説明

取送水運用制御装置

【課題】高速に取送水運用計画を提示できる取送水運用制御装置を提供する。
【解決手段】制御対象の取送水系統から、配水池と、上記の配水池への流入水路とからなる部分ブロックを構成する部分ブロック構成部と、離散的な制約条件を緩和して暫定的な運用計画を策定する緩和問題最適化部と、離散的な制約条件を一つまたは複数の部分ブロックにおいてのみ考慮して、上記部分ブロックにおける運用計画を策定する部分問題最適化部と、水需要量と施設接続関係とを条件として、取送水運用コストを最小化する最適化問題を構成し、部分ブロック情報に基づいて緩和問題と部分問題を構成し、それらの結果を統合して運用計画を策定する最適化計算統合部と、策定された運用計画データを制御対象施設に送信する運用計画送信部とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
取送水運用制御装置に関する。
【背景技術】
【0002】
背景技術として、特許文献1がある。
【0003】
特許文献1には、「目的関数に対する重み付けパラメータの設定作業を実施することなく、複数の運用目標を達成することができるとともに、実際の送水ポンプの運転に適している運転スケジュールを策定することができるようにする」と記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−70829
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1には、送水運用制御装置の仕組みが記載されている。しかし、特許文献1の送水運用制御装置は送水量可能範囲を限定して動的計画法を実施するものの、動的計画法の探索にかかる計算時間を短縮する方法は備えていない。
【0006】
このような送水運用制御装置では、例えば、配水池の総数が十以上となるような大規模な送水系統においては、運転スケジュールの策定にかかる時間が膨大となる場合がある。そのため策定作業の定められた時間内に計算を終えることができない場合が想定される。あるいは策定された運転スケジュールの一部分を運転員が修正した際に再度計算に時間がかかり、定められた時間内に策定作業を終えられない場合がある。
【0007】
そこで、大規模な取送水系統においても高速に取送水運用計画を提示できるよう、より高速に取送水運用計画を策定可能な取送水運用制御装置が求められている。例えば、運転員が対話的な運転スケジュール策定作業を行える応答速度で運用計画を計算し提示できる取送水運用制御装置が求められている。
【課題を解決するための手段】
【0008】
取送水系統を制御する取送水運用制御装置は、
配水区における水需要量を予測する需要予測部と、
取送水系統を、各々が配水池と当該の配水池への流入水路と当該流入水路の流量を制御する施設とを有する複数の部分ブロックに分割し、施設の上下流関係に基づいて当該複数の部分ブロック間の依存関係を定義する部分ブロック構成部と、
離散的な制約条件を緩和して暫定的な運用計画を策定するための緩和問題を求解する緩和問題最適化部と、
離散的な制約条件を、一つの部分ブロックまたは複数の部分ブロックの組の中において考慮し、緩和問題最適化部による暫定的な運用計画の近傍において一つの部分ブロックまたは前記複数の部分ブロックの組における運用計画を策定するための部分問題を求解する部分問題最適化部と、
需要予測部にて予測された水需要量と、取送水系統を構成する施設の施設接続関係と、当該施設の設備能力とを条件として、取送水運用に関するコストを最小化する運用計画を策定する最適化問題を設定し、部分ブロック構成部により作成された複数の部分ブロックおよび当該複数の部分ブロック間の依存関係に基づいて、緩和問題と部分問題を設定し、緩和問題最適化部による当該緩和問題の求解結果と部分問題最適化部による当該部分問題の求解結果を統合することによって最適化問題の近似最適解を算出し、当該近似最適解に基づく運用計画を策定する最適化計算統合部と、
最適化計算統合部で策定された運用計画を前記施設に送信する運用計画送信部とを備える。
【発明の効果】
【0009】
高速に取送水運用計画を計算できる取送水運用制御装置を提供することができる。
【0010】
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0011】
【図1】取送水運用制御装置の構成例を示す図である。
【図2】取送水運用制御装置のハードウェア構成の一例を示すブロック図である。
【図3】制御対象の取送水施設と、部分ブロックとの関係の一例を示す図である。
【図4】運用計画策定における部分ブロック間の上下流関係の一例を表す図である。
【図5】部分ブロックを対象とした部分問題の求解結果の一例を示す図である。
【図6】運用計画を策定する最適化問題を求解する処理の一例を示すフローチャートである。
【図7】最適化問題の求解の過程の探索木の一例を説明する図である。
【図8】運用計画策定における入力データの一例を示すテーブルである。
【図9】運用計画策定における部分問題設定データの一例を示すテーブルである。
【図10】運用計画策定における計画条件データの一例を示すテーブルである。
【図11】運用計画策定結果の運用計画データの一例を示すテーブルである。
【発明を実施するための形態】
【0012】
以下、実施の形態について、実施例を用い図面を参照しながら詳細に説明する。なお、実質同一部位には同じ参照番号を振り、説明は繰り返さない。本実施例では、運用計画立案の最適化問題を部分問題の組合せとして求解することで高速に運用計画を計算する取送水運用制御装置を説明する。
【0013】
図1において、取送水運用制御システム100は、取送水運用制御装置101と制御対象施設群110とから構成されている。
