説明

原盤製造方法、凹凸パターン担持体製造方法および磁気ディスク媒体製造方法

【課題】磁気ディスク媒体におけるアドレスエラーレートを低減させる。
【解決手段】基板に、レジストの塗布、露光、現像を実施して、レジストパターンを形成し、そのレジストパターンをマスクとして基板をエッチングすることにより、磁気ディスクパターンに対応した凹凸パターンを表面に有する凹凸パターン担持体を成形するための原盤を製造する際に、サーボパターンにおけるバースト方式が位相方式である場合は、サーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて、|α|>6、(0.009×α−0.065)×L<x<(0.009×α+0.065)×Lの条件を満たすズレ量xだけずらした位置に露光する。ここで、αは、トラックTのスキュー角であり、Lは、トラックTの半径方向の長さである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ディスクリートトラックメディアやビットパターンメディアなどの高密度磁気記録媒体用のインプリントモールドや磁気転写用マスター担体などの凹凸パターン担持体を成形するための原盤を製造する方法に関するものである。
【0002】
また、該原盤を用いて凹凸パターン担持体を製造する方法、さらには該凹凸パターン担持体であるインプリントモールドを用いて凹凸パターンが転写されてなる磁気ディスク媒体の製造方法および磁気転写用マスター担体を用いて磁化パターンが転写されてなる磁気ディスク媒体の製造方法に関するものである。
【背景技術】
【0003】
超高記録密度の磁気ディスク媒体として、複数の記録トラックを磁気的に分離したディスクリートトラックメディア(DTM:Discrete Track Media)や微小な単磁区のアレイを形成し、単磁区1個に1ビットを記録するビットパターンメディア(BPM:bit pattern media)などが注目されている。
【0004】
磁気ディスク媒体は、たとえば磁気転写用マスター担体とスレーブ媒体(磁気ディスク媒体の中間体)とを密着させ、磁界を印加することにより、マスター担体の表面に設けられた凹凸パターンに応じた磁化パターンをスレーブ媒体に磁気転写して製造される。また、インプリントモールドの表面に設けられた凹凸パターンを,基板上に塗布した樹脂材料(磁気ディスク媒体の中間体)に押し付けて形状を転写して製造できる。
【0005】
インプリントモールドや磁気転写用マスター担体などの凹凸パターン担持体は、その凹凸パターン担持体とは反転パターンを有する原盤を用いて効率よく製造できる。たとえば原盤を型とした電鋳法により凹凸パターン担持体の基板部を成形し、該基板部に磁性層を成膜して凹凸パターン担持体を製造できる。
【0006】
原盤は、平坦基板の表面にレジストの塗布・露光・現像を実施してレジストパターンを形成し、このレジストパターンをマスクとして基板をエッチングし、さらに残存レジストを除去することにより製造される。
【0007】
磁気ディスク媒体においては、狭いトラック幅において正確に磁気ヘッドを走査させて高いS/N比で信号を再生するために、磁気ディスク媒体上に配列されたサーボ領域に、位置誤差を検出するためのバーストパターンを含むサーボパターンを形成しておき、磁気ヘッドが、このサーボ領域を走査してサーボパターンを読み取り自らの位置を確認しつつ修正する技術が用いられている
【0008】
サーボパターンは、バーストパターンのパターン方式によって、振幅サーボパターン(4Burst、Null)および位相サーボパターン(Chevron)の2種類に分類できる(図1参照)。振幅方式を用いたサーボパターンである振幅サーボパターンでは、バーストパターンの振幅から位置誤差信号(PES:Position Error Signal)を算出してオフトラック位置を割り出し、位相方式を用いたサーボパターンである位相サーボパターンでは、バーストパターンの波形の位相情報からPESを算出してオフトラック位置を割り出す。
【0009】
しかし、サーボパターンのアドレスパターンに対するバーストパターンの位置が仕様からずれてしまうと、誤ったオフトラック量がフィードバックされ、その結果アドレスエラーレート(AER:Address Error Rate)が大きくなってしまう。
【0010】
特許文献1では、磁気ディスク媒体に形成された振幅サーボパターンの位置や形状が、磁気ヘッドがトラッキングをとるために充分なものであるか否かを検査する方法が提案されている。
【0011】
サーボパターンは、このサーボパターンに対応する凹凸パターンが形成された原盤を型として該原盤とは反対の凹凸パターンを表面に有する凹凸パターン担持体を製造し、さらに該凹凸パターン担持体の凹凸パターンを磁気ディスク媒体の中間体である非転写体に転写することにより、磁気ディスク媒体に凹凸パターンまたは磁化パターンなどとして形成される。
【0012】
原盤の製造過程において、電子ビーム描画装置などによってパターンを描画(露光)する段階では、サーボパターンのアドレスパターンに対するバーストパターンの位置ズレは発生しておらず、正規のパターン配置が形成されていることが、現像後のSEM、TEMの測長結果より確認されている。
【0013】
ところで、描画されたサーボパターンは、Skew角αに応じてその線幅が変化する。たとえば図2に示すように、位相バーストにおいてSkew角αがそれぞれ+kdeg、0deg、−kdeg(k>0)である場合を考えると、位相角度θに対しSkew角αの影響が加わることでパターンが太くなったり細くなったりする(位相角度θ:θ<θ<θ-k、線幅W:W<W<W-k)。しかし、位相情報を算出する際の基準となるサーボタイミングマークもSkew角αだけ傾いているため、オフトラック量はSkew角α=0degの時と全く同じであり、描画段階でパターンが太る/細るのはアドレスとバーストの位置ズレの要因とはなりえない。
