説明

可変容量デバイス

【課題】複数の可変容量コンデンサを直列接続して構成された可変容量デバイスにおいて、例えば内部電極、容量値等の設計自由度をより広げ、製造を容易にし、且つ、上述した寄生容量の影響を抑制する。
【解決手段】可変容量デバイス1は、デバイス本体10と、少なくとも3つの制御端子32〜34とを備える構成とする。デバイス本体10には、複数の誘電体層11〜14及び内部電極部21〜25により3つ以上のコンデンサが形成され、該3つ以上のコンデンサが直列に接続される。そして、少なくとも3つの制御端子32〜34は、制御信号が印加され、且つ、3つ以上のコンデンサのうち少なくとも2つのコンデンサを形成する少なくとも3つの内部電極22〜24に対してそれぞれ設けられる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可変容量デバイスに関し、より詳細には、複数の電極が誘電体を介して積層された可変容量素子を備える可変容量デバイスに関する。
【背景技術】
【0002】
従来、電圧及び/または電流を制御するための可変容量素子が、様々な電子機器に使用されている。そして、そのような可変容量素子において、より高性能な素子を得るために様々な技術が提案されている(例えば特許文献1〜3参照)。
【0003】
特許文献1では、複数の第1の容量電極及び複数の第1のバイアス電極(制御電極)が誘電体を介して交互に積層された第1の容量部を備える可変キャパシタが提案されている。また、この可変キャパシタは、複数の第2の容量電極及び複数の第2のバイアス電極が誘電体を介して交互に積層された第2の容量部を備える。さらに、この可変キャパシタは、第1のバイアス電極及び第2のバイアス電極が誘電体を介して対向する可変容量部を備える。特許文献1では、可変キャパシタを上述のような構成にすることにより、バイアス電圧を低下させ且つ静電容量変化率を増大させている。
【0004】
特許文献2では、可変コンデンサを用いて入力される交流電力を制御する電力制御回路が提案されている。特許文献2の電力制御回路では、誘電体を介して複数の電極を積層し、例えば、図20に示すような等価回路が得られるように、各電極を交流電源2及び制御電源3に適宜接続する。
【0005】
図20に示す特許文献2の電力制御回路850では、2つの可変コンデンサを直列に接続した直列回路を2対形成し、各直列回路内の2つの可変コンデンサ間の接続点を外部端子811及び812を介して交流電源2に接続している。また、図20に示す例では、2つの直列回路を2つの制御端子813及び814(外部端子)を介して、制御電源3に並列接続する。なお、一方の制御端子813は、DC(Direct Current)除去用抵抗821を介して制御電源3の正極に接続され、他方の制御端子814は、DC除去用抵抗822を介して制御電源3の負極に接続される。
【0006】
また、特許文献3では、一つの誘電体に複数の可変コンデンサを配列することにより、外部端子等を減らして小型化を図る技術が提案されている。図21(a)〜(c)に、特許文献3で提案されているコンデンサアレイの一構成例を示す。なお、図21(a)は、コンデンサアレイの概略上面図であり、図21(b)は、コンデンサアレイの概略下面図であり、図21(c)は、コンデンサアレイの側面図である。
【0007】
図21(a)〜(c)に示す例では、誘電体901の上面901aには、4つの上電極902と、それらにそれぞれ接続された4つの上外部端子904とが形成される(図21(a)参照)。なお、4つの上電極902及び4つの上外部端子904は、コンデンサアレイの長手方向に沿って等間隔で配置される。
【0008】
また、誘電体901の下面901bには、4つの下電極903と、それらにそれぞれ接続された4つの下外部端子905とが形成される(図21(b)参照)。なお、各下電極903は、誘電体901の上面901aに形成された対応する上電極902と、誘電体901を挟んで対向する位置に配置される。
【0009】
そして、図21(a)〜(c)に示す例では、誘電体901の上面901aに形成された中央の2つの上外部端子904間が上配線電極906により接続される。また、図21(b)面上において、誘電体901の下面901bに形成された左側の2つの下外部端子905間が下配線電極907により接続され、右側の2つの下外部端子905間が下配線電極908により接続される。このように各外部端子を配線電極で接続することにより、4つの上電極902と、4つの下電極903との間にそれぞれ形成される4つの可変コンデンサが直列接続された構成となる(図21(c)参照)。
【0010】
図21(a)〜(c)に示すような構成では、コンデンサの数に対する外部端子の数を減らすことができるとともに、次のような効果も得られる。4つの可変コンデンサを直列接続することにより、可変コンデンサ毎に印加される交流電圧が小さくなり、素子の耐圧性が向上する。また、素子全体の例えば容量、Q値(Quality of factor)等の特性の交流電圧による変化が小さくなる。また、外部端子間の距離を広げた場合には、端子間放電を抑制することができる。さらに、複数の可変コンデンサをまとめて作製するので、可変コンデンサ毎の特性ばらつきを小さくすることができる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2008−66682号公報
【特許文献2】特開2009−142043号公報
【特許文献3】特開2009−16613号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
上記特許文献3で提案されている可変容量デバイス(コンデンサアレイ)のように、一つの誘電体に複数の可変コンデンサを配列し、それらを直列接続した場合には、上述した様々な利点がある。
【0013】
ただし、上記特許文献3で提案されているような構成の可変容量デバイスでは、各内部電極の幅dの最大値は、[デバイス長DL−電極間隔g]/(同一面内の素子数)で決まる。すなわち、上述のような可変容量デバイスにおいて、そのデバイス長DLが決まっている場合には、同一面に形成する内部電極間の間隔g及び外部端子間のスペースにより容量の増減量が決まる(図21(a)〜(c)参照)。
【0014】
それゆえ、上記特許文献3で提案されているような可変容量デバイスにおいて、一つの誘電体に実装する可変コンデンサの数が増大すると、誘電体の各表面における内部電極間及び外部端子間のスペースが狭くなり、容量の増減範囲が小さくなる。すなわち、一つの可変容量デバイスにおける例えば内部電極、容量値等の設計の自由度が制限されるという問題が生じる。
【0015】
また、誘電体の各表面における内部電極間及び外部端子間のスペースが狭くなると、誘電体の各表面において内部電極間及び/または外部端子間に発生する寄生容量(図21(b)及び(c)中の破線で示したコンデンサ)の影響が大きくなる。この場合、クロストークが増大するという問題が生じる。さらに、一つの誘電体に実装する可変コンデンサの数を増やすと、製造ばらつきの影響が大きくなったり、製造すること自体が困難になったりするという問題が生じる。
【0016】
本発明は、上記問題を解決するためになされたものである。本発明の目的は、複数の可変容量コンデンサを直列接続して構成された可変容量デバイスにおいて、例えば内部電極、容量値等の設計自由度をより広げ、製造を容易にし、且つ、上述した寄生容量の影響を抑制することである。
【課題を解決するための手段】
【0017】
上記課題を解決するために、本発明の可変容量デバイスは、デバイス本体と、少なくとも3つの制御端子とを備える構成とし、各部を次のように構成する。デバイス本体は、外部から印加される制御信号に応じて容量が変化する誘電体材料で形成され且つ所定方向に積層された複数の誘電体層、及び、各誘電体層の両面のそれぞれに形成された少なくとも一つの内部電極からなる内部電極部を有する構成とする。そして、デバイス本体では、複数の誘電体層及び内部電極部により3つ以上のコンデンサが形成され、該3つ以上のコンデンサが直列に接続される。また、少なくとも3つの制御端子は、制御信号が印加され、且つ、3つ以上のコンデンサのうち少なくとも2つのコンデンサを形成する少なくとも3つの内部電極に対してそれぞれ設けられる。
【0018】
本発明の可変容量デバイスでは、直列接続する複数のコンデンサを複数の誘電体層に分けて形成する。それゆえ、本発明では、誘電体層の同一面に形成する内部電極の数を減らすことができ、各内部電極の面積の増減スペースをより大きくすることができる。また、本発明では、デバイス内に形成する3つ以上のコンデンサのうち少なくとも2つのコンデンサを可変容量コンデンサとして用いる。そして、この複数の可変容量コンデンサを形成する内部電極もまた、その面積の増減スペースが広がるので、容量の可変量をより幅広い範囲で設定することができる。
【発明の効果】
【0019】
上述のように、本発明の可変容量デバイスでは、誘電体層の同一面に形成する内部電極の面積の増減スペースを大きくすることができる。それゆえ、本発明によれば、可変容量デバイスの例えば内部電極、容量値等の設計自由度をより広げることができ、且つ、容易に製造することができる。また、本発明によれば、内部電極間の距離が広くなるので、内部電極間に発生する寄生容量の影響を抑制することができる。
【図面の簡単な説明】
【0020】
【図1】本発明の一実施形態に係る可変容量デバイスの概略構成図である。
【図2】本発明の一実施形態に係る可変容量デバイスの各内部電極の概略構成図である。
【図3】本発明の一実施形態に係る可変容量デバイスを用いた電圧制御回路の概略構成図である。
【図4】可変容量デバイスにおける容量設計の自由度を説明するための図である。
【図5】変形例1の可変容量デバイスの概略構成図である。
【図6】変形例1の可変容量デバイスの各内部電極の概略構成図である。
【図7】変形例1の可変容量デバイスを用いた電圧制御回路の概略構成図である。
【図8】変形例2の可変容量デバイスの概略構成図である。
【図9】変形例2の可変容量デバイスの各内部電極の概略構成図である。
【図10】変形例2の可変容量デバイスを用いた電圧制御回路の概略構成図である。
【図11】変形例3の可変容量デバイスの概略構成図である。
【図12】変形例3の可変容量デバイスの各内部電極の概略構成図である。
【図13】変形例3の可変容量デバイスを用いた電圧制御回路の概略構成図である。
【図14】変形例4の可変容量デバイスの概略構成図である。
【図15】変形例4の可変容量デバイスの各内部電極の概略構成図である。
【図16】変形例4の可変容量デバイスを用いた電圧制御回路の概略構成図である。
【図17】変形例5の可変容量デバイスの概略構成図である。
【図18】変形例6の可変容量デバイスの概略構成図である。
【図19】変形例6の可変容量デバイスの各内部電極の概略構成図である。
【図20】従来の可変容量デバイスの概略構成例である。
