネルギーの低下が比較的少なくても結合定数は大きく増大する。したがって、このアイデアは、第一にこれら「触媒」分子26の層を、カンチレバー16の小さな機能化領域28に結合させ次いで対象の標的リガンド22に特異的な受容体24を結合させるアイデアである。この方法の基本的概念は図4に示してある。与えられた例での触媒の選択は、周知の原理に従ってリガンド-受容体の対によって指示される。
【0053】
第二の実行可能な方法は、その結合速度定数が対象の特異的リガンド22に対して最大化された受容体分子24を設計する方法である。用語「設計」は、この場合、遺伝子を複数ラウンド「進化(evolution)」させながら、選択されたリガンド22に対しますます高い結合親和力を有する所望の受容体24を発現する遺伝子を選択する強制進化の生化学的方法を意味すると解される。これは通常、細菌がその細胞表面に対象の受容体24を発現するように、その特定の細菌のゲノムに対象受容体の遺伝子の複数のコピーを挿入することによって達成される。
【0054】
次いでその第一世代の細菌について結合親和力の検定を実施し、そして最高の親和力を有する細菌だけを「進化」サイクルの次のラウンドに使うために保管する。次のサイクルを開始する前に、各種の受容体遺伝子を、点変異法又はより効率的に「DNAシャッフリング法(DNA-shuffling)」によってつくる。次に、結合親和力がそれ以上増大する可能性のないことが明らかになるまで前記サイクルを繰り返す。この方法を利用することによって、特定の受容体-リガンドの結合速度定数を少なくとも一桁増大できると予想できる。
【0055】
非特異的リガンド結合の作用
図5は、NEMSカンチレバー16の応答に対する「バックグランド」の非特異的結合の起こりうる作用の一例を示す。曲線30は標的リガンド22による機能化部位28の分画専有性(fractional occupancy)を示し、一方曲線32は標的22とバックグランドのリガンド分子32の両者による分画専有性を示す。利用される条件は、(1)1000個の標的分子22;(2)100個の受容体分子24;及び(3)標的リガンド分子22の1/200の非特異的結合親和力を有する10,000個のバックグランドリガンド分子32である。受容体24に対する非特異的結合の競合の作用は図5に示す装置10の場合、有意である。
【0056】
バイオNEMSで信号を発生させるための複数カンチレバーの使用
生物分子の検出に利用する単一の駆動されない(undriven)カンチレバーの場合は、発明の名称が「A METHOD AND APPARATUS FOR PROVIDING SIGNAL ANALYSIS OF A BIONEMS RESONATOR」で出願番号(CIT.PAU.35)にて本願と同時に出願された同時係属中の特許願に詳細に分析されている。なおこの特許願は本願に援用するものである。そこで我々は、二つの駆動される(driven)カンチレバーのシステムのいくつかについて予想される検出性能を分析した。例示の実施態様で我々はバイオNEMS装置10に複数のカンチレバーを使用することに関連するいくつもの一般的な問題を探求する。我々はこの分析を信号「設計」の観点から始め、すなわち検出性能に対し最適の信号を生成する装置の配置構成を探しているのである。このような信号は下記式:

(式中、Aは周波数ω0で発信する信号の振幅であり、そしてn(t)は分散がσ2nであるゼロミーンガウスノイズプロセス(zero-mean Gaussian noise process)である)で表わされる。ここでAとω0の両者が決定的であればすなわち搖動しないならば、その最適検出器はいわゆる「位相検波器」又は「ロックイン増幅器」として知られており、そのブロック図を図6に示してある。通信理論では、このような検出器を相関受信機と呼ぶ。したがって、我々は、周波数がω0の「キャリヤ」信号を注入できて、その結果、標的リガンドの結合事象がこのキャリヤを「変調」しすなわちAの価を修正する装置の配置構成を探す。図6に示す相関検出器は、その入力r(t)を装置10からとる狭帯域フィルタ34を備えている。発信機36からの参照信号を、ミクサ38を使ってフィルタ34の出力と混合する。そのフィルタされ混合された信号を低域フィルタ40中に入力し次に閾値決定回路(thresholding and decision circuit)42に結合し、その回路は第一に前記信号を有効信号すなわち情報保有信号とみなされるかどうかを決定し、次にそのようにみなされたならば決定アルゴリズムを実行して装置10が対象のリガンド-受容体相互作用を検出したか又は検出しなかったかを決定する。これらの回路は、従来の設計選択肢によって案出されるハードウェア設計、ファームウェア又はソフトウェアによって制御されるアナログ信号又はディジタル信号のプロセッサ又はコンピュータ内で実現できる。
【0057】
しかし我々は、信号の振幅A又は位相θが有意な無作為揺動を受けると厳しい性能の損失があるという比較的厳しい制約条件を処理しなければならない。この性能の損失は図7に示してあり、図7において、ケースAは「無作為揺動無し」のケースであり、ケースBは無作為の振幅揺動があるケースであり、そしてケースCは無作為揺動による位相情報の損失があるケースである。標識された「Chopper」の場合は、上記の援用し参照した同時係属中の出願に開示したような複数試料の合計で行う確率検出を利用する単一の駆動されないカンチレバー16の性能である。したがって、キャリヤ信号を注入し次いでその信号をリガンド-受容体結合事象に「結合」する方法は有意な測定結果を得るために検討すべき重要な問題になる。
【0058】
図8a-8cは式1の形態の信号を発生できる二つの可能な実施態様を示す。図8aでは、キャリヤの注入が、受容体なしの未機能化カンチレバー16aを固定周波数ω0と固定振幅で機械的に駆動することによって達成される。機能化カンチレバー16bは、装置10が浸漬されている流体の流体動的結合によって励振器(driver)16aに応答する。駆動されるカンチレバー16bはピエゾ抵抗部分46を有している。カンチレバー16aと16bはともに支持体48に接続され、その支持体は順に基板44又は50に接続される。
【0059】
図8a-8cにおいて、「信号無し」のケースは、カンチレバー16bが、それを基板44に「タッキング」することによって有意に移動しないように制限されているケースであり、「自由な」標的リガンド22が存在すると競合結合によってこの状態を破壊する。図8aに示す並列の配置は好ましい配置構成ではないことに留意すべきである。実際問題として、向かい合ったすなわち先端同士が向かい合った二つのカンチレバーを有する方が良い。図8cは、図8aと8bの僅かに異なる変形であり、この場合、信号なしの状態がリガンド-受容体の結合配列によって機械的に結合された二つのカンチレバー16と34を有している。やはり、自由な標的リガンドが存在すると競合結合によってこの状態を破壊してコヒーレント信号の損失が起こる。
【0060】
我々は複数のカンチレバー16aと16bを考察しているが、我々は、小領域28に磁気薄膜をめっきされた単一のカンチレバー16を使って非常に効率的なキャリヤ注入を達成することができそして外部キャリヤ信号源36が駆動信号を発しかつカンチレバーに磁気で結合されてカンチレバービーム16の「一定」振幅で一定位相の振動が得られることを指摘しなければならない。事実、この方法は、パラメータの搖動の制限を他の方法より十分に満たすことができる。またこの結合は、ダイポール薄膜又は常誘電薄膜を使って静電結合まで広げることもできる。
【0061】
複数のカンチレバー16の異なる使用法は、N同一の(N identical)駆動されないカンチレバーのアレーを平均化(averaging)モード又は一致(coincidence)モードで利用する方法である。平均化モードで、我々は単にN出力を使用し分散の我々の推定を改善することができる。一致モードで、我々はN出力の画分を、「信号プレゼント(signal present)」事象において、考慮すべき期間内に閾値を超えねばならないという制限を利用する。両方のケースで、複数のカンチレバーを使用する方法は、利用可能な受容体24の数を増やすことによってリガンド捕獲速度を改善することを目的としている。