【0014】
しかし、次の工程である反応性イオンエッチング(RIE:Reactive Ion Etching)においては、描画段階で問題とならなかったパターンの太/細がオフトラック量のオフセット(誤ったオフトラック量)の要因となると考えられる。それは物理的な線幅によりエッチング幅にオフセットがかかるためであり、下記表1に示すように、実系においても線幅が太くなるほど、RIEで太くなる量(Δ)が大きくなることを確認している。表1は、線幅が異なるパターンそれぞれについて、原盤の製造過程におけるEB描画後に測定した線幅(nm)と、その原盤を用いて製造されたNiマスター担体においてに測定した線幅(nm)と、それらの線幅の差Δ(nm)を示す。
【表1】

【0015】
ただし、パターン仕様、RIEの条件が同じでも実験毎にΔの値は変化することも確認されているため、一概にオフセット量を規定することは難しい。更に、RIEにおいては、サーボ領域全面にプラズマを照射する必要性から途中複数回基板を回転させる必要があるため、パターン太さに面内ムラが出来やすく周内で数nm程度の幅で変動することがわかっており(元の線幅で異なる幅を持つ)、このこともオフトラック量オフセットの一因となっていると考えられる。このように、アドレスパターンに対するバーストパターンの位置ズレは複数の要因によって複雑に変化することが判明し、そのズレ量によっては記録媒体に記録したサーボが正常に動作せずAERが増加することも確認されている。特に最近は高記録密度化の要望に応じてビット長やトラックの半径方向の長さが短くなり、相対的にこのズレ量が無視できなくなっている。そのため、何らかの方法でこのズレ量をサーボが正常に機能する範囲に抑える技術が望まれている。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開2007−299461号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
しかしながら、従来の方法により製造された磁気ディスク媒体では、その製造過程における各種要因によってサーボパターンのアドレスパターンに対するバーストパターンの位置にズレが生じ、その結果アドレスエラーが発生するという問題がある。特に、サーボパターンにおけるバースト方式が位相方式である場合はスキュー角が6degより大きい部分において、振幅方式である場合はスキュー角が10degより大きい部分において、AERが許容範囲以上に大きくなってしまう傾向がある。ここで、スキュー角は、トラックの接線方向に対する磁気ヘッドの軸線方向の角度をいう。
【0018】
本発明は上記事情に鑑みてなされたものであって、磁気ディスク媒体におけるAERを許容範囲に抑えることができる原盤製造方法を提供することを目的とするものである。
【0019】
また、本発明は、上記原盤製造方法により製造された原盤を用いた凹凸パターン担持体製造方法を提供すること、および、その凹凸パターン担持体を用いて凹凸パターンもしくは磁気パターンが転写されてなる磁気ディスク媒体の製造方法を提供することを目的とするものである。
【課題を解決するための手段】
【0020】
本発明の原盤製造方法は、基板に、レジストの塗布、複数のトラックに沿って円周方向に配置されたサーボパターンを含む所望の磁気ディスクパターンに対応するパターンの露光および現像を実施して、レジストパターンを形成し、そのレジストパターンをマスクとして基板をエッチングすることにより、磁気ディスクパターンに対応した凹凸パターンを表面に有する凹凸パターン担持体を成形するための原盤を製造する方法であって、前記露光において、各トラックをトラックT(T=0、1、2、…、N)としたとき、トラックTに対する位相方式を用いたサーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて下記式(1)の条件を満たすズレ量xだけずらした位置に露光することを特徴とするものである(第1の原盤製造方法)。
【数1】

ここで、αは、トラックTのスキュー角であり、Lは、トラックTの半径方向の長さである。また、x<0のときに半径方向内側に向けてズレ量xだけずらすというのは、半径方向外側に向けて|x|だけずらすことを意味する。
【0021】
本発明の原盤製造方法は、基板に、レジストの塗布、複数のトラックに沿って円周方向に配置されたサーボパターンを含む所望の磁気ディスクパターンに対応するパターンの露光および現像を実施して、レジストパターンを形成し、そのレジストパターンをマスクとして基板をエッチングすることにより、磁気ディスクパターンに対応した凹凸パターンを表面に有する凹凸パターン担持体を成形するための原盤を製造する方法であって、前記露光において、各トラックをトラックT(T=0、1、2、…、N)としたとき、トラックTに対する振幅方式を用いたサーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて下記式(2)の条件を満たすズレ量xだけずらした位置に露光することを特徴とするものである(第2の原盤製造方法)。
【数2】

ここで、αは、トラックTのスキュー角であり、Lは、トラックTの半径方向の長さである。また、x<0のときに半径方向内側に向けてズレ量xだけずらすというのは、半径方向外側に向けて|x|だけずらすことを意味する。
【0022】
本発明の第1および第2の原盤製造方法のそれぞれにおいて、露光は電子線描画によるものであり、エッチングは反応性イオンエッチングによるものであってもよい。