【図21】従来の可変容量デバイスの他の概略構成例である。
【発明を実施するための形態】
【0021】
以下に、本発明の実施形態に係る可変容量デバイスの一構成例を、図面を参照しながら以下の順で説明する。なお、本発明は以下の例に限定されるものではない。
1.本発明の可変容量デバイスの基本構成例
2.各種変形例
【0022】
<1.可変容量デバイスの基本構成例>
[可変容量デバイスの構成]
図1(a)及び(b)に、本発明の一実施形態に係る可変容量デバイスの概略構成を示す。なお、図1(a)は、本実施形態の可変容量デバイスの概略上面図であり、図1(b)は、図1(a)中のA−A断面図である。
【0023】
本実施形態の可変容量デバイス1は、デバイス本体10と、5つの外部端子31〜35(以下、それぞれ第1外部端子〜第5外部端子という)とで構成される。デバイス本体10は、上面10aが矩形状の直方体部材で構成することができる。
【0024】
本実施形態では、第1外部端子31を、デバイス本体10の上面10aの一方の短辺側(図1(a)では右側)の側面に形成し、第5外部端子35を、デバイス本体10の上面10aの他方の短辺側の側面に形成する。
【0025】
また、本実施形態では、第2外部端子32及び第4外部端子34(制御端子)を、デバイス本体10の上面10aの一方の長辺側(図1(a)では下側)の側面において、互いに長辺方向に沿って所定距離離して形成する。なお、第2外部端子32は、デバイス本体10の上面10aの一方の長辺側の側面において、第1外部端子31側に配置され、第4外部端子34は、デバイス本体10の上面10aの一方の長辺側の側面において、第5外部端子35側に配置される。また、第3外部端子33(制御端子)は、デバイス本体10の上面10aの他方の長辺側(図1(a)では上側)の側面に形成され、その長辺方向において略中央部に配置される。
【0026】
デバイス本体10は、図10(b)に示すように、6つの誘電体層11〜16と、5つの内部電極(内部電極部)21〜25とを備える。なお、以下では、説明の便宜上適宜、誘電体層11〜14、15及び16をそれぞれ第1誘電体層〜第4誘電体層、下部誘電体層及び上部誘電体層と称し、内部電極21〜25を、それぞれ第1電極〜第5電極と称する。
【0027】
デバイス本体10は、下部誘電体層15上に、第5電極25、第4誘電体層14、第4電極24、第3誘電体層13、第3電極23、第2誘電体層12、第2電極22、第1誘電体層11及び第1電極21を、この順で積層して構成される。そして、上部誘電体層16が第1電極21上に積層される。また、本実施形態では、第1電極21〜第5電極25を、それぞれ第1外部端子31〜第5外部端子35に接続する。
【0028】
上述のように構成することにより、第1誘電体層11〜第4誘電体層14には、それぞれ容量C1〜C4のコンデンサ41〜44(以下、それぞれ第1コンデンサ〜第4コンデンサという)が形成される。すなわち、本実施形態の可変容量デバイス1では、誘電体層毎に一つのコンデンサ(合計4つのコンデンサ)を設け、それらを直列接続し、さらに、内部電極毎に一つの外部端子を設ける。
【0029】
そして、本実施形態では、第2誘電体層12及び第3誘電体層13内にそれぞれ形成される第2コンデンサ42及び第3コンデンサ43を可変容量コンデンサとして用いる。また、第1誘電体層11及び第4誘電体層14内にそれぞれ形成される第1コンデンサ41及び第4コンデンサ44は、DC除去用コンデンサ(直流除去用の定容量コンデンサ)として用いる。なお、本発明はこれに限定されず、例えば、可変容量デバイス1内に形成される4つのコンデンサを全て可変容量コンデンサとして用いてもよい。そのような構成例は後述の変形例2で説明する。
【0030】
次に、各誘電体層の構成について説明する。各誘電体層は、内部電極が形成される表面の形状を長方形とし、その長辺と短辺の比は、例えば、2:1にすることができる。
【0031】
また、本実施形態では、第1誘電体層11〜第4誘電体層14の厚さ(例えば約2μm程度)は同じとする。ただし、本発明はこれに限定されず、第1誘電体層11〜第4誘電体層14の厚さは、例えば用途、必要とする容量等に応じて適宜設定することができる。例えば、第1誘電体層11〜第4誘電体層14の厚さを全て異ならせてもよいし、第1誘電体層11〜第4誘電体層14のうち一部の厚さだけを変化させてもよい。また、下部誘電体層15及び上部誘電体層16の厚さは、例えば用途等に応じて適宜設定することができる。
【0032】
本実施形態では、第1誘電体層11〜第4誘電体層14、下部誘電体層15及び上部誘電体層16を同じ誘電体材料で形成する。なお、本発明はこれに限定されず、各誘電体層の形成材料を変えてもよい。しかしながら、製造の容易性の観点では、全ての誘電体層を同じ誘電体材料で形成することが好ましい。
【0033】
また、本実施形態の可変容量デバイス1では、内部に形成される4つのコンデンサのうち少なくとも2つは可変容量コンデンサとして用いるので、各誘電体層は、比誘電率が例えば1000を超えるような強誘電体材料で形成される。そのような強誘電体材料で各誘電体層を形成することにより、外部から印加される制御信号に応じて各誘電体層の容量を変化させることができる。
【0034】
そのような強誘電体材料としては、イオン分極を生じる強誘電体材料を用いることができる。イオン分極を生じる強誘電体材料は、イオン結晶材料からなり、プラスのイオンとマイナスのイオンの原子が変位することで電気的に分極する強誘電体材料である。このイオン分極を生じる強誘電体材料は、一般に、所定の2つの元素をA及びBとすると、化学式ABO(Oは酸素元素)で表され、ペロブスカイト構造を有する。このような強誘電体材料としては、例えば、チタン酸バリウム(BaTiO)、ニオブ酸カリウム(KNbO)、チタン酸鉛(PbTiO)等が挙げられる。また、強誘電体材料として、例えば、チタン酸鉛(PbTiO)にジルコン酸鉛(PbZrO)を混ぜ合わせたPZT(チタン酸ジルコン酸鉛)を用いてもよい。
【0035】
また、強誘電体材料として、電子分極を生じる強誘電体材料を用いてもよい。この強誘電体材料では、プラスの電荷に偏った部分と、マイナスの電荷に偏った部分とに分かれて電気双極子モーメントが生じ、分極が生じる。そのような材料として、従来、Fe2+の電荷面と、Fe3+の電荷面の形成により、分極を形成して強誘電体的特性を示す希土類鉄酸化物が報告されている。この系においては、希土類元素をREとし、鉄族元素をTMとしたときに、分子式(RE)・(TM)・O(O:酸素元素)で表される材料が高誘電率を有することが報告されている。なお、希土類元素としては、例えば、Y、Er、Yb、Lu(特にYと重希土類元素)が挙げられ、鉄族元素としては、例えば、Fe、Co、Ni(特にFe)が挙げられる。また、(RE)・(TM)・Oとしては、例えば、ErFe、LuFe、YFeが挙げられる。また、強誘電体材料として、異方性を有する強誘電体材料を用いてもよい。
【0036】
次に、各内部電極の構成について説明する。図2(a)〜(e)に、それぞれ第1電極21〜第5電極25の概略構成を示す。なお、図2(a)〜(e)は、それぞれ対応する誘電体層上に形成された第1電極21〜第5電極25の概略上面図である。
【0037】
本実施形態では、図2(a)〜(e)に示すように、第1電極21〜第5電極25の表面形状は、全て矩形状とする。ただし、各内部電極の表面形状はこの例の形状に限定されず、例えば、外部端子の配置形態、デバイス本体10の形状等に応じて適宜変更できる。
【0038】
第1電極21は、図2(a)に示すように、第1誘電体層11の長手方向に沿って、第1誘電体層11の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第1電極21の一方の短辺側端部が、第1外部端子31に接続される。
【0039】
第2電極22は、図2(b)に示すように、第2誘電体層12の短手方向に沿って、第2誘電体層12の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第2電極22の一方の短辺側端部が、第2外部端子32に接続される。
【0040】
第3電極23は、図2(c)に示すように、第3誘電体層13の長手方向に沿って、第3誘電体層13の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第3電極23の一方の長辺側端部の一部(中央部分)が、第3外部端子33に接続される。
【0041】
第4電極24は、図2(d)に示すように、第4誘電体層14の短手方向に沿って、第4誘電体層14の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第4電極24の一方の短辺側端部が、第4外部端子34に接続される。
【0042】
第5電極25は、図2(e)に示すように、下部誘電体層15の長手方向に沿って、下部誘電体層15の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第5電極25の一方の短辺側端部が、第5外部端子35に接続される。
【0043】
なお、各誘電体層にコンデンサを形成するため、各内部電極は、誘電体層を挟んで隣り合う内部電極との間に対向領域が形成されるような位置に配置される。また、各内部電極の構成(例えば、形状、寸法等)は、図2(a)〜(e)に示す例に限定されず、例えば用途、必要とする容量等を考慮して適宜設定することができる。また、上述した本実施形態の可変容量デバイス1の構成では、各誘電体層に形成されるコンデンサの容量は、第2電極22及び第4電極24の面積により決定される。
【0044】
また、第1電極21〜第5電極25は、例えば、金属微粉末(Pd、Pd/Ag、Ni等)を含む導電ペーストを用いて形成される。これにより、可変容量デバイス1の製造コストを低減することができる。なお、本実施形態では、第1電極21〜第5電極25は、同じ材料で形成する。ただし、本発明はこれに限定されず、例えば用途等に応じて、第1電極21〜第5電極25を互いに異なる材料で形成してもよい。
【0045】
上述のように、本実施形態では、一つの誘電体層の上下面(両面)のそれぞれに一つの内部電極(内部電極部)を形成する。これにより、次のような効果が得られる。
(1)内部電極の電極面積を、最大、可変容量デバイス1のサイズ(誘電体層の表面面積)まで広げることができる。すなわち、本実施形態の構成では、各内部電極の面積の可変幅を広げることができる。より具体的には、例えば、図21(a)〜(c)に示すような一つの誘電体に4つのコンデンサを配列する構成の可変容量デバイスに比べて、内部電極の面積を約4倍以上広げることができる。
(2)内部電極間の寄生容量を非常に小さくすることができる。
(3)一層当たりの内部電極の電極面積をより大きくすることができるので、内部電極の設計及び作製が容易になる。
【0046】
