説明

反射保護シートおよびその製造方法、半導体発電装置

【課題】半導体発電装置の発電効率を向上させることができ、かつ熱の影響に対して充分な耐性を有する反射保護シートおよびその製造方法、ならびに該反射保護シートを備える半導体発電装置の提供。
【解決手段】反射保護シート5は、透光性材料からなる透過層51と、その裏面側に配置され、透過層51側から入射した光を反射する反射機能を有する反射構造層57と、その裏面側に配置された中間層55と、その裏面側に配置された外層56と、を有し、反射構造層57は、反射膜54と、透光性材料からなり反射膜54の前面側に配置された凹凸層53と、透光性材料からなり凹凸層53の前面側に配置された密着保持層52と、から構成され、凹凸層53は、複数の凹凸構造53aが密着保持層52の裏面上に規則的に配列してなるものであり、該凹凸構造53aの裏面に沿って反射膜54が形成されており、密着保持層52の厚みが1〜50μmである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、反射保護シートおよびその製造方法、ならびに該反射保護シートを備える半導体発電装置に関する。
【背景技術】
【0002】
近年、地球温暖化問題に対する内外各方面の関心が高まる中、二酸化炭素の排出抑制のために、種々努力が続けられている。
化石燃料の消費量の増大は、大気中の二酸化炭素の増加をもたらし、その温室効果により地球の気温が上昇し、地球環境に重大な影響を及ぼす。そのため、化石燃料に代替えするエネルギーについて様々な検討が行われており、クリーンなエネルギー源である太陽光による発電に対する期待が高まっている。
太陽光による発電に使用される半導体発電装置は、光のエネルギーを直接電力に変換する光電変換部を含むセルを備えている。光電変換部としては、p型とn型の半導体を接合したpn接合型の構造のものが一般に用いられている。pn接合を構成する半導体としてはシリコンが最も多く使用されている。半導体発電装置に用いられるシリコンは、一般に、結晶系のものと非結晶のものに分けられる。
半導体発電装置においては一般に、セルの上側(光の入射面側)に、空気や不純物からセルを保護する目的で、前面板が設けられている。前面板としては一般に、透明な強化ガラス等のガラス基板が用いられている。また、セルの下側(光の入射面とは反対側)にも、同様の目的で、保護シートが設けられている。また、前面板と保護シートとの間の空隙には通常、セルを固定するために、透明な充填材が充填されている。
なお、本明細書においては、上記のような、光電変換部を含む少なくとも1つのセルを、前面板、保護シート、充填材等の封止材を用いて封止してパッケージ化したものを半導体発電装置という。
【0003】
半導体発電装置は、通常、小片サイズのセルが複数、配線で電気的に接続された構成とされている。結晶シリコン系の半導体発電装置の場合、隣り合うセル同士の間にはある程度の幅で隙間が設けられている。また、半導体発電装置の端部には、雨水などの浸食を防ぐため、セルを配していない余白部分が数ミリから数十ミリの幅で設けられている。
これらの隙間および余白部分(以下、余白領域という。)にはセルが無いため、余白領域に光が照射されても発電にはつながらず、損失となっている。
このような損失を低減し、発電効率(光電変換効率)を高めるために、従来、以下のような対応が提案されている。
例えば、結晶シリコン系の半導体発電装置には、裏面に配す保護シートとして、光反射機能を有する反射保護シートを用い、表面から入射し、余白領域を透過した光を再びセル側に戻し、前面板であるガラス板などにより全反射し、セルの受光面に再入射させ、発電効率を上げるものがある。また、セルの受光面に導く確率を向上させて発電効率を上げるために、反射保護シートの表面に、反射した光を散乱させるための凹凸構造を設けることが提案されている(特許文献1、2参照)。また、反射保護シートの表面に凹凸構造を設け、さらにセルとして両方の面が受光面となる両面入射型のもの採用することも提案されている(特許文献3参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】実開昭62−101247号公報
【特許文献2】特開平10−284747号公報
【特許文献3】特許第3670835号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述のように、半導体発電装置、特に結晶シリコン系の半導体発電装置においては、絶縁性やバリア性を得るために、セルが配置されない余白領域を作る必要があるが、この余白領域に注ぐ光の多くは発電には用いられない。面積辺りの発電効率を向上させるためには、この余白領域に注ぐ光も有効に活用する手段が望まれている。
半導体発電装置の裏面側に反射保護シートを配置し、光反射を生じさせることにより、本来は損失となってしまう光を再利用することができ、発電効率を向上させることができる。特に、反射保護シートの表面に凹凸構造を設けると、前記凹凸構造が光の回折、散乱、拡散、屈折または反射作用によって光を特定方向に偏向するため、発電効率がさらに向上する。しかし更なる発電効率の向上が望まれている。
【0006】
一方、半導体発電装置は10年以上の使用を想定していることから、その耐侯性にかかる仕様も厳しいものとなっている。
特許文献2には、反射率に優れた反射保護シートとして、アルミニウム材と耐候性樹脂フィルムとを積層した多層構造のシートに凹凸構造を付与した裏面カバー部材が記載されている。
しかし、このような金属部分を有する多層構造のシートに凹凸構造を付与した反射保護シートは、温度変化等の熱の影響を受けやすい問題がある。たとえば−40℃から85℃のサーマルサイクル試験を実施したところ、層間の密着強度が低下し、内部で剥離が生じる不具合が存在していた。また、熱によって硬化が進み、樹脂自体が収縮してクラックが入るという問題が存在した。剥離やクラックが生じると、セルに対する保護効果が損なわれてしまう。
【0007】
本発明は、上記事情に鑑みてなされたものであって、半導体発電装置の発電効率を向上させることができ、かつ熱の影響に対して充分な耐性を有する反射保護シートおよびその製造方法、ならびに該反射保護シートを備える半導体発電装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決する本発明は以下の構成を有する。