【0023】
本発明の凹凸パターン担持体製造方法は、本発明の第1または第2の原盤製造方法により製造された原盤を用いて、凹凸パターン担持体を製造することを特徴とするものである。
【0024】
本発明の磁気ディスク媒体製造方法は、本発明の凹凸パターン担持体製造方法により製造された凹凸パターン担持体であるインプリントモールドを用い、該モールドの表面に設けられた凹凸パターンを被転写媒体に転写して磁気ディスク媒体を製造することを特徴とするものである(第2の磁気ディスク媒体製造方法)。
【0025】
本発明の磁気ディスク媒体製造方法は、本発明の凹凸パターン担持体製造方法により製造された凹凸パターン担持体である磁気転写用マスター担体を用い、該マスター担体の表面に設けられた凹凸パターンに応じた磁化パターンを被転写媒体に磁気転写して磁気ディスク媒体を製造することを特徴とするものである(第2の磁気ディスク媒体製造方法)。
【発明の効果】
【0026】
本発明の第1および第2の原盤製造方法によれば、原盤を製造する際に、サーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて、それぞれ上記式(1)および上記式(2)の条件を満たすズレ量xだけずらした位置に露光するようにしたので、磁気ディスク媒体の製造過程における各種要因によって生じるアドレスパターンに対するバーストパターンの位置ズレを相殺でき、この原盤を用いて最終的に製造される磁気ディスク媒体の全体においてAERを許容範囲に抑えることができる。
【0027】
特に、磁気ディスク媒体の、サーボパターンにおけるバースト方式が位相方式である場合はスキュー角が6degより大きい部分において、振幅方式である場合はスキュー角が10degより大きい部分において、AERを許容範囲に抑えることができる。
【0028】
本発明の凹凸パターン担持体製造方法によれば、上記第1または第2の原盤製造方法により製造された原盤を用いて、凹凸パターン担持体を製造するようにしたので、その凹凸パターン担持体を用いて製造される磁気ディスク媒体の全体においてAERを許容範囲に抑えることができる
【0029】
本発明の第1および第2の磁気ディスク媒体製造方法によれば、それぞれ上記凹凸パターン担持体製造方法により製造された凹凸パターン担持体である、インプリントモールドおよび磁気転写用マスター担体を用いて磁気ディスク媒体を製造するようにしたので、全体においてAERが許容範囲に抑えられた磁気ディスク媒体を製造することができる。
【図面の簡単な説明】
【0030】
【図1】バーストパターンの種類を示す図
【図2】Skew角と位相バーストパターンの形状の関係を示す図
【図3】電子ビーム描画装置の構成概略図
【図4】原盤の製造方法および凹凸パターン担持体の製造方法を示す工程図
【図5】磁気ディスク媒体の製造方法を示す工程図
【図6】原盤に形成したテストパターンの状態を示す図
【図7】原盤に形成したテストパターンの状態を示す図
【図8】位相方式におけるスキュー角とズレ量の関係を示すグラフ
【図9】振幅方式におけるスキュー角とズレ量の関係を示すグラフ
【図10】トラックの半径方向の長さとズレ量の関係を示すグラフ
【発明を実施するための形態】
【0031】
以下、本発明の実施の形態について説明する。本発明の原盤製造方法においては、各製造工程の中でも特に露光工程が特徴的であるので、はじめに、その露光工程の実施に用いられる露光装置の一例として電子ビーム描画装置について説明する。図3は電子ビーム描画装置の構成概略図である。
【0032】
<電子ビーム描画装置>
電子ビーム描画装置100は、原盤に対して電子ビームを照射する電子ビーム照射部20と、原盤を回転および直線移動させる駆動部30と、駆動部30における機械的な駆動制御を行う駆動制御部40と、描画クロックの生成を行うと共に、電子ビーム照射部20および駆動部30の動作タイミング信号を出力するフォーマッタ50と、描画すべきパターンに関する設計データを出力するデータ信号送出装置5とを備えている。また、本電子ビーム描画装置100は、描画すべきパターンのうち特定描画パターンについてその描画タイミングが変更されるように、データ信号送出装置5から出力される設計データに対し変更を加える描画位置変更手段60を備えている。
【0033】
電子ビーム照射部20は、鏡筒18内に電子ビームEBを出射する電子銃21、電子ビームEBを半径方向Yおよび円周方向Xへ偏向させるとともに円周方向Xに一定の振幅で微小往復振動させる偏向手段22,23、電子ビームEBの照射をオン・オフするためのブランキング手段24としてアパーチャ25およびブランキング26(偏向器)を備えており、電子銃21から出射された電子ビームEBは偏向手段22、23および図示しない電磁レンズ等を経て、原盤(ここでは、レジスト11が塗布された基板10)上に照射される。
【0034】
ブランキング手段24における上記アパーチャ25は、中心部に電子ビームEBが通過する透孔を備え、ブランキング26はオン・オフ信号の入力に伴って、オフ信号時には電子ビームEBを偏向させることなくアパーチャ25の透孔を通過させて照射させ、一方、オン信号時には電子ビームEBを偏向させてアパーチャ25の透孔を通過させることなくアパーチャ25で遮断して、電子ビームEBの照射を行わないように作動する。
【0035】