さらに、本実施形態の可変容量デバイス1の構成では、上述のように、DC除去用コンデンサを内蔵させることが容易であり、また、DC除去用コンデンサ及び可変容量コンデンサの構成(例えば電極面積、積層数等)を別個に設計することができる。それゆえ、本実施形態の可変容量デバイス1では、例えば電極、容量値等の設計自由度をより広げることができる。また、これにより、種々の容量を有する可変容量デバイスを低コストで且つ容易に作製することができ、種々の容量を有する可変容量デバイスの品揃えを豊富にすることができる。
【0047】
[可変容量デバイスの作製方法]
次に、本実施形態の可変容量デバイス1の作製方法の一例を簡単に説明する。まず、上述した誘電体材料からなるシート部材(厚さは、例えば約2.5μm程度)を用意する。なお、このシート部材が、上述した第1誘電体層11〜第4誘電体層14及び下部誘電体層15のいずれかになる。
【0048】
次いで、例えばPd、Pd/Ag、Ni等の金属微粉末をペースト化した導電ペーストを調製する。そして、その導電ペーストを内部電極の形状(矩形状)に対応する開口部が形成されたマスクを介して、シート部材の一方の表面に塗布(シルク印刷等)して内部電極を形成する。そして、本実施形態では、この一方の表面に内部電極が形成されたシート部材(以下、電極付シート部材という)を合計5枚作製する。
【0049】
次いで、上述のようにして用意した5枚の電極付シート部材を、所定の順序で、内部電極とシート部材とが交互に配置されるように積層する。この際、各内部電極が、図2(a)〜(e)に示すような形態で配置されるように積層する。次いで、別途用意した内部電極が形成されていないシート部材を、内部電極が露出した側の表面上に積層する。この別途用意したシート部材は、上部誘電体層16になる。
【0050】
次いで、その積層部材を加熱圧着する。そして、加熱圧着した部材を還元性雰囲気中で、高温焼成してシート部材と導電ペースト層(内部電極)とを一体化させる。これにより、デバイス本体10が作製される。
【0051】
そして、デバイス本体10の側面の所定位置に第1外部端子31〜第5外部端子35を取り付ける。本実施形態では、このようにして可変容量デバイス1を作製する。
【0052】
[電圧制御回路の構成例]
次に、本実施形態の可変容量デバイス1を用いた電圧制御回路の一例を説明する。図3に、その電圧制御回路の回路構成を示す。図3に示す電圧制御回路50は、例えば、交流電源2と整流回路等の回路(不図示)との間に設けられ、交流電源2から整流回路等の回路に入力される交流電圧(入力信号)を所定の電圧値に調整する。なお、図3中の端子31〜35は、それぞれ、図1(a)中の可変容量デバイス1の第1外部端子31〜第5外部端子35に対応する。
【0053】
電圧制御回路50は、本実施形態の可変容量デバイス1と、3つのDC除去用抵抗52〜54とで構成される。本実施形態の可変容量デバイス1を等価回路で表すと、図3に示すように、第1コンデンサ41〜第4コンデンサ44を、この順で直列に接続した回路となる。
【0054】
本実施形態では、上述のように、第2コンデンサ42及び第3コンデンサ43を可変容量コンデンサとして用い、第1コンデンサ41及び第4コンデンサ44をDC除去用コンデンサとして用いる。それゆえ、可変容量デバイス1の第1外部端子31は交流電源2の一方の出力端子に接続され、第5外部端子35は交流電源2の他方の出力端子に接続される。すなわち、第1コンデンサ41〜第4コンデンサ44からなる直列回路は、交流電源2に対して並列に接続される。なお、図3には示さないが、交流電源2からの信号が入力される整流回路等の回路は、可変容量デバイス1の第1外部端子31及び第5外部端子35間に並列接続される。
【0055】
また、可変容量デバイス1の第2外部端子32及び第4外部端子34は、それぞれDC除去用抵抗52及び54を介して制御電源3の正極端子に接続される。さらに、第3外部端子33は、DC除去用抵抗53を介して制御電源3の負極端子に接続される。すなわち、本実施形態では、制御電源3は、第2コンデンサ42及び第3コンデンサ43に対してそれぞれ並列に接続される。第2コンデンサ42の容量C2及び第3コンデンサ43の容量C3は、制御電源3から入力される直流信号(制御信号)により調整される。
【0056】
なお、DC除去用コンデンサとして用いる第1コンデンサ41及び第4コンデンサ44、並びに、3つのDC除去用抵抗52〜54は、制御電源3から流れる直流バイアス電流と、交流電源2からの交流電流との干渉による影響を抑制するために設けられる。なお、本実施形態では、DC除去用抵抗の代わりに、DC除去用のインダクタ(コイル)を用いてもよい。
【0057】
本実施形態では、制御信号(制御電圧)を制御電源3から得る例を説明したが、本発明はこれに限定されない。例えば、整流回路等の回路(不図示)から出力された直流電圧から、例えば抵抗分割等の手法により所望の制御電圧を抽出するような構成にしてもよい。
【0058】
また、本実施形態では、可変容量デバイス1がDC除去用抵抗52〜54を含まない例を説明したが、本発明はこれに限定されず、可変容量デバイス1がDC除去用抵抗52〜54を含んでいてもよい。
【0059】
[容量設計の自由度の比較]
上述したように、本実施形態の可変容量デバイス1では、容量設計の自由度をより広げることができる。ここで、この効果の評価例を説明する。ただし、ここでは、容量設計の自由度の大小を評価するための目安として、誘電体層一層当たりの容量cと誘電体の層数kとの組み合わせ[c,k]を用いる。所定サイズの一つの可変容量デバイスにおいて、両パラメータの組み合わせ[c,k]が多いほど、容量設計の自由度は大きくなる。
【0060】
図4に、本発明の構成の可変容量デバイスと、図21(a)〜(c)に示す従来の可変容量デバイス(比較例)との間で、容量設計の自由度を比較した結果を示す。図4に示す表は、可変容量デバイス内のコンデンサが形成される誘電体層一層当たりの容量c(相対値)と、誘電体層の層数kとの組み合わせ[c、k]を変えた場合に可変容量デバイス内に等価的に形成できる後述する基準コンデンサの数を示す表である。
【0061】
ここで、図4に示す表の見方をより具体的に説明する。なお、図4の例では、誘電体層一層当たりの容量cと誘電体の層数kとの組み合わせ[c,k]=[1,1]を基準コンデンサとする。図4に示す表において、誘電体層一層当たりの容量cと、誘電体層の層数kとの組み合わせ[c、k]の欄に記載の数値は、両パラメータを掛け合わせた値(c×k)である。この両パラメータを掛け合わせた値(c×k)は、一つの可変容量デバイスに等価的に形成できる基準コンデンサの数に相当する。
【0062】
例えば、図1に示す上記実施形態の可変容量デバイス1は、図4に示す表において、誘電体層一層当たりの容量cと誘電体の層数kとの組み合わせ[c,k]=[1,4]に欄に対応する。この欄の数値は「4」となり、上記実施形態の可変容量デバイス1では、4つの基準コンデンサ([c,k]=[1,1]のコンデンサ)を、等価的に形成できることを表す。
【0063】
ここで、いま、上記実施形態で説明した可変容量デバイス1のように、一つの誘電体層に一つのコンデンサを形成する構成(本発明)において、基準コンデンサの数を3〜30個の範囲で形成できる可変容量デバイスを設計する場合を考える。なお、本実施形態の構成では、誘電体層一層当たりの容量cは、各内部電極の面積を変化させることにより変えることができる。さらに、ここでは、デバイスの表面サイズが、基準コンデンサの電極の約15倍の面積である、すなわち、誘電体層一層当たりに、最大、約15個の基準コンデンサを形成できるサイズとする。また、図4の例では、誘電体層の層数kの最大値は5とする。
【0064】
上述のような寸法の制約下では、本発明の構成における設計可能範囲は、図4に示す表中の太枠で囲った領域60となる。この場合、基準コンデンサの数(c×k)=17、19、23及び29(合計4種類)に対応する可変容量デバイスを設計することができない。
【0065】
また、図21(a)〜(c)で説明した従来の可変容量デバイス(比較例)のような構成において、基準コンデンサの数を3〜30個の範囲で形成できる可変容量デバイスを設計する場合を考える。ただし、比較例のデバイスの表面サイズ等の制約は、上記本発明の評価の場合と同様とする。
【0066】
比較例の内部電極の構成では、誘電体層1層当たりの容量cは、誘電体層の同一面に形成する内部電極の数で変化させることができる。しかしながら、比較例の構成では、内部電極間の寄生容量が発生しないように内部電極間にある程度のスペースを設定する必要がある。
【0067】
それゆえ、比較例のデバイスサイズを、上述した本発明の評価サイズと同じにした場合、比較例では、1つの誘電体層に形成できる基準コンデンサの数は、最大、約6個程度となる。したがって、比較例の構成では、図4に示す表中のハッチングした領域70が、誘電体層一層当たりの容量cと誘電体の層数kとの組み合わせ[c,k]の設計可能範囲となる。この場合、基準コンデンサの数(c×k)=7、11、13、14、17、19、21〜23、及び、26〜29(合計13種類)に対応する可変容量デバイスを設計することができない。
【0068】
図4に示す比較結果からも明らかなように、本発明の可変容量デバイスでは、誘電体層一層当たりの容量cと誘電体の層数kとの組み合わせ[c,k]の設計範囲が、従来の可変容量デバイスより広くなる。すなわち、本発明の可変容量デバイスでは、従来の可変容量デバイスに比べて、容量設計の自由度をより広げることができる。
【0069】
<2.各種変形例>
上記実施形態では、可変容量デバイス1内で4つのコンデンサを直列接続し、そのうち、両端のコンデンサをDC除去用コンデンサとして用い、それ以外の2つのコンデンサを可変容量コンデンサとして用いる例を説明した。しかしながら、本発明はこれに限定されない。例えば用途、必要とする容量等に応じて、直列接続するコンデンサの数(誘電体層の積層数)、可変容量デバイス内の可変容量コンデンサの数等を適宜変更することができる。以下では、そのような種々の変形例について説明する。
【0070】
[変形例1]
変形例1では、可変容量デバイス内に5つのコンデンサを直列接続する構成例について説明する。図5(a)及び(b)に、変形例1の可変容量デバイスの概略構成を示す。なお、図5(a)は、変形例1の可変容量デバイスの概略上面図であり、図5(b)は、図5(a)中のB−B断面図である。
【0071】
変形例1の可変容量デバイス100は、デバイス本体110と、6つの外部端子131〜136(以下では、それぞれ第1外部端子〜第6外部端子という)とで構成される。デバイス本体110は、上記実施形態と同様に、上面110aが矩形状の直方体部材で構成する。
【0072】
第1外部端子131は、デバイス本体110の上面110aの一方の短辺側(図5(a)では右側)の側面に形成される。また、第6外部端子136は、デバイス本体110の上面110aの他方の短辺側(図5(a)では左側)の側面に形成される。