[1]光エネルギーを電力に変換するセルと、透光性材料からなり前記セルを固定する充填層と、透光性材料からなり前記充填層の前面側に配置された前面板と、前記充填層の裏面側に配置された反射保護シートと、を備える半導体発電装置に用いられる反射保護シートであって、
透光性材料からなる透過層と、前記透過層の裏面側に配置され、前記透過層側から入射した光を反射する反射機能を有する反射構造層と、前記反射構造層の裏面側に配置された中間層と、前記中間層の裏面側に配置された外層と、を有し、
前記反射構造層は、反射膜と、透光性材料からなり前記反射膜の前面側に配置された凹凸層と、透光性材料からなり前記凹凸層の前面側に配置された密着保持層と、から構成され、
前記凹凸層は、複数の凹凸構造が前記密着保持層の裏面上に規則的に配列してなるものであり、該凹凸構造の裏面に沿って前記反射膜が形成されており、
前記密着保持層の厚みは1〜50μmであることを特徴とする反射保護シート。
[2]前記反射構造層は、前記凹凸層および前記密着保持層が存在する凹凸形成領域と、前記凹凸層および前記密着保持層が共に存在しない、または前記凹凸層が存在せず且つ前記密着保持層が厚み1μm未満で設けられた平滑領域と、を有し、
前記平滑領域は、前記凹凸形成領域に囲まれており、または挟まれており、
前記平滑領域の面積が、前記凹凸層における前記複数の凹凸構造のピッチを1辺とする正方形より大きい面積となっている、[1]に記載の反射保護シート。
[3]前記凹凸構造が、ピラミッド形状、その頂部を曲面とした形状、三角プリズム形状、その頂辺を曲面とした形状のいずれかである、[1]または[2]に記載の反射保護シート。
[4]前記凹凸構造の頂部の頂角が111°以上137°以下である、[3]に記載の反射保護シート。
[5]前記反射膜が、アルミニウム、金、銀、銅、クロムおよびニッケルから選ばれる金属からなる、[1]〜[4]のいずれか一項に記載の反射保護シート。
[6][1]〜[5]のいずれか一項に記載の反射保護シートを製造する方法であって、
透光性材料からなる透過層上に、前記凹凸層および前記密着保持層の合計の厚みとなるように電離放射線硬化型樹脂層を形成し、前記凹凸層を形成するための凹凸構造部が表面に形成された金型の表面形状を前記電離放射線硬化型樹脂層の表面に転写し、電離放射線を放射して硬化させることにより、前記透過層と前記密着保持層と前記凹凸層との積層体を形成する工程と、
前記積層体の前記凹凸層側の表面に前記反射膜を形成する工程と、
前記反射膜の裏面側に、前記中間層を介して前記外層を接着する工程と、
を有する反射保護シートの製造方法。
[7][1]〜[5]のいずれか一項に記載の反射保護シートを製造する方法であって、
透光性材料からなる透過層上に、前記凹凸層および前記密着保持層の合計の厚みとなるように熱可塑性樹脂層を形成し、加熱下で、前記凹凸層を形成するための凹凸構造部が表面に形成された金型の表面形状を前記熱可塑性樹脂層の表面に転写し、冷却することにより、前記透過層と前記密着保持層と前記凹凸層との積層体を形成する工程と、
前記積層体の前記凹凸層側の表面に前記反射膜を形成する工程と、
前記反射膜の裏面側に、前記中間層を介して前記外層を接着する工程と、
を有する反射保護シートの製造方法。
[8]前記金型の表面に、さらに、前記凹凸層および前記密着保持層が存在する凹凸形成領域と、前記凹凸層および前記密着保持層が共に存在しない、または前記凹凸層が存在せず且つ前記密着保持層が厚み1μm未満で設けられた平滑領域を形成するための突起部が形成されている、[6]または[7]に記載の反射保護シートの製造方法。
[9]光エネルギーを電力に変換するセルと、透光性材料からなり前記セルを固定する充填層と、透光性材料からなり前記充填層の前面側に配置された前面板と、前記充填層の裏面側に配置された反射保護シートと、を備える半導体発電装置であって、
前記反射保護シートが、[1]〜[5]のいずれか一項に記載の反射保護シートであることを特徴とする半導体発電装置。
【発明の効果】
【0009】
本発明によれば、半導体発電装置の発電効率を向上させることができ、かつ熱の影響に対して充分な耐性を有する反射保護シートおよびその製造方法、ならびに該反射保護シートを備える半導体発電装置を提供できる。
【図面の簡単な説明】
【0010】
【図1】第一の実施形態に係る半導体発電装置1の構成を示す概略図である。
【図2】半導体発電装置1が備える反射保護シート5の構成を示す概略図である。
【図3】凹凸層53の形状を示す斜視図である。
【図4】凹凸層53における凸部53aの頂部の角度θを示す側面図である。
【図5】第二の実施形態に係る反射保護シート5’の構成を示す概略図である。
【図6】第三の実施形態に係る反射保護シート5”の構成を示す概略図である。
【図7】反射保護シート5”における凹凸形成領域57A、平滑領域57Bと、セル4との位置関係を説明する図である。
【図8】反射保護シート5”の他の態様を示す概略図である。
【図9】反射保護シート5”を製造する際に用いる金型11の表面形状と、形成される反射保護シート5”の凹凸層53および密着保持層52の関係を説明する図である。
【図10】金型11の作製方法の一例を説明する図である。
【発明を実施するための形態】
【0011】
以下、本発明の反射保護シートおよびこれを用いた半導体発電装置について、添付図面により、実施形態を示して説明する。
なお、本明細書および特許請求の範囲において、半導体発電装置に対して太陽光等の光が入射する側を「前面側」、その反対側を「裏面側」という。
【0012】
<第一の実施形態>
図1は、本実施形態の半導体発電装置1の構成を示す概略図である。
半導体発電装置1は、前面側から順に、前面板2と、充填層3と、反射保護シート5とが積層されており、充填層3の内部に複数のセル4が封入されている。
前面板2、充填層3はいずれも透光性材料で構成されている。
セル4は、光エネルギーを電力に変換するもので、受光面を前面側に向けて配置されている。複数のセル4は、同一平面上に所定の間隔を空けて配置されており、互いに図示しない配線によって電気的に接続されている。
反射保護シート5は、充填層3側から入射した光を前面板2側へと反射する反射機能を有する。
かかる半導体発電装置1において、前面板2に入射した光線Lは、充填層3を通過し、一部はセル4の受光面に直接入射し、電力に変換される。また、光線Lの一部は、複数のセル4間の隙間や外側の余白部分を通過して反射保護シート5に入射する。反射保護シート5に入射した光は、前面板2方向に反射され、前面板2と大気との界面でさらに反射されてセル4の受光面に入射し、電力に変換される。このように、反射保護シート5を設けることで、セル4間の隙間や外側の余白部分を通過した光も発電に利用されるため、発電効率が向上する。