【0014】
取送水運用制御装置101は、最適化計算統合部141と、緩和問題最適化部142と、部分問題最適化部143と、部分ブロック構成部144と、需要予測部145と、運用計画送信部146と、運用計画提示部147と、コストデータ記憶部161と、予測需要量記憶部162と、設備能力記憶部163と、施設接続関係記憶部164とを有する。
【0015】
制御対象施設群110は、水源111と、水源112と、取水ポンプ施設113と、取水ポンプ施設114と、浄水池115と、浄水池116と、バルブ117と、送水ポンプ施設118と、配水池119と、配水池120と、バルブ121と、配水ポンプ施設122と、配水区131と、配水区132とを有する。例えば取水ポンプ施設113は水源111から取水した原水を浄水池115に送る。取水ポンプ施設113等のポンプ施設はポンプ運転台数やポンプ回転数を変えることで取水量・送水量等を制御できる。またバルブ117等のバルブ設備はバルブ開度を変えることで送水量・融通水量を制御できる。
【0016】
説明を簡単化するため制御対象施設群110には水を処理する浄水場を記載していないが、例えば取水ポンプ施設113による取水量が浄水場で処理されて浄水池115に貯水される場合では、取水ポンプ施設113の制御を通じて浄水場を制御している。
【0017】
取送水運用制御装置101は、通信ネットワークを介して監視・制御の対象である制御対象施設群110の各施設と接続されている。
【0018】
最適化計算統合部141は、予測需要量記憶部162、設備能力記憶部163および施設接続関係記憶部164に記憶された情報から構成される入力データ152と、施設接続関係記憶部164の情報から部分ブロック構成部144により生成される部分ブロックデータ153と、装置操作者が入力インタフェースを介して与える部分問題設定データ154と、制御対象施設群110の各施設からの情報からなる計画条件データ155と、コストデータ記憶部161に記憶された運用計画の評価指標となるコストデータとを入力とし、運用計画の立案を数理最適化問題として構築し、緩和問題を構成して緩和問題最適化部142を呼び出し、また部分問題を構成して部分問題最適化部143とを呼び出し、これらの結果を用いて最適化問題を求解して運用計画データ151を出力する。
【0019】
運用計画データ151は、制御対象の各施設が計画の当日および翌日にどのように運転していくかを30分単位で定めている。例えば取水ポンプ施設113に関しては30分毎の取水量を定め、浄水池115に関しては30分毎の貯水量を定める。
【0020】
運用計画データ151は、後述する各種の制約条件のもとで、コストを最小化する最適化問題の解として求められる。コストデータ記憶部161は、運用計画データ151に対するコストの計算手法、および必要なデータを記憶している。
【0021】
コストは、例えば制御対象施設の運用に要するポンプ電力の料金の見積りを指標として用いることができる。ポンプ施設の電力料金は、消費電力量から決まり、消費電力量は一般にポンプ施設の流量と相関がある。例えば電力単価が昼夜問わず一定の場合、電力料金はポンプ施設の累積取送水流量と比例すると近似できる。
【0022】
コストは必ずしも金額や費用に換算した指標である必要はなく、運用計画データ151から計算できるものであれば任意の指標を用いることができる。例えば、ポンプ施設等の運用で発生するCO2の発生量の見積りを用いてもよい。あるいは例えば、ポンプの起動停止回数等により見積もられる設備劣化リスクや、特定のポンプ施設の流量から見積もられるその施設への依存リスク、あるいはそれらの指標を組合せた指標を用いてもよい。
【0023】
運用計画データ151は、入力データ152で与えられる条件に対して、予測される配水区での需要量を満足し、各施設・設備の能力や運用条件から定まる制約を満足し、また施設接続関係から定まる水量の収支を満足しなければならない。例えば配水池120の貯水量は設備能力記憶部163に記憶された下限貯水量と上限貯水量の間に収まる値でなければならない。また施設接続関係記憶部164に記憶されている情報の通り、例えば配水池120の貯水量の変化は、送水ポンプ施設118からの流入量と、バルブ121からの融通量(流入量)と、配水ポンプ施設122への流出量とを合算して正味の流入出量と収支がとれている必要がある。
【0024】
また、運用計画データ151は、計画条件データ155で与えられる計画立案時点での施設の運転状況を初期状態とし、各制御対象施設の運用に移行できる計画値でなければならない。例えば配水池120の貯水量と、運用計画データ151の定める配水池120の貯水量との差は、運用計画での運用を開始する時点で運用に支障をきたさない程度でなければならない。
【0025】
最適化計算統合部141は、運用計画データ151を、例えば次の最適化問題(以下、最適化問題Pと呼ぶ)の解として定める。
【0026】
【数1】

【0027】
ここで、
j:制御対象施設を表す記号
t:30分刻みの時刻を表す記号(tは整数で0≦t≦T)
T:計画期間の長さを表す記号
Cj:電力料金原単位[円/m^3](j=13,14,18)
Rj(t):浄水池または配水池jの時刻tでの貯水量[m^3](j=15,16,19,20)
Qj(t):流量制御施設(取送水ポンプまたはバルブ)jの時刻tでの流量[m^3/時](j=13,14,17,18,21)
Dj(t):配水区jでの時刻tでの予測需要量[m^3/時](j=31,32)
LRj(t),HRj(t):浄水池または配水池jの時刻tでの下限および上限貯水量[m^3]
LQj(t),HQj(t):流量制御施設(取送水ポンプまたはバルブ)jの時刻tでの下限および流量[m^3/時]