駆動部30は、鏡筒18が上面に配置された筐体19内に原盤を支持する回転ステージ31および該ステージ31の中心軸と一致するように設けられたモータ軸を有するスピンドルモータ32と備えた回転ステージユニット33と、回転ステージユニット33を回転ステージ31の一半径方向に直線移動させるための直線移動手段34とを備えている。直線移動手段34は、回転ステージユニット33の一部に螺合された精密なネジきりが施されたロッド35と、このロッド35を正逆回転駆動させるパルスモータ36とを備えている。また、ステージユニット33には、回転ステージ31の回転角に応じたエンコーダ信号を出力するエンコーダ37が設置されている。エンコーダ37は、スピンドルモータ32のモータ軸に取り付けられる、多数の放射状のスリットが形成された回転板38と、そのスリットを光学的に読み取り、エンコーダ信号を出力する光学素子39とを備えている。
【0036】
駆動制御部40は、駆動部30のスピンドルモータ32のドライバ41およびパルスモータ36のドライバ42に駆動制御信号を送出し、これらの駆動を制御するものである。
【0037】
フォーマッタ50は、不変の基準クロックを発生する基準クロック発生部を51と、描画クロックを生成する描画クロック生成部52と、描画クロックに基づいて、電子ビーム照射部20の偏向手段22,23のための偏向アンプ28およびブランキング26のためのブランキングアンプ29、およびスピンドルモータのドライバ41に接続されているPLL回路へデータ信号を送出するデータ振分け部54と、エンコーダ37からの信号を受けて、動作タイミング(データ振分けタイミング)を制御するタイミング制御部55を備えている。
【0038】
データ信号送出装置5は、ハードディスクパターンなどの所望の磁気ディスクパターン(磁気ディスク媒体のパターン)に対応する描画すべきパターンの描画設計データ(描画パターンや描画タイミングを示すデータ)を記憶し、描画設計データを出力するものである。
【0039】
描画位置変更手段60は、描画設計データのバーストパターンに対する描画タイミングデータについて変更を加えるための変更データ(バーストパターンを特定するための情報とそのタイミング変更量とを対応付けて記録したテーブル)を予め記録した記憶手段61を備え、その変更データに基づいて、データ信号送出装置5から出力された描画設計データに対し変更を加え、変更された描画設計データをフォーマッタ50に送出するものである。
【0040】
これにより、バーストパターンの描画位置が、データ信号送出装置5からの描画設計データにおいて規定されている位置(基準位置)から半径方向内側に向けて所定のズレ量だけずらした位置に変更される。ここで、所定のズレ量は、サーボパターンにおけるバースト方式が位相方式である場合は上記式(1)の条件を満たすズレ量xとし、振幅方式である場合は上記式(2)の条件を満たすズレ量xとする。
【0041】
本電子ビーム描画装置100においては、描画位置変更手段60により変更が加えられた描画設計データがフォーマッタ50に入力されると、フォーマッタ50は、入力された描画設計データを、ブランキングのオン・オフ制御、電子ビームEBのX−Y偏向制御、回転ステージ31の回転速度制御等の制御信号として、各アンプおよびドライバに振り分けるものであり、それぞれの制御信号はエンコーダ37から入力されたエンコーダ信号と同期させて所定のタイミングで送出される。そしてフォーマッタ50からの信号に基づいて、ブランキング手段24、偏向手段22,23、スピンドルモータ等が駆動され、原盤の全面に所望の微細パターンを描画する。
【0042】
<原盤製造方法>
以下、図4の工程図を参照して、本発明の原盤製造方法の一実施の形態について説明する。
【0043】
[塗布工程]
まず、図4(a)に示す如く、平坦な基板10を用意し、その表面全体にスピンコート法等によりポジ型又はネガ型のレジスト11を塗布する。
【0044】
[露光工程]
次に、図4(b)に示す如く、レジスト11が塗布された基板に、複数のトラックに沿って円周方向に配置されたサーボパターンを含む所望の磁気ディスクパターンに対応するパターンを露光する。
【0045】
この磁気ディスクパターンには、円周方向に規則的にサーボ領域とデータ領域とが交互に配置されており、サーボ領域にはサーボパターンを有する。磁気ディスクパターンは、基板10に、外周部および内周部を除く円環状領域に形成される。サーボパターンは、基板10の同心円状トラックに等間隔で、各セクターに中心部からほぼ放射方向に延びる細幅のサーボ領域に形成されてなる。一般に、サーボ領域は半径方向に延びる円弧状に形成される。
【0046】
サーボパターンには、複数トラックのトラック、たとえばトラックn〜ラックn+4に亘って、再生信号のクロックを同期させるための情報が記録されたプリアンブル、サーボ信号認識コード、セクター情報、シリンダー情報などが形成されたアドレス、および位置誤差を検出するためのバーストパターンがなどのエレメントが配置される。
【0047】
上記サーボパターンの各エレメントの描画は、電子ビーム描画装置100において、表面にレジスト11が塗布された基板10を、回転ステージ31(図3参照)に設置して回転させつつ、例えば内周側のトラックより外周側トラックへ順に、またはその反対方向へ、1トラックずつ電子ビームEBで各エレメントを順に走査しレジスト11を照射露光して行う。
【0048】
電子ビーム描画装置100においては、画位置変更手段60により、データ信号送出装置5からの描画設計データに対し、記憶手段61に記録されている変更データに基づいて変更が加えられ、バーストパターンが、データ信号送出装置5からの設計データにおいて規定されている位置(基準位置)から半径方向内側に向けて所定のズレ量だけずらした位置に描画される。
【0049】