なお、光線Lは、太陽光でも、室内灯などの人工照明の光でもよい。
以下、半導体発電装置1の各構成についてより詳細に説明する。
【0013】
前面板2を構成する透光性材料としては、光線透過率が高いものが好ましい。具体的には、JIS K7361−1に準拠して測定される全光線透過率が、80%以上であるものが好ましく、90%以上であるものがより好ましい。
前面板2を構成する透光性材料として具体的には、強化ガラス等のガラス、ポリエチレンナフタレート(PEN)等の透明樹脂が挙げられる。
前面板2の厚みは、透光性材料の種類等に応じて適宜設定される。たとえば強化ガラス板であれば約5mm、透明樹脂シートであれば数十〜数百μmが好適である。
【0014】
充填層3は、セル4を固定する役割がある。
充填層3を構成する透光性材料としては、光線透過率が高いものが好ましい。具体的には、JIS K7361−1に準拠して測定される全光線透過率が、80%以上であるものが好ましく、90%以上であるものがより好ましい。
充填層3を構成する透光性材料としては、難燃性が付与されたエチレン・酢酸ビニル共重合体(EVA)が広く用いられている。
充填層3の厚みは、セル4の厚み、タブ線の厚み等に応じて適宜設定され、特に限定されないが、0.2〜2mmの範囲内が好ましい。
【0015】
セル4としては、光電効果より入射した光のエネルギーを電力へと変換する機能を有するものであればよく、たとえば単結晶シリコン型、多結晶シリコン型、薄膜シリコン型、CIGS(Cu・In・Ga・Seの化合物)系薄膜型等の、多くの種類を用いることが可能である。
【0016】
図2に、本実施形態の反射保護シート5の構成を示す概略断面図を示す。
反射保護シート5は、透過層51と、密着保持層52と、凹凸層53と、反射膜54と、中間層55と、外層56とがこの順に積層されている構造を有する。これらのうち、密着保持層52と凹凸層53と反射膜54とから反射構造層57が構成されている。
透過層51、密着保持層52および凹凸層53はそれぞれ透光性材料からなる。
凹凸層53は、密着保持層52の裏面を底面として反射膜54方向に突出する複数の凸部(凹凸構造)53aが規則的に配列してなるものであり、各凸部53aの裏面に沿って反射膜54が形成されている。
反射膜54は、入射してきた光を反射する機能を有する層である。
中間層55は、外層56と反射構造層57とを接着する為に設けられる層である。
外層56は、反射構造層57を保護する役割を有している。そのため、半導体発電装置1において、反射保護シート5は、外層56が反射構造層57よりも裏面側となるように配置される。
半導体発電装置1において充填層3の裏面から出射した光は、透過層51の前面から入射し、透過層51、密着保持層52、凹凸層53を通過した後、反射膜54で前面側に反射される。
【0017】
透過層51を構成する透光性材料としては、光線透過率が高いものが好ましい。具体的には、JIS K7361−1に準拠して測定される全光線透過率が、80%以上であるものが好ましく、90%以上であるものがより好ましい。
また、該透光性材料は、耐熱性、電気的特性(特に全面耐電圧)、透過率、機械的特性が優れているものが望ましい。このような透光性材料として具体的には、フッ素樹脂フィルム、電気絶縁用ポリエチレンテレフタレート(PET)フィルム等が挙げられる。
透過層11の厚みは、電気絶縁性とコストの観点から、50〜500μmであることが望ましい。
【0018】
密着保持層52を構成する透光性材料としては、光線透過率が高いものが好ましい。具体的には、JIS K7361−1に準拠して測定される全光線透過率が、80%以上であるものが好ましく、90%以上であるものがより好ましい。
本発明においては、後述する製造方法にて密着保持層52と凹凸層53とを同時形成できることから、密着保持層52を構成する透光性材料と、凹凸層53を構成する透光性材料とが同じであることが好ましい。
この場合、密着保持層52および凹凸層53を構成する透光性材料としては、電離放射線硬化型樹脂の硬化物または熱可塑性樹脂が有用である。
なお、電離放射線硬化型樹脂とは、電離放射線、即ち、電子線、紫外線(UV)、可視光等により硬化する特徴を有する樹脂のことであり、例えばエポキシアクリレート、ウレタンアクリレートなどのアクリル樹脂が挙げられる。
熱可塑性樹脂としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、アクリル樹脂などが挙げられる。
ただし本発明はこれに限定されるものではなく、密着保持層52と凹凸層53とを異なる材料で構成してもよい。
【0019】
密着保持層52の厚みDは1〜50μmであり、5〜30μmがより好ましい。
ここで、密着保持層52の厚みとは、密着保持層52の前面側の表面と、該表面に対して平行であり且つ凹凸層53を構成する複数の凸部53aによって形成される凹部の下端を含む平面との間の距離を示す。
密着保持層52の厚みDが50μmを超えると、密着保持層52の光線透過率が低下し、光の利用効率が低下する傾向がある。また、電離放射線硬化型樹脂または熱可塑性樹脂を用いて密着保持層52を形成する場合に、電離放射線を照射して硬化させた時の樹脂の収縮や、熱可塑性樹脂の冷却時における樹脂の収縮により、透過層51との密着強度が低下するおそれがある。また、使用する材料の量が多くなり、高コストとなってしまう。
一方、密着保持層52の厚みDが1μm未満であると、反射膜54の密着保持層52側の先端によって、複数の凸部53aの間の位置に応力が加わりやすい。そのため、半導体発電装置1とするまでの後加工の際に、屈曲や、過熱、冷却による熱膨張や収縮の影響を受けて密着保持層52にクラックが生じ、凹凸層53を構成する凸部53aの一つ一つが分離し、透過層51との接着面積が減少し、密着強度が低下することがある。また、凹凸層53と密着保持層52を、後述する製造方法に示すように金型を用いて同時する場合、透過層51と金型の凸部分とが接触しやすい問題もある。接触すると、透過層や金型の凸部分に変形や傷が生じ、所望の凹凸形状を形成することが困難となってしまう。このことは光の利用効率を低下させ、発電効率を低下させるため好ましくない。特に、凹凸層53における複数の凸部53aのピッチが小さくなると、変形が生じやすい。
なお、密着保持層52の厚みDが1μm未満の場合でも、発電効率向上効果と密着強度向上効果の両方を得られることもあるが、この場合には性能が安定しないため、1μm以上の膜厚が必要である。