【0062】
流体が誘発する相関揺動の低下
流体中の単一カンチレバーの研究は全く十分に発展しているが、カンチレバー16のアレーの流体による結合については全く注意が払われていない。振動中のカンチレバー16が生成する流体の乱れは、長期間、カンチレバー16の間の間隔のインバースパワー(inverse power)としてのみ低下する(fall off)。一方のカンチレバー16が移動すると、その粘性ドラグ又はこれら二つのカンチレバー間の流体による結合によって他方のカンチレバー16に運動を起こす。対応してカンチレバー16の確率運動の相関があるが、これは一方のカンチレバー16に対する分子衝突が原因の確率力が上記結合によって第二カンチレバー16の運動を誘発するからである。
【0063】
この接続は、揺動消散理論によって定量的に行われる。流体によって誘発される相関揺動は、カンチレバー16の間につながれている分子が誘発する相関関係を不明確にする傾向があるので、この方法を使って行う生物分子の検出と特性決定を一層難しくする。したがって、生物分子不在時に流体が誘発する相関関係を理解してその相関関係を最小限にする形態とプロトコルを設計することが大切である。
【0064】
レーザピンセットで制御される球形ビーズに関するMeinersとQuakeの最近の実験は予想される試験結果をはじめて示している(J.C.Meiners et al.,Direct Measurement Of Hydrodynamic Cross Correlations Between Two Particle In An External Potential,Phys.Rev.Lett.,82,2211(1999)参照)。これら2名の著者は、約3-10μmの間隔を置いた1μmの二つのラテックスビーズの流体による相互作用が誘発する相関関係を研究した。彼らは、これら球体の強い反相関関係(anticorrelation)を発見し、その最大の反相関関係は、彼らが研究した最も近い距離(3直径)の単一球体の変位の平均平方に近いものであった。このことは推定することが困難な強い流体による結合があることを示唆している。しかし、長いカンチレバー16の回りの流れは球体のまわりの流れと全く異なる特性を有しているので、これは流体による相関関係を最小限にする戦略を示唆している。
【0065】
移動する球体のまわりの低レイノズル数の流れは、どこでも球体の運動と同相であり、1/rに比例して減少する。我々のカンチレバー16の単純モデルは、カンチレバーを半径に比べて長い円柱として近似するモデルである。この場合、無限円柱のまわりの流れに対してストークスの試験結果を使用できる。振動中の円柱のまわりの流れは球体の場合より複雑である。事実、レイノズル数の価が小さい場合レイノズル数と無関係な解決策はなく、そして数倍の距離の規模でaR-1/2を変える、流体の速度と円柱の速度の間の自明の周波数と距離に依存する位相の関係がある。なおaは我々がカンチレバーの幅とした円柱の半径でありそしてR=ωa2/4νはレイノズル数(式中、ωは周波数でありそしてνは流体の動粘性率である)である。
【0066】
バイオNEMSカンチレバー16の場合、Rは一般に約1である。この速度領域は第二円柱の運動の原因であるから第一円柱に対する力で誘発される第二円柱の運動に対する距離と周波数の依存性がある。システム内に存在する搖動がシステム内の減衰に比例することを明記する搖動-消散の一般原理を通じて、これは我々にそのノイズ相関に対する距離と周波数の依存性を示す。図9に示す円柱の軸線からの距離r/aの関数としての速度領域のプロットは、速度領域の異なる直角位相が異なる距離でヌルポイントを有していることを実際に示しているが、これは、流体が誘発する相関ノイズの一方の又は他方の位相のヌルポイントに対応するパラメータ(円柱の距離/半径及び周波数)を見つけることができることを示唆している。図9は、レイノズル数R=1の場合の、カンチレバーの幅aの単位の距離rの関数としての振動中カンチレバー16の速度に平行の流体の速度の成分を示す。自明でない位相の関係は、実数(同相)と虚数の直角位相の成分及び異なる直角位相の成分のヌルポイントで与えられることに留意すべきである。
【0067】
設計を最適化できる相関の計算は、下記のようにして行う。二つのカンチレバーの変位の間の相互相関C12=<x1(0)x2(t)>とカンチレバー間の決定論的な流体による結合との間の正確な関係は下記式:

(式中、X12は第一カンチレバー16に作用する力F1に対する第二カンチレバー16の変位x2(t)を示す「サスセプティビリティー」である)並びに下記式:

で表わされる。
【0068】
上記角括弧は総合平均を意味し、決定論的推定、計算又は実験によって確率運動が定量できるようになることを強調している。サスセプティビリティーX12は図9にプロットしたストークスの速度領域から計算することができるので、ここには示していないがノイズの相関関係を示すことができる。
【0069】
NEMSと微小流体工学の融合
図10は微小流体流動チャネル52に結合されたカンチレバー16を備えた装置10の概略断面図である。ウェーハ54を通ってエッチングされた領域が最終の流動チャネルの部分を形成する。カンチレバー16の全アレーを単一の流動チャネル52内につくることができる。所望の用途に対応して、異なるチャネル52内に異なる装置10を有する複数のチャネル52を設けることもできる。流動チャネル52をシリコンの表面に直接つくることも可能である。このことは図11a-11cのアレー56に概略を示してある。なおこれらの図は徐々に拡大した三つの斜視図であり、入口と出口の流動チャネル52と連通している単一の流動チャンバー58内に、平行の支持体48で支持され平行のカンチレバー16の列を形成する複数のカンチレバー16を示している。
【0070】
バイオNEMS膜ベースの装置の製造
図13a-13gは、膜ベースのバイオNEMS装置10を製造するのに含まれるステップの概略を描いた流れ図である。これら装置の製造は、例えば675μmのSi層154の上に375nmのSiO2層152などのような絶縁ウェーハ152、154の上のシリコン装置層148を示す側断面図の図13aで始まる。埋め込まれる酸化物層152は、ウェーハ154の背面を通じて行われるエッチングステップの停止層として働くため十分に厚くなくてはならない。Si装置層148は、検討中の大部分の装置の場合、厚さが20nmと100nmの間であるシリコンカンチレバーのドープされない部分として所望の厚さでなければならない。例示実施態様では、80nmのSi層148が、30nmの多量にドープされたSi層150の下側に配置されている。層148の抵抗率は、成長させる多量ドープ層150と比べて高くなければならない(10Ωcmで十分である)。
【0071】
ウェーハ154の背面は研磨する。この研磨は、その背面に弾性エラストマー材料を接着するのに必要であり、そのエラストマー材料中に、以下に述べるように微細流動チャネル52を画成させる。ウェーハ154は、流動チャネル52の最終容積を減らしかつ後のエッチングステップでエッチングしなければならない必要な厚さを減らすのに役立てるため同時に薄くしてもよい。ウェーハの最終の厚さは、不必要な材料を減らしながらウェーハ154の構造の完全性を維持するのに300μmが妥当である。
【0072】
次に、ホウ素を多量にドープされたシリコン層150を、層148の頂面にエピタキシャル成長させる。層150は、NEMS装置10の一部を形成するピエゾ抵抗器の導電層を形成する。大部分の装置10の場合、この層150の厚さは7nmと30nmの間である。層150の抵抗率はその下の層148と比べて小さくしなければならない。4x1019cm-3のドーピングレベルが一般的である。
【0073】
次のステップは、図13bの側断面図に示すようにウェーハ154の背面を通ってエッチングすることによって膜を製造するステップである。このステップはボッシュのディープ反応性イオンエッチング法(Bosch deep reactive ion etch)(DRIE)を利用して実施し層154を貫通してトレンチ158を作製できる。このステップの場合、図13bに示すように約6ミクロンのフォトレジスト又は酸化物のマスク156を使用すれば十分である。50μm2の膜を使用しているがこれは任意的なものであり使用する寸法はその用途によって決まる。次にシリコン膜148の直下の酸化物層152を、図13cに示すようにフッ化水素酸でトレンチ158の底部から除去して膜162になる領域を画成する。