【0073】
第3外部端子133及び第5外部端子135は、デバイス本体110の上面110aの一方の長辺側(図5(a)では上側)の側面において、互いに長辺方向に沿って所定距離離して形成される。なお、第3外部端子133及び第5外部端子135は、デバイス本体110の上面110aの一方の長辺側の側面において、それぞれ第1外部端子131側及び第6外部端子136側に配置される。
【0074】
また、第2外部端子132及び第4外部端子134は、デバイス本体110の上面110aの他方の長辺側(図5(a)では下側)の側面において、互いに長辺方向に沿って所定距離離して形成される。なお、第2外部端子132及び第4外部端子134は、デバイス本体110の上面110aの他方の長辺側の側面において、それぞれ第1外部端子131側及び第6外部端子136側に配置される。
【0075】
デバイス本体110は、図5(b)に示すように、7つの誘電体層111〜117(以下、それぞれ第1誘電体層〜第5誘電体層、下部誘電体層及び上部誘電体層という)と、6つの内部電極121〜126(以下、それぞれ第1電極〜第6電極という)とを備える。
【0076】
デバイス本体110は、下部誘電体層116上に、第6電極126、第5誘電体層115、第5電極125、第4誘電体層114、第4電極124、第3誘電体層113及び第3電極123を、この順で積層して構成される。さらに、デバイス本体110は、第3電極123上に、第2誘電体層112、第2電極122、第1誘電体層111、第1電極121及び上部誘電体層117を、この順で積層して構成される。そして、この例では、第1電極121〜第6電極126は、それぞれ第1外部端子131〜第6外部端子136に接続される。
【0077】
次に、各内部電極の構成について説明する。図6(a)〜(f)に、それぞれ第1電極121〜第6電極126の概略構成を示す。なお、図6(a)〜(f)は、それぞれ対応する誘電体層上に形成されたれ第1電極121〜第6電極126の概略上面図である。
【0078】
この例では、図6(a)〜(f)に示すように、第1電極121〜第6電極126の表面形状を、全て矩形状とする。なお、各内部電極の表面形状はこの例の形状に限定されず、例えば、外部端子の配置形態、デバイス本体110の形状等に応じて適宜変更できる。
【0079】
第1電極121は、図6(a)に示すように、第1誘電体層111の長手方向に沿って、第1誘電体層111の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第1誘電体層111の一方の短辺側端部が、第1外部端子131に接続される。
【0080】
第2電極122は、図6(b)に示すように、第2誘電体層112の短手方向に沿って、第2誘電体層112の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第2電極122の一方の短辺側端部が、第2外部端子132に接続される。
【0081】
第3電極123は、図6(c)に示すように、第3誘電体層113の長手方向に沿って、第3誘電体層113の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第3電極123の一方の長辺(図6(c)では上側長辺)の一方の短辺側(図6(c)では右側)の一部が、第3外部端子133に接続される。
【0082】
第4電極124は、図6(d)に示すように、第4誘電体層114の短手方向に沿って、第4誘電体層114の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第4電極124の一方の短辺側端部が、第4外部端子134に接続される。
【0083】
第5電極125は、図6(e)に示すように、第5誘電体層115の短手方向に沿って、第5誘電体層115の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第5電極125の一方の短辺側端部が、第5外部端子135に接続される。
【0084】
第6電極126は、図6(f)に示すように、下部誘電体層116の長手方向に沿って、下部誘電体層116の長一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第6電極126の一方の短辺側端部が、第6外部端子136に接続される。
【0085】
なお、各誘電体層にコンデンサを形成するため、各内部電極は、誘電体層を挟んで隣り合う内部電極との間に対向領域が形成されるような位置に配置される。なお、この例の可変容量デバイス100は、上記実施形態と同様にして作製することができる。
【0086】
上述のように構成することにより、第1誘電体層111〜第5誘電体層115には、それぞれ容量C1〜C5のコンデンサ141〜145(以下、それぞれ第1コンデンサ〜第5コンデンサという)が形成される。すなわち、この例の可変容量デバイス100では、誘電体層毎に一つのコンデンサ(合計5つのコンデンサ)を設け、それらを直列接続し、さらに、内部電極毎に一つの外部端子を設けた構成とする。なお、この例の可変容量デバイス100の構成では、各誘電体層に形成されるコンデンサの容量は、第2電極122、第4電極124及び第5電極125の面積により決定される。
【0087】
そして、この例では、第2誘電体層112〜第4誘電体層114内にそれぞれ形成される第2コンデンサ142〜第4コンデンサ144を可変容量コンデンサとして用いる。また、第1誘電体層111及び第5誘電体層115内にそれぞれ形成される第1コンデンサ141及び第5コンデンサ145は、DC除去用コンデンサとして用いる。
【0088】
なお、各誘電体層の構成(例えば形成材料、表面の形状及び寸法、厚さ等)は、上記実施形態で用いた誘電体層と同様の構成にすることができる。また、各内部電極の構成(例えば、形状、寸法等)は、図6(a)〜(f)に示す例に限定されず、例えば用途、必要とする容量等を考慮して適宜設定することができる。
【0089】
上述のように、この例においても、上記実施形態と同様に、一つの誘電体層の上下面にそれぞれ一つの内部電極を形成する。それゆえ、この例の可変容量デバイス100においても、上記実施形態と同様に、可変容量デバイスの設計自由度をより広げることができ、容易に製造することができ、且つ、内部電極間に発生する寄生容量の影響を抑制することができる。
【0090】
また、図7に、この例の可変容量デバイス100を用いた電圧制御回路の構成例を示す。なお、図7中の端子131〜136は、それぞれ、図5(a)中の可変容量デバイス100の第1外部端子131〜第6外部端子136に対応する。
【0091】
この例の電圧制御回路150は、可変容量デバイス100と、4つのDC除去用抵抗152〜155とで構成される。また、この例の可変容量デバイス100を等価回路で表すと、第1コンデンサ141〜第5コンデンサ145を、この順で直列に接続した回路となる。
【0092】
上述のように、この例では、第2コンデンサ142〜第4コンデンサ144を可変容量コンデンサとして用い、第1コンデンサ141及び第5コンデンサ145をDC除去用コンデンサとして用いる。それゆえ、この例では、可変容量デバイス100の第1外部端子131を交流電源2の一方の出力端子に接続し、第6外部端子136を交流電源2の他方の出力端子に接続する。すなわち、第1コンデンサ141〜第5コンデンサ145からなる直列回路は、交流電源2に対して並列に接続される。
【0093】
また、この例では、第2外部端子132及び第4外部端子134を、それぞれDC除去用抵抗152及び154を介して制御電源3の正極端子に接続する。さらに、第3外部端子133及び第5外部端子135を、それぞれDC除去用抵抗153及び155を介して制御電源3の負極端子に接続する。すなわち、本実施形態では、制御電源3は、第2コンデンサ142〜第4コンデンサ144に対してそれぞれ並列に接続される。
【0094】
この例の電圧制御回路150では、第2コンデンサ142〜第4コンデンサ144の各容量を制御電源3から入力される制御電圧により変化させて、交流電源2から整流回路等の回路(不図示)に入力される交流電圧を所定の電圧値に調整する。
【0095】
なお、この例では、可変容量デバイス100がDC除去用抵抗152〜155を含まない例を説明したが、本発明はこれに限定されず、可変容量デバイス100がDC除去用抵抗152〜155を含んでいてもよい。また、この例では、DC除去用抵抗の代わりに、DC除去用のインダクタを用いてもよい。
【0096】
[変形例2]
変形例2では、可変容量デバイス内に5つのコンデンサを直列接続する別の構成例を説明する。図8(a)及び(b)に、変形例2の可変容量デバイスの概略構成を示す。なお、図8(a)は、変形例2の可変容量デバイスの概略上面図であり、図8(b)は、図8(a)中のC−C断面図である。
【0097】
変形例2の可変容量デバイス200は、デバイス本体210と、6つの外部端子231〜236(以下では、それぞれ第1外部端子〜第6外部端子という)とで構成される。デバイス本体210は、上記実施形態と同様に、上面210aが矩形状の直方体部材で構成する。
【0098】
第1外部端子231、第3外部端子233及び第5外部端子235は、デバイス本体210の上面210aの一方の長辺側(図8(a)では上側)の側面に形成される。なお、この例では、第1外部端子231、第3外部端子233及び第5外部端子235は、デバイス本体210の上面210aの一方の長辺側の側面において、一方の短辺側(図8(a)では右側)から他方の短辺側に向かって、この順で、等間隔で配置される。
【0099】
また、第2外部端子232、第4外部端子234及び第6外部端子236は、デバイス本体210の上面210aの他方の長辺側(図8(a)では下側)の側面に形成される。なお、この例では、第6外部端子236、第2外部端子232及び第4外部端子234は、デバイス本体210の上面210aの他方の長辺側の側面において、一方の短辺側(図8(a)では右側)から他方の短辺側に向かって、この順で、等間隔で配置される。
【0100】
デバイス本体210は、図8(b)に示すように、7つの誘電体層211〜217(以下、それぞれ第1誘電体層〜第5誘電体層、下部誘電体層及び上部誘電体層という)と、6つの内部電極221〜226(以下、それぞれ第1電極〜第6電極という)とを備える。
【0101】
デバイス本体210は、下部誘電体層216上に、第6電極226、第5誘電体層215、第5電極225、第4誘電体層214、第4電極224、第3誘電体層213及び第3電極223を、この順で積層して構成される。さらに、デバイス本体210は、第3電極223上に、第2誘電体層212、第2電極222、第1誘電体層211、第1電極221及び上部誘電体層217を、この順で積層して構成される。そして、この例では、第1電極221〜第6電極226は、それぞれ第1外部端子231〜第6外部端子236に接続される。