【0020】
凹凸層53を構成する複数の凸部53aはいずれも同じ形状で、配列方向における断面形状が三角形である。このような断面形状を有することで、前面側から入射した光が効率よく凹凸層53と反射膜54との界面で前面側に反射されるなど、再集光効率に優れる。
このような断面形状を有する凸部としては、ピラミッド形状(四角錐形状)、三角プリズム形状(断面三角形の凸条形状)等が好適な例として挙げられる。また、これらの形状の頂部の角をとった形状、たとえばピラミッド形状の頂点を曲面とした形状や、三角プリズム形状の頂辺を曲面とした形状、も好適である。半導体発電装置1の光源となる光は大部分が平行光からなる太陽光である。光線Lが太陽光のような平行光の場合、上記のように凹凸形状の一部に平面を有する形状が調光に有効である。
図3(a)に、ピラミッド形状の凸部が二方向(縦横方向)に規則的に配列してなる凹凸層の斜視図を示す。図3(b)に、三角プリズム形状の凸部が一方向(三角プリズムの延在方向に略直交する方向)に規則的に配列してなる凹凸層の斜視図を示す。
【0021】
凸部53aは、再集光効率に優れることから、頂部の角度θが111°以上137°以下であることが好ましく、120°以上135°以下であることがより好ましい。
ここで、頂部の角度は、配列方向における断面形状において、頂角を構成する2辺がなす角度である。
図4(a)に、凹凸層53の側面図を示す。凹凸層53における凸部53aの頂部の角度θは、凸部53aを形成する2つの対向する側面F1、F2において直線状に形成された領域にそれぞれ平行な線L1およびL2に挟まれる角度を指す。図4(b)に示すように、凸部53aの頂角の角をとった形状でも同様である。
凸部53aが上記の構成を有することで、その裏面に沿って形成される反射膜54も、凸部53aの裏面と同じ凹凸形状を有するものとなる。これにより、再集光効率が向上し、光利用効率が高まって、発電効率が向上する。
【0022】
凹凸層53における複数の凸部53aのピッチおよび高さは特に規定はしないが、ピッチが広くなると、上記好ましい頂部の角度を満たすためには凸部53の高さを高くする必要がある。凸部53の高さが高くなると、反射膜54の凹凸の高低差が大きくなり、中間層55を設けても、反射膜54と外層56との間の密着性が不充分になるおそれがある。また、凸部53形成に用いる樹脂の量が増大し、コスト的にも好ましくない。これらのことを考慮すると、凸部53aのピッチは、30μm以下であることが望ましい。この場合に、凸部53の高さが最大で約10μmとなる。凸部53の高さが10μm以下であれば、中間層55を、マイクログラビア、リバースグラビアなどの印刷方式を用いて接着剤を塗工することにより形成することが可能となる。
【0023】
凹凸構造53aの裏面に、反射膜54との密着性を高めるための表面処理が施されてもよい。このような表面処理としては、例えばコロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いた酸化処理、プライマーコート処理、アンダーコート処理、アンカーコート処理、蒸着アンカーコート処理などが挙げられる。これらの表面処理の中でも、比較的簡便であり、凹凸のある構造に均一に処理の行うことが出来る点で、コロナ放電処理が好ましい。
【0024】
反射膜54は入射してきた光を反射する機能を有する層である。反射膜54に用いられる材料としては、反射性を有しかつ蒸着が可能であれば特に限定されるものではなく、例えばアルミニウム(Al)、金(Au)、銀(Ag)、銅(Cu)、プラチナ(Pt)、ニッケル(Ni)、スズ(Sn)、クロム(Cr)、ジルコニウム(Zr)等の金属、これらの金属のいずれか2種以上の合金等が挙げられる。これらのうち、反射率、耐食性、コスト等の観点から、アルミニウム、金、銀、銅、クロム、ニッケルから選ばれる金属を用いることが望ましい。
【0025】
反射膜54の厚みは、10nm以上が好ましく、20nm以上が特に好ましい。反射膜54の厚みが10nmより小さいと、反射膜54に入射する光を充分に反射できないおそれがある。厚みが20nm以上厚くしても反射膜54で反射される光はほとんど増えないため、20nmであれば充分な厚みといえる。
また、反射膜54の厚みは、200nm以下が好ましく、100nm以下がより好ましい。反射膜8の厚みが200nmを超えると、反射膜54に目視でも確認できるクラックが発生するおそれがある。100nm以下であれば、目視で確認できないようなクラックは発生しない。
【0026】
中間層55は、外層56と反射構造層57とを接着するために設けられる層である。
中間層55を構成する材料は、当該中間層55が接する2つの層(反射膜54および外層56)に対する密着性が良好となる接着剤が好ましい。
接着剤としては、例えば、瞬間系、弾性系、2液常温硬化樹脂系、メラミン、フェノール、エポキシなどの熱硬化性樹脂系、ホットメルト系、天然ゴムや合成ゴムなどのエラストマー系、熱可塑性樹脂系、乳化重合によりコロイド状に水に分散させられた酢酸ビニル樹脂、アクリル樹脂などのエマルジョン系などいずれの接着剤を用いてよい。これらの中でも、耐久性が得られ、コスト的にも有利であることから、ポリオールとイソシアネートからなる2液常温硬化樹脂系接着剤が好ましい。
ポリオールとしては、ポリビニルブチラール、ポリビニルアセタール、ポリエステルポリオール、アクリルポリオール、ポリエーテルポリオール、ウレタンポリオールなどが挙げられる。なお、イソシアネートとの反応サイトとなるOH基を適宜通するものが望ましく、OH基については、硬化収縮によって密着が低減しない範囲、OHV(水酸基価)が50〜200mmKOHであることが好ましく、80〜130mmKOHであることがより好ましい。
一方、イソシアネートは、上記ポリオールを硬化させるために用いられる硬化剤であり、該イソシアネートとしては、通常、多価イソシアネートが用いられる。多価イソシアネートとしては、たとえば2価のイソシアネートとして、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
中間層55の厚さは、凸部53aの高さよりも厚ければよく、特に限定されないが、凸部53aの高さ+1〜10μmが好ましく、凸部53aの高さ+1〜5μmがより好ましい。なお、中間層55の反射構造層57の側の表面は凹凸形状となっているが、ここでいう中間層55の厚さとは、最も厚い部分の厚さである。