【0074】
次に、層150の上の装置10の頂面に、膜162に整合させてフォトリソグラフィーと金属堆積を実施して図13dの平面図に示すようにコンタクトパッド160を作製する。なお図13dは同時に形成された複数のダイを示している。30nmのクロム(接着層として)続いて250nmのAuをボンドパッド160の所望のパターンで堆積させて、オーミックコンタクトを、ホウ素ドープシリコン層150上に形成させる。
【0075】
次に窒化ケイ素層174(300nm)を前記Auの上に堆積させ続いて200nmのニ酸化ケイ素層175を堆積させて図13eの平面図に示すように装置10を保護し、続いて図13fの平面図に示すようにクロムの層176を堆積させて製造工程中二酸化ケイ素175を保護しかつ図13gに示すようにこれら保護層で形成された段階的高さを通じて通電性が与えられる。
【0076】
次いで電子ビームリソグラフィーを利用して、まず、カンチレバー16が生物機能化される先端14に金のパッド(図面には示していない)をパターン化し、次にカンチレバー16をパターン化し(PMMA上に)続いて図13iの斜視図に示すようにクロムの30nmの層178の蒸着とリフトオフを行う。製造工程のこの部分には二つのステップが含まれている。第一に、アライメントマーク(図面には示していない)にそって生物機能化させるのに使うカンチレバー16の先端14に金の正方形部分180(図面には示していない)を配置するステップがある。第二のステップは、クロム層178(図示せず)を有するカンチレバー16を含む領域をマスクするために実施するリソグラフィーのステップである。
【0077】
垂直プラズマエッチング法(NF3、Cl2、Ar)によって、層150と148に画成された膜のマスクされていない部分を除いて、図13i及び上面図の図13jに示すようにカンチレバー16を形成させて、装置10を懸架させる。次いでウエットエッチング法を利用してクロムのマスク178(図示せず)を除き次に試料をクリティカルポイント乾燥機で乾燥する。そのウェーハを上面図の図13kに示すようにダイシングする。
【0078】
次に微小流動チャネル52を、型としてパターン化されたフォトレジストを使ってシリコーンエラストマーから製造する。この場合、次にフォトレジストをエッチングして図13iに示すように成形されたエラストマーの包封体182内に画成された実際の流動チャネルをつくる。その流動チャネル52は、85℃のオーブン内に24時間入れると、装置10のシリコンと自己封着する。次に、装置10すなわち金のパッド180を、例えば金のパッド180に優先的に結合する受容体分子を運ぶ流体を流動チャネル52を通じて流すことによって図13mに示すように通常の手段で生物機能化する。
【0079】
フラフボール(fluff ball)による減衰
大きい散逸分子に過ぎないフラフボール60には結合性受容体分子62が付随している。その結合性分子62つきフラフボール60は液体中を自由に浮遊している。結合性分子62は対象のリガンドに結合するように構成されている。また先端14は、対象のリガンドに結合するように構成された受容体で生物機能化される。結合している受容体62とフラフボール60、で対象のリガンドを先端14の受容体が捕獲すると、先端14の減衰係数が劇的に増大する。
【0080】
図14は、ばねとして扱われている分子62によって先端1にフラフボール60を連結されている質量Mのカンチレバー16の数学モデルである。フラフボール60は、散逸を最大にするようにしたがってノイズも最大にするように工夫されていてスターデンドリマー(star dendrimer)で構成されている。分子62はアルカン又はリガンドの連鎖で構成されている。図14に示すシステムの式は下記式:

(式中、Mはカンチレバー16の質量であり、Yはカンチレバー16の流体による減衰係数であり、kはカンチレバー16のばね定数であり、xはカンチレバー先端14の変位であり、kmは分子62の有効ばね定数でありそしてxdはフラフボール60の変位であり、Ydはフラフボール60の流体による減衰係数でありそしてFはカンチレバー16に加えられる外力である)である。
【0081】
このシステムの運動式は、システムの有効減衰定数と有効ばね定数があることを示すように書き直して下記式:

で表わすことができる。フラフボール60は、散逸を最大にするためしたがってノイズも最大にするため減衰係数をできるだけ大きくするように下記式:

のように選択される。
【0082】
生物分子つきフラフボールの散逸とノイズに対する分画散逸効果(fractional dissipative effect)は下記式:

の程度である。
【0083】
多くの変更や修正が、この発明の精神及び範囲から逸脱することなく、当業者によってなし得るであろう。したがって、ここに具体的に詳述した実施態様は、単に例示を目的として記載されたものであり、前掲の特許請求の範囲により定義される発明を制限するものと受け取ってはいけないと理解されなければならない。例えば、ある請求項の複数要素が特定の組合わせで記載されているという事実に拘わらず、この発明は、より少ない要素、より多い要素、又は異なる要素での他の組合わせも、たとえそのような組合わせが当初請求されていなくとも、上記に開示されているものは含むものであるということを篤と理解しなければならない。
【0084】
この発明及びその各種実施態様を記述するためにこの明細書で使用された語は、その一般的に定義された意味においてだけでなく、この明細書における特別の定義により、その一般的に定義されている意味の範囲を超えた構造、材料又は働きを含むと理解すべきである。したがって、ある要素がこの明細書の文脈の中で二つ以上の意味を包含すると理解できる場合には、特許請求の範囲でのその使用は、この明細書及びその語自体によって裏付けられるすべての可能な意味について包括的であると理解しなければならない。
【0085】
したがって、前掲の特許請求の範囲の語及び要素の定義は、この明細書において、文言どおりに記載された要素の組合わせだけでなく、実質的に同一の要領で実質的に同一の作用をして実質的に同一の結果を得るすべての均等な構造、材料又は働きを包含するものとして、定義されている。したがって、この意味で、前掲の特許請求の範囲におけるどの一つの要素を二つ以上の要素で等価的に置換してもよいこと、又は特許請求の範囲における二つ以上の要素を単一の要素で置き換えてもよいことを、筆者は意図している。複数の要素が特定の組合わせで働くように上述され、そのように当初請求されているかも知れないが、請求された組合わせからの一つ又は複数の要素は、場合によっては、その組合わせから外すことができ、また請求された組合わせは部分的組合わせに又は部分的組合わせの変形に向けてもよいことを、篤と理解されたい。
【0086】
当業者から見て、請求された主題からの非実質的な変更は、現在知られているものでも今後工夫されるものでも、特許請求の範囲内の均等物であると意識的に意図している。したがって、当業者にとって現在知られているか又は今後知られる自明な置換は、定義された要素の範囲内であると定義される。
【0087】
したがって、特許請求の範囲は、上記に具体的に図解及び記述されたもの、概念的に均等なもの、自明に置き換えできるもの、及びこの発明の必須の思想を本質的に取り込んでいるものをも包含していると理解されるべきである。
【図面の簡単な説明】
【0088】
【図1】他のすべての寸法は固定しておいて、流体に結合されたジョンソンノイズに関する熱機械的ノイズの強度の観察された改善のグラフである。
【図2】流体で減衰した熱機械的ノイズのグラフである。
【図3】b=0.6μm、t=130nm、w=2.5μm、l=15μm及びl1=0.6μmのカンチレバーのバイアス電流250μAに対するいくつもの液体内で予想される信号のグラフである。
【図4】顕微鏡的に拡大したカンチレバーの側面線図である。
【図5】非特異的結合の事象の関数としての分画受容体の専有性のグラフである。
【図6】「位相検出器」又は「ロックイン増幅器」又は相関受信機として知られている検出器の線図である。
【図7】SNRの関数としての検出器の性能Pdを示すグラフである。
【図8a】二重カンチレバーシステムの上面線図である。
【図8b】図8aに示すシステムの側断面線図である。
【図8c】カンチレバーがリガンドで結合されている他の実施態様の平面線図である。
【図9】距離rの関数としての振動カンチレバーに平行の流体の速度の成分のグラフである。
【図10】微小流体の流動チャネルに結合されたピエゾ抵抗カンチレバーの概略側断面図である。
【図11a−11c】図10に示すカンチレバーのアレーの倍率を増大して示した斜視線図である。
【図12a】バイオNEMS変換器の走査型電子顕微鏡の写真である。
【図12b】図12aに示す変換器の上面線図である。
【図13a−13m】膜からバイオNEMS流体センサを製造する方法を示す一連の線図である。
【図14】追加のダンパ(damper)として分子的に結合されたフラフボールを有するカンチレバーの動的作動をモデル化して示す線図である。