【0102】
次に、各内部電極の構成について説明する。図9(a)〜(f)に、それぞれ第1電極221〜第6電極226の概略構成を示す。なお、図9(a)〜(f)は、それぞれ対応する誘電体層上に形成されたれ第1電極221〜第6電極226の概略上面図である。
【0103】
この例では、図9(a)〜(f)に示すように、第1電極221〜第6電極226の表面形状は、変形例1と同様に、全て矩形状とする。なお、各内部電極の表面形状はこの例の形状に限定されず、例えば、外部端子の配置形態、デバイス本体210の形状等に応じて適宜変更できる。
【0104】
第1電極221は、図9(a)に示すように、第1誘電体層211の長手方向に沿って、第1誘電体層211の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第1電極221の一方の長辺(図9(a)では上側長辺)の一方の短辺側(図9(a)では右側)の一部が第1外部端子231に接続される。
【0105】
第2電極222は、図9(b)に示すように、第2誘電体層212の短手方向に沿って、第2誘電体層212の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第2電極222の一方の短辺側端部が、第2外部端子232に接続される。
【0106】
第3電極223は、図9(c)に示すように、第3誘電体層213の長手方向に沿って、第3誘電体層213の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第3電極223の一方の長辺(図9(c)では上側長辺)の中央の一部が第3外部端子233に接続される。
【0107】
第4電極224は、図9(d)に示すように、第4誘電体層214の短手方向に沿って、第4誘電体層214の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第4電極224の一方の短辺側端部が、第4外部端子234に接続される。
【0108】
第5電極225は、図9(e)に示すように、第5誘電体層215の短手方向に沿って、第5誘電体層215の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第5電極225の一方の短辺側端部が、第5外部端子235に接続される。
【0109】
第6電極226は、図9(f)に示すように、下部誘電体層216の長手方向に沿って、下部誘電体層216の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第6電極226の他方の長辺(図9(f)では下側長辺)の一方の短辺側(図9(f)では右側)の一部が第6外部端子236に接続される。
【0110】
なお、各誘電体層にコンデンサを形成するため、各内部電極は、誘電体層を挟んで隣り合う内部電極との間に対向領域が形成されるような位置に配置される。なお、この例の可変容量デバイス200は、上記実施形態と同様にして作製することができる。
【0111】
上述のように構成することにより、第1誘電体層211〜第5誘電体層215には、それぞれ容量C1〜C5のコンデンサ241〜245(以下、それぞれ第1コンデンサ〜第5コンデンサという)が形成される。すなわち、この例の可変容量デバイス200においても、変形例1と同様に、各誘電体層に一つのコンデンサ(合計5つのコンデンサ)を設け、それらを直列接続し、さらに、内部電極毎に一つの外部端子を設けた構成とする。
【0112】
そして、この例では、第1誘電体層211〜第5誘電体層215内にそれぞれ形成される第1コンデンサ241〜第5コンデンサ245を全て可変容量コンデンサとして用いる。
【0113】
なお、各誘電体層の構成(例えば形成材料、表面の形状及び寸法、厚さ等)は、上記実施形態で用いた誘電体層と同様の構成にすることができる。また、各内部電極の構成(例えば、形状、寸法等)は、図9(a)〜(f)に示す例に限定されず、例えば用途、必要とする容量等を考慮して適宜設定することができる。
【0114】
上述のように、この例においても、上記実施形態と同様に、一つの誘電体層の上下面にそれぞれ一つの内部電極を形成する。それゆえ、この例の可変容量デバイス200においても、上記実施形態と同様に、可変容量デバイスの設計自由度をより広げることができ、容易に製造することができ、且つ、内部電極間に発生する寄生容量の影響を抑制することができる。
【0115】
また、図10に、この例の可変容量デバイス200を用いた電圧制御回路の構成例を示す。なお、図10中の端子231〜236は、それぞれ、図8(a)中の可変容量デバイス200の第1外部端子231〜第6外部端子236に対応する。
【0116】
この例の電圧制御回路250は、可変容量デバイス200と、5つのDC除去用抵抗251〜256と、2つのDC除去用コンデンサ246及び247(直流除去用の定容量コンデンサ)とで構成される。また、この例の可変容量デバイス200を等価回路で表すと、第1コンデンサ241〜第5コンデンサ245を、この順で直列に接続した回路となる。
【0117】
上述のように、この例では、第1コンデンサ241〜第5コンデンサ245を全て可変容量コンデンサとして用いる。それゆえ、この例では、DC除去用コンデンサ246及び247を別途用意し、各DC除去用コンデンサを、第1コンデンサ241〜第5コンデンサ245からなる直列回路の両端にそれぞれ接続する。
【0118】
したがって、この例では、各DC除去用コンデンサの可変容量コンデンサ側とは反対側の端子が交流電源2の対応する出力端子に接続される。すなわち、この例の電圧制御回路250では、DC除去用コンデンサ246、第1コンデンサ241〜第5コンデンサ245、及び、DC除去用コンデンサ247がこの順で直列接続された直列回路が交流電源2に対して並列に接続される。
【0119】
また、この例では、可変容量デバイス200の第2外部端子232、第4外部端子234及び第6外部端子236は、それぞれDC除去用抵抗252、254及び256を介して制御電源3の正極端子に接続される。さらに、第1外部端子231、第3外部端子233及び第5外部端子235は、それぞれDC除去用抵抗251、253及び255を介して制御電源3の負極端子に接続される。すなわち、この例においても、制御電源3は、第1コンデンサ241〜第5コンデンサ245に対してそれぞれ並列に接続される。
【0120】
この例の電圧制御回路250では、第1コンデンサ241〜第5コンデンサ245の各容量を制御電源3から入力される制御電圧により変化させて、交流電源2から整流回路等の回路(不図示)に入力される交流電圧を所定の電圧値に調整する。
【0121】
なお、この例では、可変容量デバイス200が、DC除去用抵抗251〜256、並びに、DC除去用コンデンサ246及び247を含まない例を説明したが、本発明はこれに限定されない。可変容量デバイス200が、DC除去用抵抗251〜256、並びに、DC除去用コンデンサ246及び247を含んでいてもよい。また、可変容量デバイス200が、DC除去用抵抗251〜256、並びに、DC除去用コンデンサ246及び247のいずれか一方を含む構成にしてもよい。さらに、この例では、DC除去用抵抗の代わりに、DC除去用のインダクタを用いてもよい。
【0122】
[変形例3]
変形例3では、可変容量デバイス内に6つのコンデンサを直列接続する構成例について説明する。図11(a)及び(b)に、変形例3の可変容量デバイスの概略構成を示す。なお、図11(a)は、変形例3の可変容量デバイスの概略上面図であり、図11(b)は、図11(a)中のD−D断面図である。
【0123】
変形例3の可変容量デバイス300は、デバイス本体310と、7つの外部端子331〜337(以下では、それぞれ第1外部端子〜第7外部端子という)とで構成される。デバイス本体310は、上記実施形態と同様に、上面310aが矩形状の直方体部材で構成する。
【0124】
第1外部端子331は、デバイス本体310の上面310aの一方の短辺側(図11(a)では右側)の側面に形成される。また、第7外部端子337は、デバイス本体310の上面310aの他方の短辺側(図11(a)では左側)の側面に形成される。
【0125】
第3外部端子333及び第5外部端子335は、デバイス本体310の上面310aの一方の長辺側(図11(a)では上側)の側面において、互いに長辺方向に沿って所定距離離して形成される。なお、第3外部端子333及び第5外部端子335は、デバイス本体310の上面310aの一方の長辺側の側面において、それぞれ第1外部端子331側及び第7外部端子337側に配置される。
【0126】
また、第2外部端子332、第4外部端子334及び第6外部端子336は、デバイス本体310の上面310aの他方の長辺側(図11(a)では下側)の側面において、互いに長辺方向に沿って所定距離離して形成される。なお、第4外部端子334は、デバイス本体310の上面310aの他方の長辺側の側面において、略中央に配置される。また、デバイス本体310の上面310aの他方の長辺側の側面において、第2外部端子332は、第4外部端子334より第1外部端子331側に配置され、第6外部端子336は、第4外部端子334より第7外部端子337側に配置される。
【0127】
デバイス本体310は、図11(b)に示すように、8つの誘電体層311〜318(以下、それぞれ第1誘電体層〜第6誘電体層、下部誘電体層及び上部誘電体層という)と、7つの内部電極321〜327(以下、それぞれ第1電極〜第7電極という)とを備える。
【0128】
デバイス本体310は、下部誘電体層317上に、第7電極327、第6誘電体層316、第6電極326、第5誘電体層315、第5電極325、第4誘電体層314、第4電極324、第3誘電体層313及び第3電極323を、この順で積層して構成される。さらに、デバイス本体310は、第3電極323上に、第2誘電体層312、第2電極322、第1誘電体層311、第1電極321及び上部誘電体層318を、この順で積層して構成される。そして、この例では、第1電極321〜第7電極327は、それぞれ第1外部端子331〜第7外部端子337に接続される。
【0129】
次に、各内部電極の構成について説明する。図12(a)〜(g)に、それぞれ第1電極321〜第7電極327の概略構成を示す。なお、図12(a)〜(g)は、それぞれ対応する誘電体層上に形成されたれ第1電極321〜第7電極327の概略上面図である。
【0130】
この例では、図12(a)〜(g)に示すように、第1電極321〜第7電極327の表面形状を、全て矩形状とする。なお、各内部電極の表面形状はこの例の形状に限定されず、例えば、外部端子の配置形態、デバイス本体310の形状等に応じて適宜変更できる。
【0131】