各トラックをトラックT(T=0、1、2、…、N)としたとき、トラックTに対する位相方式を用いたサーボパターン中のバーストパターンが、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて下記式(1)の条件を満たすズレ量x(nm)だけずらした位置に描画される。
【数3】

ここで、αは、前記トラックTのスキュー角(deg)であり、Lは、前記トラックTの半径方向の長さ(nm)である。また、x<0のときに半径方向内側に向けてズレ量xだけずらすというのは、半径方向外側に向けて|x|だけずらすことを意味する。
【0050】
また、位相サーボパターンである場合には、下記式(2)の条件を満たすズレ量x(nm)だけずらした位置に描画される。
【数4】

【0051】
このように、バーストパターンを予めズレ量x(nm)だけずらした位置に描画することにより、この原盤製造を含む磁気ディスク媒体の全製造過程における各種要因によって生じるアドレスパターンに対するバーストパターンの位置ズレを相殺でき、この原盤を用いて最終的に製造される磁気ディスク媒体の全体においてAERを許容範囲に抑えることができる。
【0052】
[現像工程]
次に、現像を実施し、図4(c)に示すレジストパターンR1を形成する。
【0053】
[エッチング工程]
次に、図4(d)に示す如く、レジストパターンR1をマスクとして基板を、RIE(リアクティブ・イオン・エッチング)等のプラズマドライエッチング法によりエッチングし、平坦基板20に凹部21を形成する。
【0054】
[レジスト除去工程]
エッチング終了後、図4(e)に示す如く、酸素プラズマアッシング等を実施して残存するレジスト11を除去することにより、原盤70が完成する。
【0055】
<凹凸パターン担持体製造方法>
以下、図4の工程図を参照して、本発明の凹凸パターン担持体製造方法の一実施の形態について説明する。この凹凸パターン担持体製造方法は、上記本発明の原盤製造方法により製造された原盤70を用いてインプリントモールド80を製造するものである。
【0056】
[電鋳工程]
まず、図4(f)に示す如く、原盤70の表面全体に金属スパッタリング等により導電層82を成膜し、その上に、電鋳を実施することでインプリントモールド80を成形する。導電層82はインプリントモールド80と同一材質(例えばニッケル)で成膜することが好ましい。導電層82は電鋳によりインプリントモールド80の一部となる。
【0057】
[剥離工程]
次に、図4(g)に示す如く、インプリントモールド80を原盤70から剥離し、凹凸パターンを有するインプリントモールド80が完成する。この表面凹凸パターンは、原盤70の凹凸形状が反転されたものである。上記電鋳工程と剥離工程を繰り返し実施することで、1つの原盤70から複数のインプリントモールド80を簡易に効率よく製造できる。
【0058】
なお、原盤70を用いて磁気転写用マスター担体を製造する際には、上記電鋳工程と剥離工程を実施することで、凹凸パターンを有するマスター担体の基板部を形成する。その後、形成された基板部の表面に磁性材料をスパッタリングするなどして、基板部の表面形状に沿って磁性層を積層することにより、マスター担体が完成する。
【0059】
<第1の磁気ディスク媒体製造方法>
以下、図5の工程図を参照して、本発明の第1の磁気ディスク媒体製造方法の一実施の形態について説明する。この磁気ディスク媒体製造方法は、上記本発明の凹凸パターン担持体製造方法により製造された凹凸パターン担持体であるインプリントモールド80を用いて磁気ディスク媒体90を製造するものである。
【0060】
[転写工程]
まず、図5(a)に示す如く、アルミニウム、ガラス、シリコン、石英等の基板91上に、Fe又はFe合金、Co又はCo合金等の磁性層92を有する磁気記録媒体中間体の磁性層上にポリメタアクリル酸メチル(PMMA)等のインプリントレジスト液を塗布してなるレジスト層93を形成したレジスト層付き磁気記録媒体中間体に対して、表面に凹凸パターンが形成されたインプリントモールド80を押し当て、加圧することにより、インプリントモールド80上に形成された凹凸パターンをレジスト層93に転写する。
【0061】
[硬化工程]
次に、図5(b)に示す如く、光照射により、あるいは加熱によって上記レジスト層93を硬化させる。
―光照射による硬化―
レジスト層93を形成するインプリントレジスト組成物が、光硬化性樹脂を含む場合、紫外線などの電子線を、透明性を有するインプリントモールド80を介してレジスト層93に照射し、該レジスト層93が硬化することとなる。ここで用いる光硬化性樹脂としては、ラジカル重合タイプとカチオン重合タイプがあるが、要求されるパターン形状精度や硬化速度に対し適宜選択することができる。
【0062】
―加熱による硬化―
レジスト層93を形成するインプリントレジスト組成物が、熱可塑性樹脂を含む場合、レジスト層93にインプリントモールド80を押し当てる際に、系を前記レジスト液のガラス転移点(Tg)付近に維持しておき、転写後、前記レジスト液のガラス転移点よりも低下することによりレジスト層93が硬化することとなる。さらに、必要に応じて紫外線などを照射してパターンを硬化させてもよい。なお、インプリントレジスト組成物が、熱硬化性樹脂を含む場合、室温あるいは加熱して流動性を示す状態でレジスト層93にインプリントモールド80を押し当てて凹凸パターンを転写した後、樹脂の硬化温度まで加熱することにより、レジスト層93が硬化することとなる。
【0063】
[磁性パターン部形成工程]
次に、図5(c)に示す如く、凹凸部のパターンが転写されたレジスト層93をマスクにして、ドライエッチングを行い、レジスト層に形成された凹凸パターン形状に基づく凹凸形状を磁性層に形成する。このドライエッチングとしては、磁性層に凹凸形状を形成できるものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、イオンミリング法、反応性イオンエッチング(RIE)、スパッタエッチング、等が挙げられる。これらの中でも、イオンミリング法、反応性イオンエッチング(RIE)が特に好ましい。