QjA,QjB,QjC,QjD:取水ポンプ施設jの既定取水量[m^3/時]
であり、最適化問題の決定変数は1≦t≦TにおけるRj(t)およびQj(t)である。また、A^Bはべき乗の表現でAのB乗を表す。
【0028】
式8および式9の制約条件は、取水ポンプ施設113および取水ポンプ施設114が固定速ポンプの台数運転により制御されており、取水量として連続値をとることができずポンプ運転台数に応じた離散値となるための制約である。式10から式14は取送水ポンプ施設やバルブ設備の運用ポリシーのための制約である。正確には、例えば式10は、差Q13(t)−Q13(t−1)が0以外の値をとる回数は1日あたり3回以下でなければならないことを表す。これらの制約式を一般の混合整数計画問題の最適化エンジンに与えるための定式化は公知の手法であるため省略する。
【0029】
もし式8から式14のような制約がなければ最適化問題Pは線形計画問題であり、シンプレックス法や内点法といった一般的な最適化アルゴリズムで効率的に解くことができる。しかし式8から式14のような制約があることで、最適化問題Pは混合整数計画問題となっている。そのため大規模な取送水ネットワークに適用した場合、分枝限定法や分枝切除法などの一般的な最適化アルゴリズムでは最適化に要する時間が膨大となり、取送水運用制御装置101として期待される処理時間を超過する可能性がある。式8から式14のような、離散的な変数を用いる必要のある制約を、以下、離散的な制約条件と呼ぶことにする。
【0030】
そこで最適化計算統合部141は、最適化問題Pの厳密な最適解を求めるのではなく、制御対象施設群110の取送水ネットワークの構造を利用し、近似的な最適解を高速に求める。式8から式14のような離散的な制約条件を取り除いて線形計画問題に緩和し、緩和問題最適化部142にてその解を求める。一方で離散的な条件を、後述する部分ブロックのいくつかにのみ付加し、緩和問題の結果の近傍を探索する部分問題を設定し、部分問題最適化部143でその解を求める。考慮した部分ブロックについては部分問題の結果を固定し、これらの操作を繰り返すことで逐次的に離散的な条件を追加して最適化問題Pの解を構成する。
【0031】
大規模な取送水系統においても最適化問題Pを線形計画問題と小規模な部分問題に分割して解くことで、近似的な最適解を高速に求められる。詳細な手法については図3以降の説明とともに後述していく。
【0032】
なお、取送水運用制御装置101が最適化計算統合部141によって運用計画データ151を計算するのは、例えば装置の操作者による指示があった場合か、定期的に取送水運用制御装置101が自動で行う場合か、あるいは運用している運用計画データ151と制御対象施設群110の状態との誤差を取送水運用制御装置101が検知して自動で再計算を行うかの場合によるものが考えられる。
【0033】
緩和問題最適化部142は、最適化計算統合部141により構成された緩和線形計画問題の最適解を求め、その解を最適化計算統合部141に送信する。
【0034】
同様に部分問題最適化部143は、最適化計算統合部141により構成された部分問題の最適解を求め、その解を最適化計算統合部141に送信する。
【0035】
部分ブロック構成部144は、部分問題の構成に用いる部分ブロックデータ153を、施設接続関係記憶部164に記憶された施設接続関係情報から構築する。具体的な内容は図3、図6の説明にて後述する。
【0036】
需要予測部145は、公知の技術であるカルマンフィルタ法などにより、運用計画を策定する期間の各時間ステップに関して、配水区131および配水区132における需要量を予測する。需要予測部145は例えば運用計画を策定する期間の気温や降水量などの気象データや、曜日等の情報を入力として利用してもよい。予測された需要量は、予測需要量記憶部162に記憶される。
【0037】
運用計画送信部146は、運用計画データ151を例えば取水ポンプ施設113などの制御対象の施設へと送信する。取水ポンプ施設113などの制御対象の施設は、受信した運用計画データ151に定められた運用計画を実現するよう、取送水運用制御装置101によって、あるいは施設に設けられた制御装置によって運転が制御される。
【0038】
運用計画提示部147は、運用計画データ151を、例えばディスプレイなどの出力装置を通じて取送水運用制御装置101の操作者へと提示する。具体的には各制御対象施設の運用計画、あるいはコストデータ記憶部161に記憶されたコスト計算式から算出されたコスト情報を、表やグラフで提示する。
【0039】
その後、取送水運用制御装置101が、例えば部分問題設定データ154の修正や、利用するコストデータ記憶部161の切り替えに関する操作者の要求を受け付け、数理最適化問題を修正した上で再度運用計画データ151を計算できるようにしてもよい。
【0040】
予測需要量記憶部162は、需要予測部145で計算された予測需要量を記憶し、最適化計算統合部141の要求に応じて予測需要量を提供する。
【0041】
設備能力記憶部163は、浄水池および配水池の貯水量の上限値および下限値や、取送水ポンプ施設やバルブの流量制御可能範囲等の情報を記憶する。
【0042】
施設接続関係記憶部164は、浄水池、配水池、配水区や、各種ポンプ施設およびバルブ施設等により制御される水路の接続情報を記憶する。
【0043】
図2を参照して、取送水運用制御装置101のハードウェア構成を説明する。図2において、取送水運用制御装置101は、CPU201と、メモリ202と、メディア入出力部203と、入力部205と、通信制御部204と、表示部206と、周辺機器IF部207と、バス210とから構成されている。
【0044】