【0027】
外層56は、反射構造層12を保護する役割を有しており、反射保護シート57が半導体発電装置1に配置された際に、反射構造層57よりも裏面側に配置される。
外層6を構成する材料は、半導体発電装置1が屋外に設置されることを鑑み、耐水性、紫外線に対する耐久性等の耐候性を有しているものが好ましい。このような材料としては、例えばポリエステル系樹脂、ポリエチレン樹脂、ポリプロピレン系樹脂、ポリ乳酸系樹脂、ポリメチルペンテン系樹脂、環状ポリオレフィン系樹脂、ポリスチレン系樹脂、アクリロニトリル−(ポリ)スチレン共重合体(AS樹脂)、アクリロニトリル−ブタジエン−スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリアミドイミド系樹脂、ポリアリールフタレート系樹脂、シリコーン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルホン系樹脂、ポリエーテルイミド系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、アセタール系樹脂、セルロース系樹脂等が挙げられる。これらの樹脂はいずれか1種を単独で用いても2種以上を併用してもよい。
【0028】
外層6を構成する材料として特に好ましい樹脂として、耐熱性、強度、耐候性、耐久性、水蒸気バリア性等をバランス良く有することから、ポリエステル系樹脂、フッ素系樹脂、環状ポリオレフィン系樹脂から選ばれる少なくとも1種が好ましい。
上述のポリエステル系樹脂としては、例えばポリエチレンテレフタレート樹脂(PET樹脂)、ポリエチレンナフタレート樹脂(PEN樹脂)等が挙げられる。これらのポリエステル系樹脂の中でも、耐熱性、耐候性等の諸機能面及び価格面のバランスが良好であることから、PET樹脂が特に好ましい。
【0029】
上述のフッ素系樹脂としては、例えばポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとの共重合体からなるペルフルオロアルコキシ樹脂(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)、テトラフルオロエチレンとペルフルオロアルキルビニルエーテルとヘキサフルオロプロピレンとのコポリマー(EPE)、テトラフルオロエチレンとエチレンとのコポリマー(ETFE)、テトラフルオロエチレンとプロピレンとのコポリマー、ポリクロロトリフルオロエチレン樹脂(PCTFE)、エチレンとクロロトリフルオロエチレンとのコポリマー(ECTFE)、ポリフッ化ビニリデン系樹脂(PVDF)、ポリフッ化ビニル系樹脂(PVF)等が挙げられる。これらのフッ素系樹脂の中でも、強度、耐熱性、耐候性等に優れることから、PVFまたはETFEが特に好ましい。
【0030】
上述の環状ポリオレフィン系樹脂としては、例えば、シクロペンテン及びその誘導体、ジシクロペンテン及びその誘導体、シクロヘキセン及びその誘導体、ノルボルネン及びその誘導体等の環状オレフィンを開環メタセシス重合して得られる重合体を水素化させてなるポリマー、前記環状オレフィンと、エチレン、プロピレン、4−メチル−1−ペンテン、スチレン、ブタジエン、イソプレン等のオレフィン系モノマーの1種又は2種以上とを共重合させてなるコポリマー等が挙げられる。これらの環状ポリオレフィン系樹脂の中でも、強度、耐熱性、耐候性等に優れることから、シクロペンテン及びその誘導体、ジシクロペンテン及びその誘導体、ノルボルネン及びその誘導体から選ばれる環状オレフィンを開環メタセシス重合して得られる重合体を水素化させてなるポリマーが特に好ましい。
【0031】
外層56には、加工性、耐熱性、耐候性、機械的性質、寸法安定性等を改良、改質する目的で、種々の添加剤等が添加されてもよい。添加剤としては、例えば滑剤、架橋剤、酸化防止剤、紫外線吸収剤、光安定化剤、充填剤、強化繊維、補強剤、帯電防止剤、難燃剤、耐炎剤、発泡剤、防カビ剤、顔料等が挙げられる。
外層56は、必要に応じて上記の添加剤を配合した樹脂を成形することにより作成できる。成形方法としては、特に限定されず、例えば押出し法、キャスト成形法、Tダイ法、切削法、インフレーション法等の公知の方法が採用される。
外層56の厚さは特に限定されないが、耐候性、ハンドリング性の点で、10〜250μmが好ましく、25〜100μmがより好ましい。
【0032】
<第二の実施形態>
次に、本発明の第二の実施形態の半導体発電装置1’について説明する。なお、以下に記載する実施形態において、第一の実施形態に対応する構成要素には同一の符号を付してその詳細な説明を省略する。
半導体発電装置1’は、反射保護シート5の代わりに、図5に示す構成の反射保護シート5’を備える以外は、第一の実施形態の半導体発電装置1と同様の構成である。
反射保護シート5’は、透過層51と、密着保持層52と、凹凸層53と、反射膜54と、第一の中間層61と、水蒸気バリア性を有するバリア層62と、第二の中間層63と、外層56とがこの順に積層されている構造を有する。
第一の中間層61、第二の中間層63は、それぞれ、前記第一の実施形態における中間層55と同様である。
バリア層62としては、PETフィルム上にアルミニウムやケイ素の蒸着膜が形成されたバリアフィルム、金属箔などを用いることができる。
バリア層62としては、周囲の熱による影響によりバリア性の変化が少ないという点で、アルミニウム箔が好適である。
【0033】
ここでは2層の中間層61、63の間にバリア層62を設けた例を示したが、第一の実施形態と同様に中間層を一層とし、その前面側(反射膜54と接する位置)または裏面側(外層56と接する位置)にバリア層を設けてもよい。
反射膜54または外層56と接する位置にバリア層を設ける場合、該バリア層としては、酸化アルミニウム、酸化ケイ素等の金属酸化物膜が好ましい。該金属酸化物膜は、蒸着により反射膜54または外層56に直接形成することができる。
【0034】
<第三の実施形態>
次に、本発明の第三の実施形態の半導体発電装置1”について説明する。
半導体発電装置1”は、反射保護シート5の代わりに、図6に示す構成の反射保護シート5”を備える以外は、第一の実施形態の半導体発電装置1と同様の構成である。
反射保護シート5”の構成は、反射構造層57の代わりに反射構造層57”を備える以外は、反射保護シート5と同様である。
反射構造層57”は、凹凸層53および密着保持層52が存在する凹凸形成領域57Aと、凹凸層53および密着保持層52が共に存在しない平滑領域57Bとを有する。