第1電極321は、図12(a)に示すように、第1誘電体層311の長手方向に沿って、第1誘電体層311の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第1電極321の一方の短辺側端部が、第1外部端子331に接続される。
【0132】
第2電極322は、図12(b)に示すように、第2誘電体層312の長手方向に沿って、第2誘電体層312の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第2電極322の一方の長辺(図12(c)では下側長辺)の一方の短辺側(図12(a)では右側)の一部が第2外部端子332に接続される。
【0133】
第3電極323は、図12(c)に示すように、第3誘電体層313の短手方向に沿って、第3誘電体層313の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第3電極323の一方の短辺側端部が、第3外部端子333に接続される。
【0134】
第4電極324は、図12(d)に示すように、第4誘電体層314の長手方向に沿って、第4誘電体層314の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第4電極324の一方の長辺(図12(d)では下側長辺)の中央付近の一部が第4外部端子334に接続される。
【0135】
第5電極325は、図12(e)に示すように、第5誘電体層315の短手方向に沿って、第5誘電体層315の一方の長辺付近から他方の長辺付近まで延在して形成される。そして、第5電極325の一方の短辺側端部が、第5外部端子335に接続される。
【0136】
第6電極326は、図12(f)に示すように、第6誘電体層316の長手方向に沿って、第6誘電体層316の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第6電極326の一方の長辺(図12(f)では下側長辺)の他方の短辺側(図12(f)では左側)の一部が第6外部端子336に接続される。
【0137】
第7電極327は、図12(g)に示すように、下部誘電体層317の長手方向に沿って、下部誘電体層317の一方の短辺付近から他方の短辺付近まで延在して形成される。そして、第7電極327の一方の短辺側端部が、第7外部端子337に接続される。
【0138】
なお、各誘電体層にコンデンサを形成するため、各内部電極は、誘電体層を挟んで隣り合う内部電極との間に対向領域が形成されるような位置に配置される。なお、この例の可変容量デバイス300は、上記実施形態と同様にして作製することができる。
【0139】
上述のように構成することにより、第1誘電体層311〜第6誘電体層316には、それぞれ容量C1〜C6のコンデンサ341〜346(以下、それぞれ第1コンデンサ〜第6コンデンサという)が形成される。すなわち、この例の可変容量デバイス300では、各誘電体層に一つのコンデンサ(合計6つのコンデンサ)を設け、それらを直列接続し、さらに、内部電極毎に一つの外部端子を設けた構成とする。
【0140】
そして、この例では、第2誘電体層312〜第5誘電体層315内にそれぞれ形成される第2コンデンサ342〜第5コンデンサ345を可変容量コンデンサとして用いる。また、第1誘電体層311及び第6誘電体層316内にそれぞれ形成される第1コンデンサ341及び第6コンデンサ346は、DC除去用コンデンサとして用いる。
【0141】
なお、各誘電体層の構成(例えば形成材料、表面の形状及び寸法、厚さ等)は、上記実施形態で用いた誘電体層と同様の構成にすることができる。また、各内部電極の構成(例えば、形状、寸法等)は、図12(a)〜(g)に示す例に限定されず、例えば用途、必要とする容量等を考慮して適宜設定することができる。
【0142】
上述のように、この例においても、上記実施形態と同様に、一つの誘電体層の上下面にそれぞれ一つの内部電極を形成する。それゆえ、この例の可変容量デバイス300においても、上記実施形態と同様に、可変容量デバイスの設計自由度をより広げることができ、容易に製造することができ、且つ、内部電極間に発生する寄生容量の影響を抑制することができる。
【0143】
また、図13に、この例の可変容量デバイス300を用いた電圧制御回路の構成例を示す。なお、図13中の端子331〜337は、それぞれ、図11(a)中の可変容量デバイス300の第1外部端子331〜第7外部端子337に対応する。
【0144】
この例の電圧制御回路350は、可変容量デバイス300と、5つのDC除去用抵抗352〜356とで構成される。また、この例の可変容量デバイス300を等価回路で表すと、第1コンデンサ341〜第6コンデンサ346を、この順で直列に接続した回路となる。
【0145】
上述のように、この例では、第2コンデンサ342〜第5コンデンサ345を可変容量コンデンサとして用い、第1コンデンサ341及び第6コンデンサ346をDC除去用コンデンサとして用いる。それゆえ、この例では、可変容量デバイス300の第1外部端子331を交流電源2の一方の出力端子に接続し、第7外部端子337を交流電源2の他方の出力端子に接続する。すなわち、第1コンデンサ341〜第6コンデンサ346からなる直列回路は、交流電源2に対して並列に接続される。
【0146】
また、この例では、第2外部端子332、第4外部端子334及び第6外部端子336を、それぞれDC除去用抵抗352、354及び356を介して制御電源3の正極端子に接続する。さらに、第3外部端子333及び第5外部端子335を、それぞれDC除去用抵抗353及び355を介して制御電源3の負極端子に接続する。すなわち、この例においても、制御電源3は、第2コンデンサ342〜第5コンデンサ345に対してそれぞれ並列に接続される。
【0147】
この例の電圧制御回路350では、第2コンデンサ342〜第5コンデンサ345の各容量を制御電源3から入力される制御電圧により変化させて、交流電源2から整流回路等の回路(不図示)に入力される交流電圧を所定の電圧値に調整する。
【0148】
なお、この例では、可変容量デバイス300がDC除去用抵抗352〜356を含まない例を説明したが、本発明はこれに限定されず、可変容量デバイス300がDC除去用抵抗352〜356を含んでいてもよい。また、この例では、DC除去用抵抗の代わりに、DC除去用のインダクタを用いてもよい。
【0149】
[変形例4]
上記実施形態、変形例1及び変形例3では、可変容量デバイス内に形成するDC除去用コンデンサを一つの誘電体層で構成する例を説明したが、本発明はこれに限定されない。より大きな容量のDC除去用コンデンサが必要となる用途に対しては、DC除去用コンデンサを複数の誘電体層で構成してDC除去用コンデンサの容量を大きくすることが好ましい。変形例4では、その一例を説明する。ただし、この例では、上記変形例3で説明した可変容量デバイス300において、DC除去用コンデンサを複数の誘電体層で構成する例を説明する。
【0150】
図14(a)及び(b)に、変形例4の可変容量デバイスの概略構成を示す。なお、図14(a)は、変形例4の可変容量デバイスの概略上面図であり、図14(b)は、図14(a)中のE−E断面図である。なお、図14(a)及び(b)において、上記変形例3(図11(a)及び(b))と同様の構成には、同じ符号を付して示す。
【0151】
この例の可変容量デバイス400は、デバイス本体410と、第1外部端子331〜第7外部端子337とで構成される。デバイス本体410は、上記実施形態と同様に、上面410aが矩形状の直方体部材で構成する。また、第1外部端子331〜第7外部端子337は、上記変形例3のそれらと同様の構成である。
【0152】
この例のデバイス本体410では、第2コンデンサ342及び第5コンデンサ345にそれぞれ接続される各DC除去用コンデンサの構成が、変形例3と異なる。それ以外の構成は変形例3と同様である。それゆえ、ここでは、第2コンデンサ342及び第5コンデンサ345にそれぞれ接続される各DC除去用コンデンサの構成についてのみ説明する。
【0153】
この例のデバイス本体410では、図14(b)に示すように、第2誘電体層312と上部誘電体層318との間に形成されるDC除去用コンデンサは、3つの第1誘電体層311、2つの第1電極321、及び、2つの第2電極322で構成する。具体的には、第2誘電体層312上に、第2電極322、第1誘電体層311、第1電極321、第1誘電体層311、第2電極322、第1誘電体層311及び第1電極321を、この順で形成してDC除去用コンデンサを構成する。なお、第2誘電体層312と上部誘電体層318との間に形成されるDC除去用コンデンサを構成する第1誘電体層311、第1電極321及び第2電極322の数は、この例に限定されず、例えば用途等に応じて適宜設定される。
【0154】
一方、第5誘電体層315と下部誘電体層との間に形成されるDC除去用コンデンサは、図14(b)に示すように、3つの第6誘電体層316、2つの第6電極326、及び、2つの第7電極327で構成する。具体的には、下部誘電体層317上に、第7電極327、第6誘電体層316、第6電極326、第6誘電体層316、第7電極327、第6誘電体層316及び第6電極326を、この順で形成してDC除去用コンデンサを構成する。なお、第5誘電体層315と下部誘電体層との間に形成されるDC除去用コンデンサを構成する第6誘電体層316、第6電極326及び第7電極327の数は、この例に限定されず、例えば用途等に応じて適宜設定される。
【0155】
また、図15(a)〜(k)に、この例の各誘電体層上に形成される内部電極の構成を示す。なお、図15(a)〜(k)は、それぞれ対応する誘電体層上に形成された第1電極321、第2電極322、第1電極321〜第7電極327、第6電極326及び第7電極327の概略上面図である。
【0156】
図15(a)〜(k)に示すこの例の第1電極321〜第7電極327の構成と、図12(a)〜(g)に示す変形例3のそれらとの比較から明らかなように、この例では、第1電極321〜第7電極327の構成を変形例3のそれらと同様の構成とする。
【0157】
ただし、この例では、第2誘電体層312と上部誘電体層318との間に形成される2つの第1電極321は、図15(a)及び(c)に示すように、ともに第1外部端子331に接続する。また、第2誘電体層312と上部誘電体層318との間に形成される2つの第2電極322は、図15(b)及び(d)に示すように、ともに第2外部端子332に接続する。すなわち、この例では、第2コンデンサ342に接続されるDC除去用コンデンサは、3つの第1誘電体層311にそれぞれ形成される容量C1の3つの第1コンデンサ341(コンデンサ群)を並列接続して構成する。
【0158】