CPU201は、メモリ202上のプログラムを実行する。メモリ202は、プログラム、テーブル等を一時記憶する。
【0045】
メディア入出力部203は、プログラム、テーブル等を保持する外部メディア(図示せず)にアクセスしてプログラム、テーブルなどを読み出したり更新したりする。入力部205は、キーボード、マウス等である。通信制御部204は、ネットワーク220と接続されている。表示部206は、運用計画提示部147によって運用計画データ151等が出力されるディスプレイである。周辺機器IF部207は、プリンタ等のインタフェースである。バス210は、CPU201、メモリ202、メディア入出力部203、入力部205、通信制御部204、表示部206、周辺機器IF部207を相互接続する。
【0046】
図1と図2との対比から明らかなように、図1の最適化計算統合部141、緩和問題最適化部142、部分問題最適化部143、部分ブロック構成部144、需要予測部145は、CPU201がメモリ202上のプログラムを実行することで実現している。
【0047】
図3および図4を参照して、部分ブロック構成部144が設定し、最適化計算統合部141が最適化計算に利用する部分ブロックについて説明する。
【0048】
図3は制御対象施設群110の各施設と、この取送水系統において設定される部分ブロック301、部分ブロック302、部分ブロック303、部分ブロック304の関係を示している。
【0049】
部分ブロック構成部144は、施設接続関係記憶部164に記憶された施設の接続情報から、部分ブロックを、浄水池あるいは配水池の一つと、その浄水池または配水池へと流入する水路と、その水路を制御する制御対象施設とから構成する。また、後述する部分ブロックの間の上下流関係の情報を算出する。以降、部分ブロックをさす際に、誤解の恐れがない限り水路については言及せず、配水池または浄水池とそこへ流入する水路を制御する制御対象施設のみをさすこととする。
【0050】
部分ブロック303は、浄水池115と取水ポンプ施設113とから構成される。部分ブロック304は、浄水池116と取水ポンプ施設114とから構成される。部分ブロック302は、配水池119とバルブ117とから構成される。部分ブロック301は、配水池120と、送水ポンプ施設118と、バルブ121とから構成される。
【0051】
図4は各部分ブロックの上下流関係を示している。図4において、各部分ブロックを結ぶ矢印線は、水路で直接に接続されている2つの部分ブロックの間で、上流の部分ブロックから下流の部分ブロックへの方向へ引かれている。
【0052】
部分ブロックの構成と、部分ブロック間の上下流関係の算出方法は、例えば有向グラフにおけるノード間の連結性を判定する公知なアルゴリズムを用いることができるため省略する。
【0053】
最適化計算統合部141は、部分ブロック構成部144が算出した部分ブロックの情報を用いて、部分問題最適化部143が求解する部分問題を設定する。原則として、部分問題では一つの部分ブロックを構成する施設に対してのみ離散的な制約条件を考慮した最適化問題を求解する。例えば部分ブロック301を担当する部分問題では、配水池120、送水ポンプ施設118、バルブ121の運用計画を定めるため、これらの施設に関する離散的な制約条件である式13および式14を考慮した最適化を行う。
【0054】
また、部分問題である部分ブロックを担当した最適化を行う場合、その部分ブロックの下流にあたる部分ブロックについてはすでに部分問題を実行しているものとし、それら下流側の部分ブロックについて部分問題の求解で得られた運用計画を固定した緩和問題の結果が得られていることとする。部分問題でも同じ下流側の運用計画を固定して、緩和問題の近傍を探索する最適化計算を行う。例えば部分ブロック303を担当する部分問題を部分問題最適化部143が求解する際には、部分ブロック301および部分ブロック302についてはすでに部分問題を求解しており、バルブ117と、配水池119と、送水ポンプ施設118と、バルブ121と、配水池120についてはすでに求解した部分問題で得られた運用計画を固定した緩和問題を求解し、その緩和問題の結果の近傍を探索する部分問題を設定する。
【0055】
下流から順に運用計画を決定することは、次の意味を持つ。需要は必ず下流側に位置するため、需要量を満足する運用計画を作る上では下流側の制約条件が厳しい。そこで下流側の運用計画を優先して定めることで、実行不可能となる可能性の高い領域の探索を避けられ、探索時間の短縮につながる。また、下流側は浄水場から遠くその間に多くの施設を経由するため、もし下流の配水池で貯水量が不足した場合に追加で送水することは困難な可能性がある。そのため下流側の配水池の貯水量を優先的に設定することは安定的な運用のために重要である。
【0056】
最適化計算統合部141が設定し、部分問題最適化部143が求解する部分問題としては、最適化問題Pから考慮しない離散的な制約条件を取り除き、また固定する運用計画を表す変数を決定変数から取り除き定数とみなし、図5の説明で後述する緩和問題の解の近傍の探索条件を追加した最適化問題を設定できる。例えば部分ブロック303を担当する部分問題では、最適化問題Pから式9、式11、式12、式13、式14を取り除き、Q17(t)、R19(t)、Q18(t)、Q21(t)、R20(t)を固定し、後述する近傍探索条件を追加した最適化問題を用いる。部分問題最適化部143での最適化計算処理には、汎用の混合整数計画問題の最適化エンジンを用いることができる。
【0057】