【特許請求の範囲】
【請求項1】
支持体、並びに
支持体に結合されてその支持体から延びる長さがlで幅がwでありかつ先端を有するピエゾ抵抗カンチレバーであって、そして幅が狭くした幅bで長さがl1の制限部分及び前記先端もしくはその近傍に生物機能化部分を有するピエゾ抵抗カンチレバー、
を備えてなるサブミクロンバイオNEMS装置。
【請求項2】
制限部分が、支持体に結合された幅が狭くした幅bの複数のレッグで構成されている請求項1に記載のバイオNEMS装置。
【請求項3】
複数のレッグが二つのレッグであり互いにw−2bの距離をとって離れている請求項1に記載のバイオNEMS装置。
【請求項4】
さらに、カンチレバーの制限部分に加えられるバイアス電流の電源を備え、そしてバイアス電流の大きさが生物機能化された先端において許容される最大の温度上昇によって制限される請求項1に記載のバイオNEMS装置。
【請求項5】
生物機能化された先端において許容される最大の温度上昇が約1Kである請求項4に記載のバイオNEMS装置。
【請求項6】
長さがlでありかつピエゾ抵抗バイオNEMS装置が生成する信号強度に関連するバックグランドのジョンソンノイズを最小化するように選択された大きさを有する少なくとも一つの振動カンチレバーを備えている、流体中に浸漬されるピエゾ抵抗バイオNEMS装置の改良。
【請求項7】
信号強度が、流体内のピエゾ抵抗バイオNEMS装置の熱機械的ノイズのレベルに基づいている請求項6に記載の改良。
【請求項8】
ピエゾ抵抗カンチレバーが 幅はwでありそして狭い幅bの制限部分を有し、その狭い幅bがピエゾ抵抗バイオNEMSが発する信号強度に関するジョンソンノイズを減らすように選択されているピエゾ抵抗バイオNEMS装置。
【請求項9】
信号強度が、流体内のピエゾ抵抗バイオNEMS装置の熱機械的ノイズのレベルに基づいている請求項8に記載の改良。
【請求項10】
対象のリガンドと結合させるためバイオNEMS装置上に配置された受容体及びその受容体の対象のリガンドとの結合速度係数を高めるため受容体とともにバイオNEMS装置上に配置された触媒を含んでいる 流体内に浸漬される生物機能化されたバイオNEMS装置の改良。
【請求項11】
触媒が、受容体-リガンドの結合活性化エネルギーを低下させる請求項10に記載の改良。
【請求項12】
受容体が、対象のリガンドと優先的に結合するように強制進化によって設計されている請求項10に記載の改良。
【請求項13】
キャリヤ信号源、
支持体、
その支持体に結合されその支持体から延びるピエゾ抵抗カンチレバー、及び
そのカンチレバーが前記キャリヤ信号源からのキャリヤ信号で駆動されるように、カンチレバー上に配置されかつ前記キャリヤ信号源に電磁気で結合されているエレメント、
を備えてなるサブミクロン装置。
【請求項14】
エレメントがカンチレバー上に配置された磁気膜を含みそしてキャリヤ信号源がその磁気膜に結合された電磁気信号を発する請求項13に記載の装置。
【請求項15】
各々出力信号を発する複数のNEMS変換器、及び
その複数のNEMS変換器からの対応する複数の出力信号を処理して総合出力信号を得る手段、
を備えてなる装置。
【請求項16】
前記総合出力信号が平均値になるように、前記手段が複数の出力信号を平均する請求項15に記載の装置。
【請求項17】
前記手段が、 複数の出力信号の予め定められた画分が予め定められた期間内に閾値を超えるかどうかを、確認する請求項15に記載の装置。
【請求項18】
複数のNEMS変換器が各々生物機能化され、そして前記手段が、これらNEMS変換器のうちの一つと比べて増大したリガンド捕獲速度を指示する総合出力信号を発するだけでリガンド捕獲速度を有効に増大する請求項15に記載の装置。
【請求項19】
隣接する変換器のアレーを形成している流体内に浸漬される複数のNEMS変換器を備え、そのNEMS変換器が各々出力信号を発し、二つの隣接NEMS変換器の運動が、その隣接NEMS変換器の浸漬されている流体を通じて互いに結合される、流体内に浸漬される装置。
【請求項20】
二つの隣接するNEMS変換器で構成された第一と第二のNEMS変換器の運動の相互相関:C12=<x1(0)x2(t)>が、下記式:

(式中、kBはボルツマン定数であり、Tは流体の温度であり、tは時間でありそしてX12は第一変換器に作用する力F1に対する第二変換器の変位x2(t)を示す「サスセプティビリティー」である)で定義され、その結果、第二変換器のポジションの総合平均が、下記式:

で定義される請求項19に記載の装置。
【請求項21】
流体の流れを運ぶ微少流体の流動チャネル、及び
流体の特性をNEMS変換器で検出するように、微少流体の流動チャネル内に配置された少なくとも一つのNEMS変換器、
を備えてなる流体内に浸漬される装置。
【請求項22】
NEMS変換器が生物機能化され、そしてNEMS変換器によって検出される流体の特性が、そのNEMS変換器が生物機能化されているリガンドが流体中に存在しているか又は存在していないかという特性である請求項21に記載の装置。
【請求項23】
さらに複数のNEMS変換器を備え、そのNEMS変換器が各々流動チャネル内に共通に配置されている請求項21に記載の装置。
【請求項24】
さらに、複数のNEMS変換器が分布されている複数の流動チャネルを含む請求項23に記載の装置。
【請求項25】
複数のNEMS変換器が表面を形成されている請求項23に記載の装置。
【請求項26】
複数のNEMS変換器が膜を形成されている請求項23に記載の装置。
【請求項27】
ウェーハ層、そのウェーハ層上のエッチング停止層、そのエッチング停止層上のNEMS装置層及びそのNEMS装置層上のピエゾ抵抗層を有するヘテロ構造体を提供し、
前記ウェーハ層を通ってエッチング停止層までトレンチエッチングを行い、NEMS装置が画成される膜になる領域を画成し、
トレンチの底部のエッチング停止層を装置層まで除いて膜を形成させ、
その膜のピエゾ抵抗層上に導電性接点を電子ビームリソグラフィーで選択的に形成させ、
生物機能化されるようになる領域を、膜のピエゾ抵抗層上に、電子ビームリソグラフィーで選択的に形成させ、
生物機能化されるようになる領域を含む前記膜のピエゾ抵抗層上にNEMS装置を電子ビームリソグラフィーで選択的に形成させ、
その膜を選択的にプラズマエッチングしてマスクされていない部分を除いて懸架NEMS装置を画成し、
前記膜の回りに配置されたエラストマー層内に流動チャネルを選択的に成形し、次いで
NEMS装置の選択された領域を生物機能化させる、
ステップを含んでなる膜からバイオNEMS装置を製造する方法。
【請求項28】
ヘテロ構造体を提供する工程が、ウェーハ層を研磨してエラストマー層に対する接着性を促進するステップをさらに含んでいる請求項27に記載の方法。
【請求項29】
ヘテロ構造体を提供する工程が、ウェーハ層を薄くするステップをさらに含んでいる請求項27に記載の方法。
【請求項30】
膜を選択的にプラズマエッチングしてマスクされてない部分を除いて懸架NEMS装置を画成する工程が、NEMS装置の層のマスクされていない部分を選択的に垂直にプラズマエッチングするステップを含んでいる請求項27に記載の方法。
【請求項31】
膜のまわりに配置されたエラストマー層内に流動チャネルを選択的に成形する工程が、流動チャネルを画成させるためフォトレジスト層を選択的に配置し、その選択的に配置されたフォトレジスト層の上にエラストマー層を配置し、次いでそのフォトレジスト層を除いて流動チャネルを画成するステップを含んでいる請求項27に記載の方法。
【請求項32】
リガンドに対して生物機能化されて流体中に浸漬される先端をそなえた共振部材、
流体中に配置されている結合性分子、及び
減衰力を提供するため流体中に配置されているフラフボール、
を備えてなり、その結合性分子によるリガンドの捕獲とその結合性分子によるフラフボールの捕獲によって、リガンドが前記部材の生物機能化された先端に結合したときに前記部材の減衰が増大する、リガンドを検出するため流体中に浸漬されるNEMS装置。
【請求項33】
フラフボールがスターデンドリマーで構成されている請求項32に記載のNEMS装置。
【請求項34】
共振部材の、リガンドに対し生物機能化されている先端を流体中に浸漬し、
結合性分子を流体中にいれ、
フラフボールを流体中に入れ、
その結合性分子によってリガンドを捕獲し、
その結合性分子によってフラフボールを捕獲し、次いで
リガンドを、共振部材の生物機能化された先端に結合させて共振部材の減衰を増大させる、
ステップを含むNEMS装置によって流体中のリガンドを検出する方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8a】
image rotate

【図8b】
image rotate

【図8c】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11a】
image rotate

【図11b】
image rotate

【図11c】
image rotate

【図12a】
image rotate

【図12b】
image rotate

【図13a】
image rotate

【図13b】
image rotate

【図13c】
image rotate

【図13d】
image rotate

【図13e】
image rotate

【図13f】
image rotate

【図13g】
image rotate

【図13h】
image rotate

【図13i】
image rotate

【図13j】
image rotate

【図13k】
image rotate

【図13l】
image rotate

【図13m】
image rotate

【図14】
image rotate


【公表番号】特表2006−512564(P2006−512564A)
【公表日】平成18年4月13日(2006.4.13)
【国際特許分類】
【出願番号】特願2004−503610(P2004−503610)
【出願日】平成15年5月7日(2003.5.7)
【国際出願番号】PCT/US2003/014284
【国際公開番号】WO2003/095616
【国際公開日】平成15年11月20日(2003.11.20)
【出願人】(500226339)カリフォルニア インスティチュート オブ テクノロジー (4)
【氏名又は名称原語表記】CALIFORNIA INSTITUTE OF TECHNOLOGY