さらに、この例では、第5誘電体層315と下部誘電体層317との間に形成される2つの第6電極326は、図15(h)及び(j)に示すように、ともに第6外部端子336に接続する。また、第5誘電体層315と下部誘電体層317との間に形成される2つの第7電極327は、図15(i)及び(k)に示すように、ともに第7外部端子337に接続する。すなわち、この例では、第5コンデンサ345に接続されるDC除去用コンデンサは、3つの第6誘電体層316にそれぞれ形成される容量C6の3つの第6コンデンサ346を並列接続して構成する。なお、この例の可変容量デバイス400の構成では、各可変容量コンデンサの容量は、第3電極323及び第5電極325の面積により決定される。
【0159】
ここで、図16に、この例の可変容量デバイス400を用いた電圧制御回路の構成例を示す。なお、図14中の端子331〜337は、それぞれ、図14(a)中の可変容量デバイス300の第1外部端子331〜第7外部端子337に対応する。
【0160】
この例の電圧制御回路450は、可変容量デバイス400と、5つのDC除去用抵抗352〜356とで構成される。
【0161】
上述のように、この例では、第2コンデンサ342に接続されるDC除去用コンデンサを、容量C1の第1コンデンサ341を3つ並列接続して構成する。また、この例では、第5コンデンサ345に接続されるDC除去用コンデンサを、容量C6の第6コンデンサ346を3つ並列接続して構成する。それゆえ、この例の可変容量デバイス400を等価回路で表すと、容量3×C1のDC除去用コンデンサ347、第2コンデンサ342〜第5コンデンサ345、及び、容量3×C6のDC除去用コンデンサ348がこの順で直列に接続された回路となる。この直列回路の構成以外は、変形例3の電圧制御回路350と同様の構成である。
【0162】
上述のように、この例においても、上記実施形態と同様に、一つの誘電体層の上下面にそれぞれ一つの内部電極を形成する。それゆえ、この例の可変容量デバイス400においても、上記実施形態と同様に、可変容量デバイスの設計自由度をより広げることができ、容易に製造することができ、且つ、内部電極間に発生する寄生容量の影響を抑制することができる。
【0163】
さらに、この例の構成では、DC除去用コンデンサの容量を例えば用途等に応じて容易に変更することができる。それゆえ、この例では、さらに設計の自由度を広げることができる。特に、この例では、DC除去用コンデンサの容量を容易に大きくすることができるので、この例の構成は、例えば、DC除去用コンデンサの容量が可変容量コンデンサの容量の約10倍以上必要となる用途に対して好適である。
【0164】
なお、この例では、可変容量デバイス400がDC除去用抵抗352〜356を含まない例を説明したが、本発明はこれに限定されず、可変容量デバイス400がDC除去用抵抗352〜356を含んでいてもよい。また、この例では、DC除去用抵抗の代わりに、DC除去用のインダクタを用いてもよい。
【0165】
[変形例5]
上記実施形態及び各種変形例で説明した可変容量デバイスは、主に、小さな容量で且つ低電圧駆動する必要のある用途に好適であるが、比較的の大きな容量を必要とする用途に対しては、十分な可変容量特性が得られない可能性もある。
【0166】
それゆえ、そのような用途に対しては、上記実施形態及び各種変形例で説明した可変容量デバイスを1ユニットの可変容量素子として、複数ユニット用意し、それらを並列接続するように構成すればよい。変形例5では、その一構成例を説明する。なお、この例では、上記実施形態の可変容量デバイスを2ユニット並列接続した例を説明する。
【0167】
図17(a)及び(b)に、変形例5の可変容量デバイスの概略構成を示す。なお、図17(a)は、変形例5の可変容量デバイスの概略上面図であり、図17(b)は、図17(a)中のF−F断面図である。なお、図17(a)及び(b)において、上記実施形態(図1(a)及び(b))と同様の構成には、同じ符号を付して示す。
【0168】
この例の可変容量デバイス500は、図17(b)に示すように、2つのユニット501及び502(以下、第1及び第2ユニットという)で構成される。そして、各ユニットは、上記実施形態の可変容量デバイス1(図1(a)及び(b))で構成される。
【0169】
この例では、各ユニット内の第1電極21〜第5電極25はそれぞれ、第1外部端子31〜第5外部端子35に接続される。すなわち、第1ユニット501の第1電極21〜第5電極25と、第2ユニット502の第1電極21〜第5電極25とがそれぞれ接続される。このような構成にすることにより、第1ユニット501と第2ユニット502とが並列接続される。
【0170】
また、この例では、第1ユニット501の下部誘電体層15と、第2ユニット502の下部誘電体層15とが対向するように、第2ユニット502上に第1ユニット501を積層する。すなわち、第1ユニット501と第2ユニット502との境界では、同極性の信号が印加される内部電極同士が対向することになる。これにより、第1ユニット501と第2ユニット502との間に寄生容量が発生しない。
【0171】
なお、複数のユニットを積層する際の構成は、この例の構成に限定されない。例えば、第1ユニット501の下部誘電体層15と、第2ユニット502の上部誘電体層16とが対向するように、第2ユニット502上に第1ユニット501を積層してもよい。ただし、この場合、第1ユニット501と第2ユニット502との境界では、異なる極性の信号が印加される内部電極同士が対向することになる。それゆえ、この場合には、第1ユニット501及び第2ユニット502間の寄生容量の発生を抑制するために、第1ユニット501と、第2ユニット502との間に、さらにダミー誘電体層を挿入することが好ましい。
【0172】
上述のように、この例の可変容量デバイス500は、上記実施形態の可変容量デバイス1からなる2つのユニット501及び502を積層した構成であるので、上記実施形態と同様の効果が得られる。さらに、この例の構成では、上述のように、それぞれ上記実施形態の可変容量デバイス1からなる2つのユニット501及び502を並列接続して可変容量デバイス500を構成する。それゆえ、可変容量デバイス500の全容量を容易に大きくすることができ、比較的の大きな容量を必要とする用途に対しても対応することができる。
【0173】
[変形例6]
上記実施形態及び各種変形例では、各誘電体層に一つのコンデンサを形成する例を説明したが、本発明はこれに限定されない。可変容量デバイスの内部電極の形成面のサイズを十分大きくすることができる場合には、一つの誘電体層に複数のコンデンサを形成してもよい。変形例6では、その一構成例を説明する。なお、この例では、例えば図21(a)及び(b)で説明した従来の可変容量デバイスと同様に、一つの可変容量デバイス内に4つのコンデンサを直列接続する例を説明する。
【0174】
図18に、この例の可変容量デバイスの概略構成を示す。なお、図18は、この例の可変容量デバイスの概略側面図である。
【0175】
この例の可変容量デバイス600は、直方体状のデバイス本体610と、デバイス本体610の側面に形成された8つの外部端子631〜638(第1外部端子〜第8外部端子:後述の図19(a)及び(b)参照)とを備える。
【0176】
なお、この例では、デバイス本体610の一つの側面において、誘電体層の面方向に沿って、第1外部端子631、第3外部端子633、第2外部端子632及び第4外部端子634がこの順で、等間隔で配置される。また、第5外部端子635〜第8外部端子638は、第1外部端子631〜第4外部端子634が形成されてデバイス本体610の側面と対向する側面に形成される。そして、第5外部端子635〜第8外部端子638は、デバイス本体610を挟んで、それぞれ第1外部端子631〜第4外部端子634と対向する位置に配置される(後述の図19(a)及び(b)参照)。
【0177】
デバイス本体610は、第1誘電体部601と、第2誘電体部602と、ダミー誘電体層615と、保護用誘電体層616とを備える。ダミー誘電体層615は、第1誘電体部601及び第2誘電体部602間に設けられ、第1誘電体部601及び第2誘電体部602間の寄生容量を抑制する。また、保護用誘電体層616は、第2誘電体部602のダミー誘電体層615側とは反対側の表面に設けられる。
【0178】
第1誘電体部601は、第1誘電体層611と、第2誘電体層612と、第1上電極621と、第1下電極622と、第2上電極623と、第2下電極624とを備える。第1誘電体層611及び第2誘電体層612は、ダミー誘電体層615上に、この順で積層される。
【0179】
第1上電極621及び第2上電極623(内部電極部)は、第1誘電体層611の第2誘電体層612側の表面に所定距離離して形成される。また、第1下電極622及び第2下電極624(内部電極部)は、第1誘電体層611のダミー誘電体層615側の表面に形成される。そして、第1下電極622及び第2下電極624は、第1誘電体層611を挟んで、それぞれ第1上電極621及び第2上電極623と対向する位置に配置される。
【0180】
このように構成することにより、第1誘電体部601には、第1上電極621及び第1下電極622間に第1コンデンサ641が形成され、第2上電極623及び第2下電極624間に第2コンデンサ642が形成される。
【0181】
一方、第2誘電体部602は、第3誘電体層613と、第4誘電体層614と、第3上電極625と、第3下電極626と、第4上電極627と、第4下電極628とを備える。第3誘電体層613及び第4誘電体層614は、保護用誘電体層616上に、この順で積層される。
【0182】
第3上電極625及び第4上電極627は、第3誘電体層613の第4誘電体層614側の表面に所定距離離して形成される。また、第3下電極626及び第4下電極628は、第3誘電体層613の保護用誘電体層616側の表面に形成される。そして、第3下電極626及び第4下電極628は、第3誘電体層613を挟んで、それぞれ第3上電極625及び第4上電極627と対向する位置に配置される。
【0183】
このように構成することにより、第2誘電体部602には、第3上電極625及び第3下電極626間に第3コンデンサ643が形成され、第4上電極627及び第4下電極628間に第4コンデンサ644が形成される。
【0184】
なお、この例では、各コンデンサが誘電体層の積層方向(図18では上下方向)において、互いに重ならないような位置に各内部電極を配置する。また、可変容量デバイス600の各誘電体層及び内部電極は、上記実施形態の各誘電体層及び内部電極と同様の材料で形成することができる。
【0185】
次に、この例の可変容量デバイス600における各内部電極の接続関係を説明する。図19(a)及び(b)に、この例の各内部電極の概略構成を示す。なお、図19(a)は、第1誘電体部601の上面透視図であり、図19(b)は、第2誘電体部602の上面透視図である。
【0186】
第1上電極621は、図19(a)に示すように、表面が矩形状であり、第1誘電体層611の短手方向に沿って延在して形成される。そして、第1上電極621の一方の短辺側端部が、第1外部端子631に接続される。なお、第1上電極621の延在長さは、第1上電極621が第1下電極622と所定の対向面積で対向するように設定される。