部分問題の設定と、部分問題最適化部143の実装は、上記の手法に限定されるものではない。例えば、目的関数を式1のコストだけでなく後述する近傍の探索に関する指標を足し合わせた式に取り替えてもよい。また、混合整数計画問題の最適化エンジンで厳密な最適解を求めるのではなく、遺伝的アルゴリズムなどのメタヒューリスティクス手法や配水池の運用に特化したヒューリスティックな手法により近似的な解を求めることとしてもよい。
【0058】
いずれの手法にしても、部分問題では離散的な制約条件を原則として一度に一つの部分ブロック内にのみ含んでいる。離散的な制約条件を含む最適化問題の求解時間は、離散的な制約条件、あるいは離散的な変数の数に対して指数関数的に依存する場合がある。部分問題への分割により制約条件の数を減らすことができると同時に、運用するのに適当な運用計画を短時間で見つけられる。
【0059】
また、部分ブロックを単位とした取送水系統の分割により、最適化問題を独立して最適化できる小規模な問題へと分割する効果がある。最適化問題Pの目的関数であるコストは、一般的には取水量、送水量などの流量をもとに計算される。部分ブロック301の運用計画を固定した場合、部分ブロック302および部分ブロック303からなる系統と、部分ブロック304からなる系統はコスト計算上の直接の依存関係はないとみなせる。そのため、上記の2つの系統に対して独立に最適化問題を解き進めることができ、探索を効率化して計算時間の短縮に寄与できる。この効果については図7の探索木の説明にて再度述べる。
【0060】
ただし、部分問題最適化部143は、同一の部分問題に対して一つの最適解だけではなく、代替候補となる解を複数返すことができる手法で実装されることが望ましい。最適化問題Pの最適解は、必ずしも部分問題の最適解と部分ブロック内においても合致するとは限らない。そのため代替候補を用意してそれぞれ式1の目的関数値を評価することで、例えば最適化問題Pの最適解により近い運用計画を探索できる。代替候補を利用した探索については図7の説明にて後述する。代替候補となる解を与える方法としては、目的関数が小さい値となる候補を順に与える方法や、後述する近傍の制約を緩めた場合の候補を与える方法がある。
【0061】
部分問題は原則として一度に一つの部分ブロックを担当するが、複数の部分ブロックを一体的にとりあつかって運用を定める取送水系統もあり得る。そうした場合、一体的に運用を定める複数の部分ブロックを一つの部分問題で一度に扱うようにしてもよい。
【0062】
例えばある部分ブロックAの下流に部分ブロックBが位置し、同時に部分ブロックBの下流に部分ブロックAが位置するような場合は、部分ブロックAと部分ブロックBをまとめて一つの部分問題で担当することが望ましい。あるいは、部分ブロックAの下流に部分ブロックBが位置する場合で、部分ブロックAの浄水池または配水池の容量が小さく、部分ブロックBへの流出量を任意に定めると部分ブロックAの部分問題が実行不可能となってしまう場合、部分ブロックAと部分ブロックBをまとめて一つの部分問題で担当することが望ましい。
【0063】
上記のような部分ブロックと部分問題の担当範囲の対応は、取送水系統の特性に依存するため、運用に通じた取送水運用制御装置101の操作者が部分問題設定データ154として設定できる。最適化計算統合部141は、部分問題設定データ154の対応を用いて、部分問題最適化部143にて求解する部分問題の構成を定める。部分問題設定データ154については、図9の説明にて後述する。
【0064】
図5を参照して、部分問題の設定における、緩和問題の近傍探索のための制約条件について説明する。
【0065】
図5は部分ブロック301を担当する部分問題における送水ポンプ施設118の送水量とバルブ121の融通量の結果の例を表す。ここでは送水ポンプ施設118と配水池120をつなぐ水路を管路A、バルブ121で制御される配水池119から配水池120への水路を管路Bと呼ぶ。
【0066】
図5の横軸を時刻、縦軸を配水池120への累積流入量とするグラフにおいて、符号512、513、515、516はそれぞれ計画最終時刻、早朝需要ピーク前の貯水量目標設定時刻、電力の夜間料金開始時刻、電力の夜間料金終了時刻を表す。また符号501は計画開始時刻での配水池120の初期貯水量、符号502は計画終了時刻での配水池120の目標貯水量、符号503は需要ピーク直前の早朝での目標貯水量を表す。
【0067】
符号521、522、523はそれぞれ、仮に配水池120を常に上限貯水量で運用する際に必要な総流入量の累積値、同様に常に下限で運用する場合の総流入量の累積値、流入量が常に0であった場合の基準線である。配水池120の上下限制約を満たすためには、総流入量の累積値、すなわち管路Aおよび管路Bの流入量の和の累積値は、常に上限水位運用時累積流入量521および下限水位運用時累積流入量522の間の値をとる必要がある。
【0068】
符号525、526、527、528は、部分問題の結果としての管路Aおよび管路Bの累積流入量、部分問題の結果としての管路Bの累積流入量、部分問題が近傍を探索する緩和問題の結果としての管路Aおよび管路Bの累積流入量、部分問題が近傍を探索する緩和問題の結果としての管路Bの累積流入量を表す。管路B累積流入量526と累積流入量基準523との差が管路Bの正味の累積流入量、管路Aおよび管路B累積流入量525と管路B累積流入量526との差が管路Aの正味の累積流入量となる。緩和問題の結果についても同様である。
【0069】
最終時刻目標貯水量502、早朝目標貯水量503は、下限水位運用時累積流入量522との差が貯水量の値となるポイントである。同様に、管路Aおよび管路B累積流入量525で表現される運用計画で運転する場合、管路Aおよび管路B累積流入量525と下限水位運用時累積流入量522との差が配水池120の貯水量の値となる。
【0070】