平滑領域57Bは、凹凸形成領域57Aに囲まれている、または挟まれている。また、平滑領域57Bの面積は、凹凸層53における複数の凸部53aのピッチPを1辺とする正方形より大きい面積となっている。
凹凸層53は、前記第一または第二の実施形態に示すように、半導体発電装置1の下面の全域にわたって形成されていてもよいが、このような平滑領域57Bを有することで、後述する製造方法に示すように、凹凸層53および密着保持層52を同時に形成する際に使用する金型において、平滑領域57Bを形成するための突起の高さが、凹凸層53を形成するための突起部の高さよりも、密着保持層52の厚みD分高くなる。この高さのギャップがあることで、複雑な装置の機構や設定を行なうことなく、密着保持層52の厚みを均一に保つことが容易となる。
なお、反射保護シート5”の凹凸形成領域57Aには密着保持層52が存在するため、各凹凸形成領域57A内の複数の凸部53aは密着保持層52とともに一つの集団として透過層51と密着している。そのため、反射構造層57”と透過層51との接着面が広くなり、それらの層間の密着性を充分に確保することが出来る。
【0035】
本実施形態においては、図7(図中、反射膜54は省略した。)に示すように、半導体発電装置1”の充填層3内に複数配置されたセル4間の隙間に対応する位置に凹凸形成領域57Aが形成され、各セル4の直下の位置に平滑領域57Bが形成されることが好ましい。
ただしデザイン性などを無視できる場合にはセル4間の隙間に対応する位置に平滑領域57Bが形成されてもよい。
【0036】
ここでは、密着保持層52の側面(平滑領域57Bとの境界面)が透過層51裏面に対して垂直になっている例を示したが、本発明はこれに限定されず、密着保持層52の側面が傾斜していてもよい。たとえば図8(図中、反射膜54は省略した。)に示すように、密着保持層52の側面52bが凸部53aの側面53bと同一平面上にある形状であれば、後述する製造方法で使用する金型を作製する際に、凹凸層53に対応する突起部の形成に用いるバイトと同じバイトを用いて平滑領域57Bに対応する突起部を形成でき、切削の加工精度が良好となるため好ましい。
なお、密着保持層52の厚みは、少なくとも凹凸層53が存在する部分においては1〜50μmであるが、凹凸層53が存在しない領域においては、1μm未満となっている部分があってもよい。たとえば密着保持層52の側面が傾斜している場合、末端に近づくにつれてその厚みは薄くなる。
凹凸層53が存在しなくても厚みが1μm以上の密着保持層52が存在する部分は凹凸形成領域57Aに該当し、凹凸層53が存在せず且つ厚みが1μm未満の密着保持層52が存在する部分は平滑領域57Bに該当するものとする。
【0037】
<反射保護シートの製造方法>
本発明の反射保護シートの製造方法について、前記第三の実施形態の反射保護シート5”を例に挙げて説明する。
反射保護シート5”を製造する方法としては、たとえば下記の製造方法(I)または(II)が好適な方法として挙げられる。
方法(I):
透過層51上に、凹凸層53および密着保持層52の合計の厚みとなるように電離放射線硬化型樹脂層を形成し、表面に凹凸層53を形成するための凹凸構造部を具備する金型の表面形状を前記電離放射線硬化型樹脂層の表面に転写し、電離放射線を放射して硬化させることにより、透過層51と密着保持層52と凹凸層53との積層体を形成する工程と、
前記積層体の凹凸層53側の表面に反射膜を形成する工程と、
凹凸層53上に反射膜54を形成する工程と、
反射膜54に、中間層55を介して外層56を接着する工程と、
を有する。
【0038】
方法(II):
透過層51上に、凹凸層53および密着保持層52の合計の厚みとなるように熱可塑性樹脂層を形成し、加熱下で、表面に凹凸層53を形成するための凹凸構造部を具備する金型の表面形状を前記熱可塑性樹脂層の表面に転写し、冷却することにより、透過層51と密着保持層52と凹凸層53との積層体を形成する工程と、
凹凸層53上に反射膜54を形成する工程と、
反射膜54に、中間層55を介して外層56を接着する工程と、
を有する。
【0039】
製造方法(I)、(II)は、凹凸層53および密着保持層52を同時に形成する工程(以下、同時成形工程ということがある。)以外は同じであり、同時成形工程についても、使用する金型は同じである。
同時成形工程について説明する。
図9(a)、(b)に示すように、同時成形工程で用いられる金型11は、ロール状で、その表面に凹凸層53を形成するための凹凸構造部12を具備する。また、平滑領域57Bを形成するための突起部13も具備する。
凹凸構造部12は、反射構造層57において凹凸層53および密着保持層52により形成される構造が反転した形状を有しており、凹凸層53に対応する位置には、凸部53aが反転した形状の凹部12aが複数規則的に配列している。
突起部13は、平滑領域57Bが反転した形状であり、その高さは、凹凸構造部12における凹部12aの深さよりも高い。この突起部13の高さと凹部12aの深さとのギャップAが、密着保持層52の厚さとなる。
この金型11の表面を、未硬化の電離放射線硬化型樹脂層または加熱した熱可塑性樹脂層に接触させ、突起部13の先端面が透過層51と接する位置まで表面に押し込むことにより、金型11表面の形状が転写される。その状態で、電離放射線を放射して電離放射線硬化型樹脂層を硬化させる、または熱可塑性樹脂層を冷却することにより、凹凸層53および密着保持層52が一体成形された構造物が透過層51上に形成される。
本製造方法においては、金型11を押し込んだ際、金型11の凹凸構造部12の先端と、透過層51との間に密着保持層52の厚み分の距離が存在するため、透過層51と凹凸構造部12の先端が点または線で接触しない。そのため金型11によって透過層51に傷が付くのを防止出来る。また、金型11の凹凸構造部12の先端部分の傷みも生じにくい。特に、突起部13があることで、凹凸構造部12の先端が透過層51に到達する前に金型11をそれ以上押し込むことができなくなるため、複雑な装置の機構や設定を行なうことなく、密着保持層52の厚みを容易に均一に保つことができる。
【0040】
金型11の作製は、たとえば転写原型の表面に凹凸形状を形成することにより作製できる。
転写原型の材質は、金属、セラミック、樹脂等のいずれも使用でき、限定されないが、好ましくは寸法安定性、導電性に優れるステンレス等の鉄合金、さらに加工性に優れた銅、あるいはニッケルが積層されたものを用いることが好ましい。転写原型は、凹凸形状を形成する前に、その表面を機械研磨、エッチング、洗浄する等により均一にして用いることが好ましい。