【0187】
第1下電極622は、図19(a)に示すように、表面がL字形状であり、その一方の辺部は第1誘電体層611の長手方向に沿って延在し、他方の辺部は第1誘電体層611の短手方向に沿って延在する。この例では、第1下電極622の第1誘電体層611の長手方向に沿って延在した一方の辺部を、第5外部端子635及び第7外部端子637に接続する。
【0188】
なお、第1下電極622の一方の辺部の延在方向に直交する方向の幅は、第1上電極621と第5外部端子635との最短距離より小さくする。このように第1下電極622の一方の辺部の幅を設定することにより、積層時に下電極群(または上電極群)が第1誘電体層611の長手方向にずれても、第1上電極621と第1下電極622の一方の辺部とが対向しない。この場合、下電極群(または上電極群)の位置ずれに伴い発生する各コンデンサの容量の変化量がコンデンサ毎にばらつくことを抑制することができる。
【0189】
さらに、この例では、図19(a)に示すように、第7外部端子637の第1誘電体層611側の長辺部の一部と、第1下電極622の一方の辺部とを接続する。すなわち、第7外部端子637の第1誘電体層611側の長辺部において、第2下電極624側の一部には、第1下電極622を接続しない。これは、第1下電極622と第2下電極624との距離を広げて、両者間の寄生容量を抑制するためである。
【0190】
また、第1下電極622の他方の辺部は、第5外部端子635から第1外部端子631に向かって延在し、その延在長さは、第1下電極622が第1上電極621と所定の対向面積で対向するように設定される。
【0191】
第2上電極623は、図19(a)に示すように、表面がL字形状であり、その一方の辺部は第1誘電体層611の長手方向に沿って延在し、他方の辺部は第1誘電体層611の短手方向に沿って延在する。この例では、第2上電極623の第1誘電体層611の長手方向に沿って延在した一方の辺部を、第2外部端子632及び第3外部端子633に接続する。
【0192】
なお、第2上電極623の一方の辺部の延在方向に直交する方向の幅は、後述する第2下電極624と第2外部端子632との最短距離より小さくする。さらに、この例では、第3外部端子633の第1誘電体層611側の長辺部の一部と、第2上電極623の一方の辺部とを接続する。
【0193】
また、第2上電極623の他方の辺部は、第2外部端子632から第6外部端子636に向かって延在し、その延在長さは、第2上電極623が第2下電極624と所定の対向面積で対向するように設定される。
【0194】
第2下電極624は、図19(a)に示すように、表面が矩形状であり、第1誘電体層611の短手方向に沿って延在して形成される。そして、第2下電極624の一方の短辺側端部が、第6外部端子636に接続される。なお、第2下電極624の延在長さは、第2下電極624が第2上電極623と所定の対向面積で対向するように設定される。
【0195】
第3上電極625は、図19(b)に示すように、表面が矩形状であり、第3誘電体層613の短手方向に沿って延在して形成される。そして、第3上電極625の一方の短辺側端部が、第3外部端子633に接続される。なお、第3上電極625の延在長さは、第3上電極625が第3下電極626と所定の対向面積で対向するように設定される。
【0196】
第3下電極626は、図19(b)に示すように、表面が矩形状であり、第3誘電体層613の短手方向に沿って延在して形成される。そして、第3下電極626の一方の短辺側端部が、第7外部端子637に接続される。なお、第3下電極626の延在長さは、第3下電極626が第3上電極625と所定の対向面積で対向するように設定される。
【0197】
第4上電極627は、図19(b)に示すように、表面が矩形状であり、第3誘電体層613の短手方向に沿って延在して形成される。そして、第4上電極627の一方の短辺側端部が、第4外部端子634に接続される。なお、第4上電極627の延在長さは、第4上電極627が第4下電極628と所定の対向面積で対向するように設定される。
【0198】
第4下電極628は、図19(b)に示すように、表面がL字形状であり、その一方の辺部は第3誘電体層613の長手方向に沿って延在し、他方の辺部は第3誘電体層613の短手方向に沿って延在する。この例では、第4下電極628の第3誘電体層613の長手方向に沿って延在した一方の辺部を、第6外部端子636及び第8外部端子638に接続する。
【0199】
なお、第4下電極628の一方の辺部の延在方向に直交する方向の幅は、第4上電極627と第8外部端子638との最短距離より小さくする。さらに、この例では、第6外部端子636の第3誘電体層613側の長辺部の一部と、第4下電極628の一方の辺部とを接続する。
【0200】
また、第4下電極628の他方の辺部は、第8外部端子638から第4外部端子634に向かって延在し、その延在長さは、第4下電極628が第4上電極627と所定の対向面積で対向するように設定される。
【0201】
上述のように各内部電極を接続すると、第2外部端子632及び第3外部端子633が共通端子となり、第5外部端子635及び第7外部端子637が共通端子となり、そして、第6外部端子636及び第8外部端子638が共通端子となる。その結果、可変容量デバイス600の内部には、第1コンデンサ641、第3コンデンサ643、第2コンデンサ642及び第4コンデンサ644がこの順で直列接続された直列回路が構成される。
【0202】
ここで、例えば上記構成において、第2コンデンサ642及び第3コンデンサ643を可変容量コンデンサとして用い、第1コンデンサ641及び第4コンデンサ644をDC除去用コンデンサとして用いる場合を考える。この場合には、第2外部端子632及び第3外部端子633、第5外部端子635及び第7外部端子637、そして、第6外部端子636及び第8外部端子638がそれぞれ制御電源に接続される。この際、制御電源に対して第2コンデンサ642及び第3コンデンサ643が並列接続となるように接続する。一方、第1外部端子631及び第4外部端子634は交流電源に接続する。
【0203】
上述のように、この例では、各誘電体層に2つのコンデンサを形成するが、例えば図21(a)及び(b)で説明した従来の可変容量デバイスに比べて、内部電極間及び外部端子間のスペースをより大きくすることができる。それゆえ、この例の可変容量デバイス600においても上記実施形態と同様の効果が得られる。
【0204】
なお、上記変形例6では、内部電極間を接続して、複数のコンデンサを直列に接続する例を説明したが、本発明はこれに限定されない。例えば、外部端子間を接続して複数のコンデンサを直列接続してもよいし(図21(a)及び(b)参照)、内部電極間及び外部端子間を適宜接続して複数のコンデンサを直列接続してもよい。複数のコンデンサの接続手法は、例えば可変容量デバイスの寸法、寄生容量の影響等を考慮して適宜選択する。
【0205】
上記実施形態及び各種変形例では、一つの可変容量デバイスに4〜6個のコンデンサを形成して直列接続する構成例を説明したが、本発明はこれに限定されない。一つの可変容量デバイスに、3個または7個以上のコンデンサを形成して直列接続してもよい。ただし、一つの可変容量デバイスに3個のコンデンサを形成する場合には、変形例2と同様に、全てのコンデンサを可変容量コンデンサとして用い、DC除去用コンデンサは別途用意する。
【符号の説明】
【0206】
1…可変容量デバイス、2…交流電源、3…制御電源、10…デバイス本体、11…第1誘電体層、12…第2誘電体層、13…第3誘電体層、14…第4誘電体層、15…下部誘電体層、16…上部誘電体層、21…第1電極、22…第2電極、23…第3電極、24…第4電極、25…第5電極、31…第1外部端子、32…第2外部端子、33…第3外部端子、34…第4外部端子、35…第5外部端子、41…第1コンデンサ、42…第2コンデンサ、43…第3コンデンサ、44…第4コンデンサ、50…電圧制御回路、52〜54…DC除去用抵抗

【特許請求の範囲】
【請求項1】
外部から印加される制御信号に応じて容量が変化する誘電体材料で形成され且つ所定方向に積層された複数の誘電体層、及び、各誘電体層の両面のそれぞれに形成された少なくとも一つの内部電極からなる内部電極部を有し、前記複数の誘電体層及び前記内部電極部により3つ以上のコンデンサが形成され、該3つ以上のコンデンサが直列に接続されたデバイス本体と、
前記制御信号が印加され、且つ、前記3つ以上のコンデンサのうち少なくとも2つのコンデンサを形成する少なくとも3つの前記内部電極に対してそれぞれ設けられた少なくとも3つの制御端子と
を備える可変容量デバイス。
【請求項2】
前記内部電極部が、一つの前記内部電極で構成され、前記複数の誘電体層のそれぞれに一つの前記コンデンサが形成される
請求項1に記載の可変容量デバイス。
【請求項3】
さらに、外部から入力信号が印加され、且つ、前記デバイス本体内の前記所定方向において最端に位置する2つの前記内部電極がそれぞれ接続される2つの外部端子を備える
請求項2に記載の可変容量デバイス。
【請求項4】
前記3つ以上のコンデンサからなる直列回路の最端に位置する前記コンデンサが、互いに並列接続された複数のコンデンサからなるコンデンサ群で構成される
請求項3に記載の可変容量デバイス。
【請求項5】
前記デバイス本体を複数備え、該複数の前記デバイス本体が前記所定方向に積層され、該複数の前記デバイス本体が並列接続されるように、該複数の前記デバイス本体間で対応する内部電極同士が接続されている
請求項3に記載の可変容量デバイス。
【請求項6】
隣接する2つの前記デバイス本体間の境界で対向する、一方の前記デバイス本体の前記内部電極と他方の前記デバイス本体の前記内部電極とが、前記対応する内部電極同士であり、接続されている
請求項5に記載の可変容量デバイス。
【請求項7】
前記3つ以上のコンデンサを形成する全ての前記内部電極に対してそれぞれ前記制御端子を設け、前記3つ以上のコンデンサを全て可変容量コンデンサとして用いる
請求項1に記載の可変容量デバイス。
【請求項8】
前記内部電極部が、複数の内部電極で構成され、各誘電体層に複数のコンデンサが形成される
請求項1に記載の可変容量デバイス。
【請求項9】
さらに、前記少なくとも3つの制御端子にそれぞれ接続された少なくとも3つの直流除去用の抵抗またはインダクタを備える
請求項1に記載の可変容量デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−119482(P2011−119482A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2009−275885(P2009−275885)
【出願日】平成21年12月3日(2009.12.3)
【出願人】(000002185)ソニー株式会社 (34,172)