図5の横軸を時刻、縦軸を配水池120への流入量とするグラフにおいて、符号537、536は、それぞれ上述した累積流入量に対応した、管路Aからの流入量、管路Bからの流入量を表す。
【0071】
部分問題には、緩和問題の結果の近傍を探索するよう制約条件を設定する。最適化計算統合部141は、配水池120の最終時刻目標貯水量502および早朝目標貯水量503を緩和問題の結果から抽出し、最終時刻目標貯水量がポイント502に近いポイントとなるよう、また早朝目標貯水量がポイント503に近いポイントとなるよう制約条件を設定する。また、計画期間を夜間電力料金の適否によって区分し、各時間帯における管路の累積流入量がなるべく近くなるよう制約条件を設定する。例えば管路Bについて、夜間電力料金開始時刻515と夜間電力料金終了時刻516の間の時刻の管路Bの累積流入量が、緩和問題の結果としての管路Bの累積流入量と近い値となるように制約条件を設定する。
【0072】
ここで近くなるように設定すると述べた条件は、貯水量に関して具体的には例えば次のように記述できる。
【0073】
【数2】

【0074】
ここで、
t1:目標貯水量を設定する時刻を表す記号
S20(t1):配水池120のt1における目標貯水量(緩和問題の結果のため定数)[m^3]
s20;目標貯水量との許容される差(定数)[m^3]
である。
また、累積貯水量に関しては例えば次のように記述できる。
【0075】
【数3】

【0076】
ここで、
P21(t):バルブ121により制御される管路Bの緩和問題の結果での流量[m^3/時]
p21:目標累積貯水量との許容される差(定数)[m^3/時]
である。
【0077】
近傍の定義として、特定の時刻における貯水量を考えることは、需要ピークを迎えた早朝や、翌日など次の運用計画との接続を考える重要な時刻であるため、浄水池や配水池の状態である貯水量を維持あるいは指定するニーズがあるためである。また夜間電力料金の適否で時間帯を分けて累積流量を考えることは、電力単価に応じた運用計画の策定に資するためである。
【0078】
近傍の定義はここで述べた内容に限られるものではなく、他の任意の指標について、指標値と、緩和問題の結果から計算される指標値とが近い値になるような制約を設定することができる。例えば、河川原水が豪雨等により高い濁度となるケースにて、推測される浄水場での浄水汚泥の発生量を最適化問題のコストとして採用する場合、時間帯の区切りを予想される濁度の高低に応じて区分し、上記と同様に区分ごとの累積流入量を指標とすることが考えられる。
【0079】
図6を参照して、最適化計算統合部141、緩和問題最適化部142、および部分問題最適化部143の処理のフローを説明する。
【0080】
ステップ最適化問題の設定601で、入力データ152および計画条件データ155から最適化問題Pを構成する。
【0081】
ステップ緩和問題の設定602では、離散的な制約条件を緩和した線形計画問題を構成する。なお、すでに部分問題にて運用計画を算出した部分ブロックがあれば、その運用計画の変数は固定した上で残りの変数のみを決定変数として取扱う。
【0082】
ステップ緩和問題の求解603では、緩和問題最適化部142にて、先に構成した緩和問題の最適解を求める。
【0083】
ステップ部分問題の選択604では、部分ブロックデータ153に基づき、まだ運用計画を策定していない部分ブロックの中でもっとも下流にある部分ブロックを選択する。部分問題設定データ154の設定に応じて、単体の部分ブロックではなく部分ブロックの組を選択することもある。なお、部分ブロックの選択候補について、その下流の部分ブロックを担当する部分問題を求解した後その結果を固定した緩和問題がまだ求解されていない場合は、その部分ブロックは選択しない。
【0084】
部分ブロックが選択された場合はステップ対象有無判定605からステップ部分問題の求解606へ進む。選択されなかった場合はステップ対象有無判定605からステップ探索結果の記録607へ進む。
【0085】
ステップ部分問題の求解606では、選択された部分ブロック、あるいは部分ブロックの組を担当する部分問題を構成し、部分問題最適化部143にて最適解を求める。後述するようにもしすでに同じ条件の部分問題を求解しており、代替候補を出力するよう指示された場合は、代替候補を出力してより全体最適に近い運用計画の探索の候補とする。
【0086】
ステップ探索結果の記録607では、ステップ部分問題の求解606で出力した部分問題の解の情報と、最適化計算統合部141の探索に関する情報を記録する。詳細は図7の探索木の説明で後述する。
【0087】
ステップ終了判定608では、あらかじめ設定された最適化計算統合部141での処理時間に関する限界値や、探索の候補総数の限界値を、探索時点の情報が超えているかを判定し、超えていた場合は終了、そうでなければ継続とする。終了の場合はステップ運用計画の出力610へ、継続の場合はステップ問題の更新609へと進む。
【0088】
ステップ問題の更新609では、ステップ探索結果の記録607で記録した探索木の情報から、固定する運用計画として次の代替候補へと進む部分ブロックを選択し、その部分ブロックを担当する部分問題を再計算するよう指示を記録する。
【0089】
ステップ運用計画の出力610では、探索終了時点での最適解を運用計画データ151として出力し、運用計画送信部146および運用計画提示部147に送信する。
【0090】
図7を参照して、最適化計算統合部141における最適化問題Pの最適解の探索処理を説明する。
【0091】
符号700から760は、最適化計算統合部141における探索の状態を表す。
【0092】