【0064】
イオンミリング法は、イオンビームエッチングとも言われ、イオン源にAr等の不活性ガスを導入し、イオンを生成する。これを、グリッドを通して加速して、試料基板に衝突させてエッチングするものである。イオン源としては、カウフマン型、高周波型、電子衝撃型、デュオプラズマトロン源、フリーマン型、ECR(電子サイクロトロン共鳴)型、Closed‐drift型などが挙げられる。イオンビームエッチングでのプロセスガスとしてはAr、RIEのエッチャントとしてはCO+NH、塩素ガス、CF系ガス、CH系ガス及びこれらのガスに酸素、窒素、水素ガスを添加したものなどを用いることができる。
【0065】
[非磁性パターン部形成工程]
次に、図5(d)に示す如く、形成された凹部に非磁性材料を埋め込み、表面を平坦化した後、必要に応じて、保護膜などを形成することにより、磁気ディスク媒体90が完成する。非磁性材料としては、例えばSiO、カーボン、アルミナ、ポリメタアクリル酸メチル(PMMA)、ポリスチレン(PS)等のポリマー、円滑油などが挙げられる。保護膜としては、ダイヤモンドカーボン(DLC)、スパッタカーボン等が好ましく、該保護膜の上に更に潤滑剤層を設けてもよい。
【0066】
本発明の磁気ディスク媒体製造方法により製造された磁気ディスク媒体は、ディスクリート型磁気記録媒体及びパターンドメディア型磁気記録媒体の少なくともいずれかであることが好適である。
<第2の磁気ディスク媒体製造方法>
【0067】
以下、本発明の第2の磁気ディスク媒体製造方法の一実施の形態について説明する。この磁気ディスク媒体製造方法は、上記本発明の凹凸パターン担持体製造方法により製造された凹凸パターン担持体である磁気転写用マスター担体を用いて磁気ディスク媒体を製造するものである。
【0068】
情報が転写される被転写媒体(磁気ディスク媒体の中間体)は、例えば、基板の両面または片面に磁気記録層が形成されたハードディスク、フレキシブルディスク等であり、ここでは、磁気記録層の磁化容易方向が記録面に対して垂直な方向に形成されている垂直磁気記録媒体とする。
【0069】
予め被転写媒体に初期直流磁界をトラック面に垂直な一方向に印加して磁気記録層の磁化を初期直流磁化させておく。その後、この被転写媒体の記録層側の面とマスター担体の磁性層の面とを密着させ、被転写媒体のトラック面に垂直な方向に初期直流磁界とは逆方向の転写用磁界を印加して磁気転写を行う。その結果、転写用磁界がマスター担体の磁性層に吸い込まれ、凸部に対応する部分の被転写媒体の磁性層の磁化が反転し、その他の部分の磁化は反転しない結果、被転写媒体の磁気記録層にはマスター担体の凹凸パターンに応じた情報(例えばサーボ信号)が磁気的に転写記録される。
【0070】
なお、面内磁気記録媒体への磁気転写の場合にも、上記垂直磁気記録媒体用とほぼ同様のマスター担体が使用される。この面内記録の場合には、被転写媒体の磁化を、予めトラック方向に沿った一方向に初期直流磁化しておき、マスター担体と密着させてその初期直流磁化方向と略逆向きの転写用磁界を印加して磁気転写を行うものであり、この転写用磁界がマスター担体の凸部磁性層に吸い込まれ、凸部に対応する部分の被転写媒体の磁性層の磁化は反転せず、その他の部分の磁化が反転する結果、凹凸パターンに対応した磁化パターンを被転写媒体に記録することができる。
【0071】
以下、図6および図7を参照して、実験例1〜6について説明する。
[実験例1]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:位相方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した(図6参照)。次いで、この原盤に対し、プレーティング(電鋳後の剥離など)、磁性膜付与を行い、磁気転写用マスター担体を製造した。次いで、この磁気転写用マスター担体を用いて磁気ディスク媒体を製造した。ここでは、ズレ量xをトラックの半径方向の長さLに対する割合として示した。たとえばシリンダー番号+方向(半径方向内側の方向)に1Tr長の5%のズレ量でずらした場合、ズレ量xは+0.05Lとなる。以下同じ。
【0072】
[実験例2]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:振幅方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した(図7参照)。次いで、この原盤に対し、プレーティング(電鋳後の剥離など)、磁性膜付与を行い、磁気転写用マスター担体を製造した。次いで、この磁気転写用マスター担体を用いて磁気ディスク媒体を製造した。
【0073】
[実験例3]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:位相方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。また、データ領域にはトラック間を分断するように円周状のLand/Grooveを設けた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した。次いで、この原盤に対しプレーティング(Ni電鋳後の剥離など)を行うことにより、Niからなるインプリントモールドを製造した。次いで、このインプリントモールドを用いて垂直磁気記録媒体に対し、垂直転写を実施することにより磁気ディスク媒体を製造した。