転写原型の表面に凹凸形状を形成する方法としては、レーザー加工、スパッタリング法、エッチング法、フォトリソグラフィー法等が挙げられる。これらの中でも、生産性に優れ、所望の表面凹凸を効率的に得られることから、転写原型表表面にダイヤモンドバイト等のバイトを用いて機械加工を行う方法が好ましい。このような方法として具体的には、図10に示すように、ロール状の転写原型14を回転させながらダイヤモンドバイト15を移動させることによりその表面を切削する方法、転写原型を移動させながらバイトで押圧することによりその表面を切削する方法、等が挙げられる。
【0041】
上記のようにして形成された、透過層51と密着保持層52と凹凸層53との積層体の凹凸層53側の表面に、反射膜54を形成する。
反射膜54は、通常、金属を蒸着することで形成される。金属の蒸着手段としては、積層体の蒸着面付近に収縮、黄変等の劣化を招来することなく金属が蒸着できれば特に限定されるものではなく、(a)真空蒸着法、スパッタリング法、イオンプレーティング法、イオンクラスタービーム法等の物理気相成長法(Physical Vapor Deposition法;PVD法)、(b)プラズマ化学気相成長法、熱化学気相成長法、光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法;CVD法)が採用される。これらの蒸着法の中でも、生産性が高く良質な反射膜54が形成できることから、真空蒸着法やイオンプレーティング法が好ましい。
外層56上に接着剤を塗工して中間層55を形成し、該中間層55を上記反射膜54と貼り合わせることで、反射保護シート5”が得られる。
接着剤の塗工は、マイクログラビア、リバースグラビアなどの印刷方式を用いて実施できる。
なお、第一の実施形態の反射保護シート5は、使用する金型の表面形状を変更する以外は同様にして製造できる。
第二の実施形態の反射保護シート5’は、反射膜54まで反射保護シート5を製造する場合と同様に形成し、次に、バリア層62上に接着剤を塗工して第一の中間層61を形成し、該第一の中間層61を上記反射膜54と貼り合わせ、次に、外層56上に接着剤を塗工して第二の中間層63を形成し、該第二の中間層63を上記バリア層62と貼り合わせることで製造できる。
【0042】
以上説明したように、凹凸層と透過層の間に密着保持層を所定の厚みで設けることにより、熱の影響により層間の密着力が低下しにくい反射保護シート及び半導体発電装置を提供することが出来る。また、凹凸層を形成する際に、透過層と金型の凸部分が点で接触することがなくなるため、透過層への傷の発生を抑えることが出来る。また、金型自体の凸部分の傷みも緩和される。凹凸層のピッチが小さい場合には、良好な賦形形状を得ることが可能となる。また、外層からの外力に対して凹凸形状の変形が生じにくくなる。
さらに、平滑領域を形成するための突起部を備える金型を用いて凹凸層と密着保持層を作成する場合には、複雑な装置を用いなくとも、均一な厚みの密着保持層を形成することが可能となる。
【実施例】
【0043】
以下、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
<実施例1〜8、比較例1〜5>
図2に示した構成の反射保護シート5を、以下の手順で作製した。
金型として、三角プリズム型の凸部53aが図3(b)に示すように配列した形状の凹凸層に対応する凹凸構造が表面に形成されたロール状の金型を用意した。凸部の高さは約9μm、隣接する凸部の平均間隔(ピッチ)は30μm、つまり凸部の頂部の角度θは120°に設定した。
透過層51上にアクリル系のUV硬化型樹脂を塗工し、そこに金型を押しつけて表面形状を転写するとともにUVを照射して硬化させて凹凸層53及び密着保持層52を形成した。
このとき、金型を押しつける際の圧力を2kgfから10kgfまで変化させ、UV硬化型樹脂のアクリルモノマー配合量を変更して粘度を1000mPa・sから6000mPa・sまで変更させることで、密着保持層52の厚さを適宜変更させた。
透過層11としては125μm厚、幅300mmのPETフィルムを用いた。
なお、各層の膜厚は、マイクロセクションを用いて断面を観察して求めた。
【0044】
得られた積層体の凹凸層53側に、アルミニウムを50nmの膜厚となるように蒸着させて反射膜54を形成した。
その後、ポリオールとイソシアネートからなる2液常温硬化樹脂系の接着剤を、外層6上にマイクログラビアにより塗布し中間層7を形成した後、反射膜54と貼り合せることで反射保護シート5を作成した。
【0045】
<実施例9>
図6に示した構成の反射保護シート5”を、表面に、凹凸形成領域57Aに対応する凹凸構造部と平滑領域に対応する突起部が存在する金型を用いた以外は、実施例1〜8と同様の手順で作製した。突起部の高さは、密着保持層の厚みが20μmとなる高さとした。
【0046】
<評価>
[1.密着性に対する熱の影響の評価]
作製した反射保護シートを試料として熱サイクル試験を行い、試験後の剥離強度の測定を試料数(N数)2で行った。
ここでの熱サイクル試験は、「温度85℃で1時間保持後、温度−40℃で1時間保持」を1サイクルとし、これを10サイクル行った。
剥離強度の測定については、先の熱サイクル試験を行った反射保護シートを10mm幅に切断した後にテンシロン(商品名、エー・アンド・デイ社製)を用い、90°における剥離強度を測定した。2つの試料それぞれの剥離強度の測定結果(N/10mm)を「密着性」として表1に示した。
なお、実施例9については、凹凸層が有る部分を切り出したものを試料とした。
【0047】
[2.発電効率の評価]
作製した反射保護シートを用いて、図1に示す半導体発電装置1と同様の構成(ただし充填層3内に固定するセル4は1つとした。)の半導体発電装置を作製し、発電効率を測定した。
半導体発電装置は、一辺が196mmの正方形とした反射保護シートの上に、一辺が196mmのEVAフィルム、一辺が156mmの正方形の多結晶シリコン型セル1枚、一辺が196mmのEVAフィルム、強化ガラス板(前面板2)を積層し、真空ラミネータで熱ラミネートを行うことで作製した。多結晶シリコン型セルは中央になるように配置した。
発電効率は、ソーラーシミュレーター(New Port社製)により測定した。