探索ノード700は、全ての部分ブロックで運用計画が固定されておらず、全ての離散的な制約条件を外した緩和問題を求解した状態である。部分ブロック301を担当する部分問題を部分問題最適化部143で求解したのち、最適解である始めの候補で部分ブロック301の運用計画を固定し緩和問題を求解した状態が探索ノード710、次の代替候補で部分ブロック301の運用計画を固定し緩和問題を求解した状態が探索ノード760である。
【0093】
先述したとおり、部分ブロック301の運用計画を固定するとその他の部分ブロックに関する探索は2領域に分割して行える。部分ブロック302および部分ブロック303の探索に関する起点を探索ノード720、部分ブロック304の探索の起点を探索ノード750としている。
【0094】
部分ブロック302に対して1つめ、2つめの候補を固定し緩和問題を求解した状態をそれぞれ探索ノード730、探索ノード740、そこからさらに部分ブロック303に対して1つめ、2つめの候補を固定した状態が探索ノード731、探索ノード732、探索ノード741、探索ノード742である。
【0095】
同様に部分ブロック304に対して候補を固定した状態が探索ノード751、探索ノード752である。
【0096】
探索ノード731、探索ノード732、探索ノード741、探索ノード742のうちから1つ、探索ノード751、探索ノード752のうちから1つを選び、それらの固定している運用計画を組合せることで最適化問題Pの実行可能解が得られる。
【0097】
これらの探索ノードからなる探索木を、例えば深さ優先探索で探索することで最適化問題Pの近似的な最適解を求められる。なお各部分問題の候補をいくつ探索するかは許される計算時間を考慮してあらかじめ定めればよい。
【0098】
なお、部分問題にてすべての制約条件を満たす解がなかった場合、すなわち実行不可能であった場合、探索ノードを生成せずにそれまで固定した部分問題から別候補を選ぶことで探索を続けられる。
【0099】
部分問題で代替候補を出力とし、図7の探索木のように探索を行うことで、最適化問題Pの近似解としてより最適に近い解を発見できるとともに、制約条件が厳しいケースでは制約条件を満たす解を発見することに寄与できる。
【0100】
図8は、入力データ152の構造を示す入力データテーブル800の例である。列801は種別、列802は項目、列803は内容を格納する。入力データテーブル800の通り、施設間の接続関係、取送水ポンプ施設やバルブ施設の運用条件、浄水池や配水池の貯水量上下限値、配水区の予想需要量等の情報を持つ。
【0101】
図9は、部分問題設定データ154の構造を示す部分問題設定データテーブル900の例である。列901は連番、列902は同時に部分問題で求解する部分ブロックの組を格納する。原則として部分問題は部分ブロック1つを担当するが、このテーブルに設定があれば、複数の部分ブロックからなる組をまとめて部分問題で取り扱う。
【0102】
図10は、計画条件データ155の構造を示す計画条件データテーブル1000の例である。列1001は種別、列1002は項目、列1003は内容を格納する。制御対象施設群110から収集した、計画立案時点での各制御対象施設の状態の情報を保持し、速やかに実行に移せる運用計画を立案するために利用する。
【0103】
図11は、運用計画データ151の構造を示す運用計画データテーブル1100の例である。列1101は種別、列1102は項目、列1103は時刻、列1104は計画地を格納する。最適化問題Pの解として最適化計算統合部141が出力した計画値であり、制御対象施設の制御目標値として運用計画送信部146から各制御対象施設に配信される。
【0104】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
【0105】
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
【0106】
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
【符号の説明】
【0107】
100 取送水運用制御システム
101 取送水運用制御装置
141 最適化計算統合部
142 緩和問題最適化部
143 部分問題最適化部
144 部分ブロック構成部
146 運用計画送信部
147 運用計画提示部

【特許請求の範囲】
【請求項1】
取送水系統を制御する取送水運用制御装置であって、
配水区における水需要量を予測する需要予測部と、
前記取送水系統を、各々が配水池と当該の配水池への流入水路と当該流入水路の流量を制御する施設とを有する複数の部分ブロックに分割し、施設の上下流関係に基づいて当該複数の部分ブロック間の依存関係を定義する部分ブロック構成部と、
離散的な制約条件を緩和して暫定的な運用計画を策定するための緩和問題を求解する緩和問題最適化部と、
前記離散的な制約条件を、一つの部分ブロックまたは複数の部分ブロックの組の中において考慮し、前記緩和問題最適化部による暫定的な運用計画の近傍において前記一つの部分ブロックまたは前記複数の部分ブロックの組における運用計画を策定するための部分問題を求解する部分問題最適化部と、
前記需要予測部にて予測された水需要量と、前記取送水系統を構成する施設の施設接続関係と、当該施設の設備能力とを条件として、取送水運用に関するコストを最小化する運用計画を策定する最適化問題を設定し、前記部分ブロック構成部により作成された前記複数の部分ブロックおよび当該複数の部分ブロック間の依存関係に基づいて、前記緩和問題と前記部分問題を設定し、前記緩和問題最適化部による当該緩和問題の求解結果と前記部分問題最適化部による当該部分問題の求解結果を統合することによって前記最適化問題の近似最適解を算出し、当該近似最適解に基づく運用計画を策定する最適化計算統合部と、