【0074】
[実験例4]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:振幅方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。また、データ領域にはトラック間を分断するように円周状のLand/Grooveを設けた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した。次いで、この原盤に対しプレーティング(Ni電鋳後の剥離など)を行うことにより、Niからなるインプリントモールドを製造した。次いで、このインプリントモールドを用いて垂直磁気記録媒体に対し、垂直転写を実施することにより磁気ディスク媒体を製造した。
【0075】
[実験例5]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:位相方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。また、データ領域にはトラック間を分断するように円周状のLand/Grooveを設けた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した。次いで、この原盤に対しプレーティングを行うことにより、Qzからなるインプリントモールドを製造した。次いで、このインプリントモールドを用いて垂直磁気記録媒体に対し、垂直転写を実施することにより磁気ディスク媒体を製造した。
【0076】
[実験例6]
マスタークロックのレート:2000000(Hz)、トラックの半径方向の長さL:100(nm)、セクター数:256本、サーボパターンのバースト方式:振幅方式、バーストの周期:1周期/4トラック=1T/4Trの仕様を用いた。また、データ領域にはトラック間を分断するように円周状のLand/Grooveを設けた。レジストが塗布された基板上に、2deg刻みの各Skew角α=20,18,・・・,−20(deg)のトラックに沿ってそれぞれ、バーストパターンを基準位置から半径方向に0.05L刻みのズレ量x=−0.2L,−0.15L,・・・,0.2L(nm)でそれぞれずらした位置に形成した9つのBandパターン(テストパターン:半径方向の幅0.2mm)をEB描画し、現像、RIE(反応性イオンエッチング)することにより原盤を製造した。次いで、この原盤に対しプレーティングを行うことにより、Qzからなるインプリントモールドを製造した。次いで、このインプリントモールドを用いて垂直磁気記録媒体に対し、垂直転写を実施することにより磁気ディスク媒体を製造した。
【0077】
上記各実験例1〜6において製造した各磁気ディスク媒体上に形成された全てのBandパターンに対してそれぞれ後述するAER測定方法によりAERを測定し、実験例1,3,5の測定結果は図8に、実験例2,4,6の測定結果は図9に示した。図8および図9では、AER<10−6が達成できたズレ量xの範囲の上限と下限をグラフ上にプロットし、それらの点を結ぶ線を示している。
【0078】
<AERの測定方法>
300MHz以上の周波数成分を除去した再生波形100000周分を、スピンスタンドを用いてTMRヘッド(リードコア幅80nm)で取得し、デコードプログラムを使用して解析した。これより求められた全セル数に対するアドレスエラーの数よりAERを計算した。
【0079】
また、トラックの半径方向の長さLをそれぞれ50,60,・・・,100(nm)とした仕様で、各Skew角α=16,0.5,−10(deg)の位置に形成されたテストパターンのそれぞれに対してAERを測定し、AERがもっとも低い値を示すときのズレ量xの値を調べ、その結果を図10に示した。図10では、ズレ量xの最適値がトラックの半径方向の長さLに比例することが示されている。
【0080】
また、上記各実験例1〜6の結果それぞれから、AER<10−6が達成できたズレ量xの範囲をSkew角αとトラックの半径方向の長さLにより規定した関係式を求め、表2に示した。
【表2】

【0081】
表2では、サーボパターンにおけるバースト方式が位相方式である場合はズレ量xが上記式(1)の条件を満たすとき、振幅方式である場合はズレ量xが上記式(2)の条件を満たすとき、AERを許容範囲である10−6以下に抑えられることが示されている。
【0082】
以下、比較例1〜6と、実験例1〜6について説明する。
比較例1〜比較例6では、それぞれ実験例1〜6と同じ仕様で、レジストが塗布された基板上に、一般的な磁気ディスクパターンをズレ量ゼロでEB描画し、現像、RIEすることにより原盤を製造した。次いで、この原盤に対し、プレーティング、磁性膜付与を行い、磁気転写用マスター担体を製造した。次いで、この磁気転写用マスター担体を用いて磁気ディスク媒体を製造した。
【0083】
実験例1、3、5では、それぞれ実験例1,3,5と同じ仕様で、レジストが塗布された基板上に、一般的な磁気ディスクパターンを、各トラックをトラックT(T=0、1、2、…、N)としたとき、トラックTに対する位相方式を用いたサーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けてズレ量x(nm)=0.009α×Lだけずらした位置にEB描画し、現像、RIEすることにより原盤を製造した。次いで、この原盤に対し、プレーティング、磁性膜付与を行い、磁気転写用マスター担体を製造した。次いで、この磁気転写用マスター担体を用いて磁気ディスク媒体を製造した。
【0084】