別途、対照試料として反射保護シートを設けない以外は同様にして半導体発電装置を作製し、発電効率を測定した。対照試料の発電効率の測定値を100%とした時の、各例の反射保護シートを設けた半導体発電装置の発電効率の発電効率の割合(%)を算出した。こちらについてもN数2で試験を行った。結果を「効率」として表1に示した。
【0048】
【表1】

【0049】
上記結果に示すとおり、実施例1〜8の反射保護シートは、いずれも、熱サイクル試験後において剥離強度が4N/10mm以上の良好な値を示し、層間の密着性が熱の影響を受けにくいことが確認できた。また、これらの反射保護シートを用いた半導体発電装置は、対照試料に対して5%以上の発電効率が向上していた。平滑領域のある実施例9の反射保護シートについても同様の結果が得られた。
一方、密着保持層を設けなかった比較例1では、熱サイクル試験後の剥離強度が低かった。また、発電効率の向上割合も2%程度と低かった。これは、凹凸形状を金型通りに転写することができなかったためと考えられる。
密着保持層の厚みが0.5μmの比較例2では、熱サイクル試験後の剥離強度および発電効率の向上割合について、良好な場合とそうでない場合の両方の結果が得られ、性能にばらつきが見られた。
密着保持層の厚みが50μmを超える比較例3〜5では、発電効率の向上割合は比較歴良好であるものの、熱サイクル試験後の剥離強度が3N/10mm以下と低かった。これは、密着保持層および凹凸層を構成する樹脂自体が光を吸収したためと考えられる。
以上の結果から、一定の厚みの密着保持層を設けることで、密着性および発電効率の両方が向上することが示された。
【符号の説明】
【0050】
1…半導体発電装置
2…前面板
3…充填層
4…セル
5…反射保護シート
11…金型
12…凹凸構造部
13…突起部
14…転写原型
15…ダイヤモンドバイト
51…透過層
52…密着保持層
53…凹凸層
54…反射膜
55…中間層
56…外層
57…反射構造層
61…第一の中間層
62…バリア層
63…第二の中間層

【特許請求の範囲】
【請求項1】
光エネルギーを電力に変換するセルと、透光性材料からなり前記セルを固定する充填層と、透光性材料からなり前記充填層の前面側に配置された前面板と、前記充填層の裏面側に配置された反射保護シートと、を備える半導体発電装置に用いられる反射保護シートであって、
透光性材料からなる透過層と、前記透過層の裏面側に配置され、前記透過層側から入射した光を反射する反射機能を有する反射構造層と、前記反射構造層の裏面側に配置された中間層と、前記中間層の裏面側に配置された外層と、を有し、
前記反射構造層は、反射膜と、透光性材料からなり前記反射膜の前面側に配置された凹凸層と、透光性材料からなり前記凹凸層の前面側に配置された密着保持層と、から構成され、
前記凹凸層は、複数の凹凸構造が前記密着保持層の裏面上に規則的に配列してなるものであり、該凹凸構造の裏面に沿って前記反射膜が形成されており、
前記密着保持層の厚みは1〜50μmであることを特徴とする反射保護シート。
【請求項2】
前記反射構造層は、前記凹凸層および前記密着保持層が存在する凹凸形成領域と、前記凹凸層および前記密着保持層が共に存在しない、または前記凹凸層が存在せず且つ前記密着保持層が厚み1μm未満で設けられた平滑領域と、を有し、
前記平滑領域は、前記凹凸形成領域に囲まれており、または挟まれており、
前記平滑領域の面積が、前記凹凸層における前記複数の凹凸構造のピッチを1辺とする正方形より大きい面積となっている、請求項1に記載の反射保護シート。
【請求項3】
前記凹凸構造が、ピラミッド形状、その頂部を曲面とした形状、三角プリズム形状、その頂辺を曲面とした形状のいずれかである、請求項1または2に記載の反射保護シート。
【請求項4】
前記凹凸構造の頂部の頂角が111°以上137°以下である、請求項3に記載の反射保護シート。
【請求項5】
前記反射膜が、アルミニウム、金、銀、銅、クロムおよびニッケルから選ばれる金属からなる、請求項1〜4のいずれか一項に反射保護シート。
【請求項6】
請求項1〜5のいずれか一項に記載の反射保護シートを製造する方法であって、
透光性材料からなる透過層上に、前記凹凸層および前記密着保持層の合計の厚みとなるように電離放射線硬化型樹脂層を形成し、前記凹凸層を形成するための凹凸構造部が表面に形成された金型の表面形状を前記電離放射線硬化型樹脂層の表面に転写し、電離放射線を放射して硬化させることにより、前記透過層と前記密着保持層と前記凹凸層との積層体を形成する工程と、
前記積層体の前記凹凸層側の表面に前記反射膜を形成する工程と、
前記反射膜の裏面側に、前記中間層を介して前記外層を接着する工程と、
を有する反射保護シートの製造方法。
【請求項7】
請求項1〜5のいずれか一項に記載の反射保護シートを製造する方法であって、
透光性材料からなる透過層上に、前記凹凸層および前記密着保持層の合計の厚みとなるように熱可塑性樹脂層を形成し、加熱下で、前記凹凸層を形成するための凹凸構造部が表面に形成された金型の表面形状を前記熱可塑性樹脂層の表面に転写し、冷却することにより、前記透過層と前記密着保持層と前記凹凸層との積層体を形成する工程と、
前記積層体の前記凹凸層側の表面に前記反射膜を形成する工程と、
前記反射膜の裏面側に、前記中間層を介して前記外層を接着する工程と、
を有する反射保護シートの製造方法。
【請求項8】
前記金型の表面に、さらに、前記凹凸層および前記密着保持層が存在する凹凸形成領域と、前記凹凸層および前記密着保持層が共に存在しない、または前記凹凸層が存在せず且つ前記密着保持層が厚み1μm未満で設けられた平滑領域を形成するための突起部が形成されている、請求項6または7に記載の反射保護シートの製造方法。
【請求項9】
光エネルギーを電力に変換するセルと、透光性材料からなり前記セルを固定する充填層と、透光性材料からなり前記充填層の前面側に配置された前面板と、前記充填層の裏面側に配置された反射保護シートと、を備える半導体発電装置であって、
前記反射保護シートが、請求項1〜5のいずれか一項に記載の反射保護シートであることを特徴とする半導体発電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−204489(P2012−204489A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−66096(P2011−66096)
【出願日】平成23年3月24日(2011.3.24)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】