前記最適化計算統合部で策定された運用計画を前記施設に送信する運用計画送信部とを備えたことを特徴とする取送水運用制御装置。
【請求項2】
請求項1に記載の取送水運用制御装置であって、
前記部分問題最適化部が求解する前記部分問題は、
予め設定された時刻において、部分ブロック内の配水池の貯水量と、前記緩和問題最適化部による求解結果に基づく暫定的な運用計画に従った場合の当該配水池の貯水量との差が、予め定められた範囲内に収まることを条件とした第一の条件、
予め設定された期間毎に、前記部分ブロック内の流入水路の流量と、前記緩和問題最適化部による求解結果に基づく前記暫定的な運用計画に従った場合の当該流入水路の流量との差が、予め定められた範囲内に収まることを条件とした第二の条件、
あるいは前記第一の条件と前記第二の条件の双方が成立することを条件とした第三の条件のいずれかを用いて、
前記暫定的な運用計画の近傍の運用計画を探索するように前記最適化計算統合部にて設定されることを特徴とする取送水運用制御装置。
【請求項3】
請求項1乃至請求項2に記載の取送水運用制御装置であって、
前記部分問題最適化部は、前記最適化計算統合部から与えられた部分問題に対応する部分ブロックに対する複数の運用計画の候補を出力し、
前記最適化計算統合部は前記部分ブロックに対する前記複数の運用計画の候補をそれぞれ固定した取送水系統全体の運用計画を探索し、
前記探索において前記最適化計算統合部は、下流側の部分ブロックにおける運用計画を固定することで、上流側において取送水量に関する依存関係が解消されたことを検知し、上流側における運用計画の策定を2系統以上で独立に変更して運用計画の探索を進めることを特徴とする取送水運用制御装置。
【請求項4】
請求項1乃至3に記載の取送水運用制御装置であって、
前記最適化計算統合部は、操作者が入力する部分問題設定データに基づき、指定された複数の部分ブロックを同一の部分問題で担当するよう部分問題を設定することを特徴とする取送水運用制御装置。
【請求項5】
請求項1乃至4に記載の取送水運用制御装置であって、
前記最適化計算統合部が設定する最適化問題は、固定ポンプの台数運転制御を行う取送水ポンプ施設におけるポンプ運転台数、または取送水ポンプ施設およびバルブ設備の流量を切替える回数の制限の少なくとも一方を離散的な制約条件とし、
前記最適化計算統合部は前記制約条件を緩和した緩和問題を設定して緩和問題最適化部に求解させることを特徴とする取送水運用制御装置。
【請求項6】
請求項1乃至5に記載の取送水運用制御装置であって、
前記最適化計算統合部は前記緩和問題を線形計画問題として定式化し、
前記緩和問題最適化部は前記線形計画問題を求解することを特徴とする取送水運用制御装置。
【請求項7】
請求項1乃至6に記載の取送水運用制御装置であって、
前記最適化計算統合部が運用計画を策定するために設定する最適化問題は、最小化するコストとして、施設の消費する消費電力、当該消費電力に起因する電力費用、当該消費電力に起因する温室効果ガス発生量、あるいは、取送水ポンプ施設の運用に伴い発生する浄水発生土および消費される薬品注入量、当該上水発生土の処分および当該薬品の購入にかかる費用、または当該薬品の注入に起因する温室効果ガス発生量、のいずれかを用いることを特徴とする取送水運用制御装置。
【請求項8】
請求項1乃至請求項7に記載の取送水運用制御装置であって、
通信ネットワークを介して制御対象の複数の施設と接続し、当該複数の設備から運用計画に対する条件データを受信し、前記最適化計算統合部によって策定された運用計画を当該複数の設備に送信することを特徴とする取送水運用制御装置。
【請求項9】
取送水系統を制御する取送水運用制御装置によって実行されるプログラムであって、
当該取送水運用制御装置を、
配水区における水需要量を予測する需要予測部と、
前記取送水系統を、各々が配水池と当該配水池への流入水路と当該流入水路の流量を制御する施設とを有する複数の部分ブロックに分割し、施設の上下流関係に基づいて当該複数の部分ブロック間の依存関係を定義する部分ブロック構成部と、
離散的な制約条件を緩和して暫定的な運用計画を策定するための緩和問題を求解する緩和問題最適化部と、
前記離散的な制約条件を、一つの部分ブロックまたは複数の部分ブロックの組の中において考慮し、前記緩和問題最適化部による暫定的な運用計画の近傍において前記一つの部分ブロックまたは前記複数の部分ブロックの組における運用計画を策定する部分問題を求解する部分問題最適化部と、
前記需要予測部にて予測された水需要量と、前記取送水系統を構成する施設の施設接続関係と、当該施設の設備能力とを条件として、取送水運用に関するコストを最小化する運用計画を策定する最適化問題を設定し、前記部分ブロック構成部により作成された前記複数の部分ブロックおよび当該複数の部分ブロック間の依存関係に基づいて、前記緩和問題と前記部分問題を設定し、前記緩和問題最適化部による当該緩和問題の求解結果と前記部分問題最適化部による当該部分問題の求解結果を統合することによって前記最適化問題の近似最適解を算出し、当該近似最適解に基づく運用計画を策定する最適化計算統合部と、
前記最適化計算統合部で策定された運用計画を前記施設に送信する運用計画送信部とを備えた取送水運用制御装置として動作させることを特徴とするプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−64245(P2013−64245A)
【公開日】平成25年4月11日(2013.4.11)
【国際特許分類】
【出願番号】特願2011−202552(P2011−202552)
【出願日】平成23年9月16日(2011.9.16)
【出願人】(000005108)株式会社日立製作所 (27,607)