実験例2、4、6では、それぞれ実験例2,4,6と同じ仕様で、レジストが塗布された基板上に、一般的な磁気ディスクパターンを、各トラックをトラックT(T=0、1、2、…、N)としたとき、トラックTに対する振幅方式を用いたサーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けてズレ量x(nm)=0.004α×Lだけずらした位置にEB描画し、現像、RIEすることにより原盤を製造した。次いで、この原盤に対し、プレーティング、磁性膜付与を行い、磁気転写用マスター担体を製造した。次いで、この磁気転写用マスター担体を用いて磁気ディスク媒体を製造した。
【0085】
上記各比較例1〜6、実験例1〜6において製造した磁気ディスク媒体のそれぞれについて、該磁気ディスク媒体上の各Skew角α=20,18,・・・,−20(deg)のトラック位置においてAERを測定・評価し、比較例1〜6の結果は表3に、実験例1〜6の結果は表4に示した。表3および表4では、AER<10−6である場合を○とし、AER≧10−6である場合を×とした。
【0086】
【表3】

【0087】
【表4】

【0088】
表3によると、比較例1,3,5(位相方式を用いたサーボパターン)では、Skew角の絶対値|α|≦6の位置範囲では評価結果が○であるが、|α|>6の位置範囲では評価結果が×となった。比較例2,4,6(振幅方式を用いたサーボパターン)では、Skew角の絶対値|α|≦10の位置範囲では評価結果が○であるが、|α|>10の位置範囲では評価結果が×となった。一方、表4によると、実施例1〜6では、スキュー角の全範囲で、評価結果が○となった。
【0089】
上記表3および表4の結果より、本発明の原盤製造方法により、原盤を製造する際に、サーボパターンにおけるバースト方式が位相方式である場合は、サーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて、上記式(1)の条件を満たすズレ量xだけずらした位置に露光するようにし、サーボパターンにおけるバースト方式が振幅方式である場合は、サーボパターン中のバーストパターンを、サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて、上記式(2)の条件を満たすズレ量xだけずらした位置に露光するようにすることにより、この原盤を用いて最終的に製造される磁気ディスク媒体の全体においてAERを許容範囲に抑えることができることが確認できた。
【符号の説明】
【0090】
100 電子ビーム描画装置
10 基板
11 レジスト
60 描画位置変更手段
61 記憶手段
70 原盤
80 インプリントモールド
90 磁気ディスク媒体

【特許請求の範囲】
【請求項1】
基板に、レジストの塗布、複数のトラックに沿って円周方向に配置されたサーボパターンを含む所望の磁気ディスクパターンに対応するパターンの露光および現像を実施して、レジストパターンを形成し、
該レジストパターンをマスクとして前記基板をエッチングすることにより、
前記磁気ディスクパターンに対応した凹凸パターンを表面に有する凹凸パターン担持体を成形するための原盤を製造する方法であって、
前記露光において、前記各トラックをトラックT(T=0、1、2、…、N)としたとき、前記トラックTに対する位相方式を用いたサーボパターン中のバーストパターンを、前記サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて下記式(1)の条件を満たすズレ量x(nm)だけずらした位置に露光する
ことを特徴とする原盤製造方法。
【数1】

αは、前記トラックTのスキュー角(deg)
は、前記トラックTの半径方向の長さ(nm)
【請求項2】
基板に、レジストの塗布、複数のトラックに沿って円周方向に配置されたサーボパターンを含む所望の磁気ディスクパターンに対応するパターンの露光および現像を実施して、レジストパターンを形成し、
該レジストパターンをマスクとして前記基板をエッチングすることにより、
前記磁気ディスクパターンに対応した凹凸パターンを表面に有する凹凸パターン担持体を成形するための原盤を製造する方法であって、
前記露光において、前記各トラックをトラックT(T=0、1、2、…、N)としたとき、前記トラックTに対する振幅方式を用いたサーボパターン中のバーストパターンを、前記サーボパターン中のアドレスパターンとの関係で規定される基準位置から半径方向内側に向けて下記式(2)の条件を満たすズレ量x(nm)だけずらした位置に露光する
ことを特徴とする原盤製造方法。希望
【数2】

αは、前記トラックTのスキュー角(deg)
は、前記トラックTの半径方向の長さ(nm)
【請求項3】
前記露光が、電子線描画によるものであり、
前記エッチングが、反応性イオンエッチングによるものであることを特徴とする請求項1または2記載の原盤製造方法。
【請求項4】
請求項1から3のいずれか1項記載の製造方法により製造された原盤を用いて、前記凹凸パターン担持体を製造することを特徴とする凹凸パターン担持体製造方法。
【請求項5】
請求項4記載の製造方法により製造された凹凸パターン担持体であるインプリントモールドを用い、該モールドの表面に設けられた前記凹凸パターンを被転写媒体に転写して磁気ディスク媒体を製造することを特徴とする磁気ディスク媒体製造方法。
【請求項6】
請求項4記載の製造方法により製造された凹凸パターン担持体である磁気転写用マスター担体を用い、該マスター担体の表面に設けられた前記凹凸パターンに応じた磁化パターンを被転写媒体に磁気転写して磁気ディスク媒体を製造することを特徴とする磁気ディスク媒体製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate