説明

変圧器鉄心の残留磁束密度制御方法およびその装置

【課題】 変圧器鉄心の残留磁束密度を所望の値に制御すること
【解決手段】 変圧器に直流電圧を印加して正の飽和状態にする初期処理(S1)、その初期処理を実行して飽和状態となった変圧器に、その初期処理と逆向きの負の直流電圧を印加して飽和状態にした後、その直流電圧の印加を遮断し、直流電圧の印加開始から、遮断するまでに要した飽和させるネルギーに応じた直流電圧の電圧値Viを積算した第1積算値V1を求める飽和エネルギー算出処理(S2−S5)、飽和エネルギー算出処理で求めたエネルギーV1の半分のエネルギー分だけ初期処理で印加した直流電圧と同じ正の向きの直流電圧を前記変圧器に印加する処理(S7−S10)を実行する。これにより、残留磁束密度は0になる。正の向きの直流電圧により与えるエネルギーをV1のX%とすることで、残留磁束密度を任意に設定できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変圧器鉄心の残留磁束密度制御方法およびその装置に関するもので、例えば、柱上変圧器などの配電用変圧器の鉄心の残留磁束密度を制御する技術に関する。
【背景技術】
【0002】
変電所等の配電施設から家庭や工場に電力を配電する架空配電線路には柱上変圧器が設けられている。この柱上変圧器は、高圧配電線路に印加された交流6.6[kV]の高圧電力を、家庭や工場で利用可能な100[V]や200[V]の低圧電力に変成(変圧)する。係る柱上変圧器を含め、変圧器の構造は各種のものがあるが、いずれも鉄心にコイルを装着したものを基本構成としている。そして、鉄心にはヒステリシス特性が存在するため、変圧器の磁気特性を算出するには、残留磁束の影響を考慮する必要がある。
【0003】
残留磁束を0にすることで消磁を行うことができる。従来の消磁は、一度当該変圧器にやや過励磁になる程度まで交番磁束(交流電圧)を印加し,徐々に磁束(電圧)の大きさを下げていく交流消磁が用いられる。特に、本発明が対象としている配電用の変圧器の消磁は、突入電流の防止を目的として、係る定格以上の高電圧の交流電圧を印加し、スライダック等を利用して作業員が人手により電圧値を徐々に低下させ、最終的に0にすることが行われている。なお、この消磁の方法について開示された先行技術文献は、見つからなかった。
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、係る一般に行われている消磁方法を用いると、確実に残留磁束を小さくさせることができるが、定格以上の高圧の電圧が必要となり,装置自体が大がかりとなる。よって、街中に出て、実際に柱上変圧器等に対して電圧を印加し消磁を行った後巻線間短絡等の故障判定処理をするためには、コンパクトな装置の開発が必須となり、それに適した消磁装置の開発が必要となる課題がある。
【0005】
さらに、上述したように、励磁突入電流防止のための変圧器の消磁は、交流電圧を用いて行われているが、定格以上の高圧の交流電圧を印加することから、作業場所は係る電源のある付近に限定されてしまうと共に、マニュアル操作で減衰させることから、作業が繁雑であるばかりでなく、確実に消磁しようとするために必要以上にゆっくりと減衰させる傾向にあり、作業時間がかかり効率が悪いので、コンパクトで変圧器を自動かつ短時間で消磁する装置の開発が望まれているという課題もある。
【0006】
さらに、消磁のように、残留磁束密度を0にすることは、方法は別として従来から各種の提案がなされているが、残留磁束密度を所望の値にするような制御を行うといったことについて着目されることはなく、そのための解決手段もなかった。
【課題を解決するための手段】
【0007】
上述した課題を解決するために、本発明に係る残留磁束密度制御装置は、(1)変圧器に直流電圧を印加して正又は負の飽和状態にする初期処理手段と、飽和状態の前記変圧器に、逆の向きの飽和状態にするための直流電圧を印加する直流電圧印加手段と、前記変圧器の鉄心が飽和状態になったことを検知する飽和検知手段と、前記初期処理手段で飽和された前記変圧器に対し、前記飽和検知手段で飽和が検知されるまでの間、前記初期処理手段と逆向きの直流電圧を印加し、前記鉄心が飽和状態になったら直ちに遮断し、その直流電圧の印加開始から遮断するまでに要した飽和させるネルギーを求める飽和エネルギー算出手段と、前記初期処理手段と同じ向きの直流電圧を印加し、その印加時に前記変圧器に加えるエネルギーを監視し、当該エネルギーが、前記飽和エネルギー算出手段で求めた前記飽和させるエネルギーに対して設定した値になった際に前記同じ向きの直流電圧の印加を遮断する制御手段と、を備えて構成した。
【0008】
上記の各手段は、実施形態では、制御部8(演算部2)の一機能(フローチャートの所定の処理ステップを実行する機能・プログラム)として実現される。初期処理手段は、実施形態では、直流電圧を一定時間印加する処理を行う機能であり、例えば、処理ステップS1を実行する機能により実現される。一定時間は、通常の使用状況下で取り得る残留磁束密度のいずれの場合も飽和するように、十分な時間とする。もちろん、あまり長いと、計測時間が長くなると共に無駄に電圧を印加してエネルギーを消費するので、適宜の長さに設定する。また、簡易な構成を採るために、実施形態では、一定時間印加しているが、飽和するか否かを監視し、飽和した場合に電圧の印加を停止するようにしてもよい。飽和検知手段は、実施形態では、励磁電流の電流値を監視し、急に増加した場合に飽和したと判定するようにした(処理ステップS4)が、他の手法を用いても良い。飽和エネルギー算出手段は、実施形態では、処理ステップS3を実行する機能により実現される。制御手段は、実施形態では、処理ステップS7〜S10を実行する機能により実現される。
【0009】
正または負の飽和状態にしておき、飽和エネルギー算出手段にて反対側の飽和状態になるまでに要するエネルギーを求める。その求めたエネルギー分だけ、初期処理の際に印加した直流電圧と同じ向きに直流電圧を印加すると、初期処理後の元の飽和状態に戻る。また、求めたエネルギーの半分のエネルギーを加えた際に直流電圧の印加を遮断すれば、正または負の一方の最大残留磁束密度の状態から他方の最大残留磁束密度の状態の中間地点で磁界の印加が停止されるため、残留磁束密度は0となる。同様に、与えるエネルギー量を、求めたエネルギーの所定の割合分に設定することで、残留磁束密度は、その所定の割合分に対応する値となる。よって、残留磁束密度の制御が行える。
【0010】
そして、直流電圧を用いて残留磁束密度を制御するようにしたので、簡易な構成で実現することができる。よって、携帯に優れ、柱上変圧器等の街中に点在する処理対象物であっても、容易に所望の残留磁束密度にすることができる。
【0011】
(2)前記飽和エネルギー算出手段は、前記直流電圧の電圧値の積分値を求めるものとするとよい。この場合、演算処理が簡単となるので好ましい。
【0012】
(3)前記制御手段は、監視したエネルギーが、前記飽和エネルギー算出手段で求めた前記飽和させるエネルギーの半分になった場合に前記遮断を行うようにすると良い。このようにすると、残留磁束密度を0にすることができる。しかも、直流電圧を合計3回印加するだけで、消磁処理が完了するので好ましい。
【0013】
(4)前記飽和検知手段は、前記直流電圧印加手段により前記変圧器へ直流電圧を印加することで流れる励磁電流の電流値に基づいて飽和の有無を判断するものであるとよい。直流電圧を印加した場合、時間の経過に伴い励磁電流の電流値も徐々に増加するが、飽和状態になると電流値が急に増加する。そこで、係る変化に基づいて飽和の有無を検出することができる。
【0014】
(5)前記直流電圧の電源は、電池とすることができる。このようにすると、装置全体がコンパクトで携帯に便利となる。そして、巻線抵抗、巻数を考慮すると、現在の配電用変圧器の多くは数V程度の直流電源で鉄心の磁束密度を飽和させることが可能である。よって、電池を数本直列接続する直流電圧で残留磁束密度の制御が行えるので、問題はない。
【0015】
(6)本発明に係る制御方法は、変圧器に直流電圧を印加して正又は負の飽和状態にする初期処理、その初期処理を実行して飽和状態となった前記変圧器に、その初期処理と逆向きの直流電圧を印加して飽和状態にした後、その直流電圧の印加を遮断し、前記直流電圧の印加開始から、前記遮断するまでに要した飽和させるネルギーを求める飽和エネルギー算出処理、その飽和エネルギー算出処理で求めたエネルギーに対する設定された割合のエネルギー分だけ前記初期処理で印加した直流電圧と同じ向きの直流電圧を前記変圧器に印加する処理、を実行することである。
【0016】
(7)前記飽和させるネルギーは、前記直流電圧の電圧値の積分により求めることとするとよい。
【0017】
(8)前記割合は、50%とすると良い。これにより、消磁が行える。
【発明の効果】
【0018】
本発明では、簡単な構成で変圧器の鉄心の残留磁束密度を制御することができる。
【図面の簡単な説明】
【0019】
【図1】本発明に係る残留磁束密度制御装置の好適な一実施形態を示す図である。
【図2】本発明の課題を説明する図である。
【図3】ヒステリシスカーブの一例を示す図である。
【図4】飽和検知の機能を説明する図である。
【図5】演算部の機能を示すフローチャートである。
【図6】演算部の機能・動作原理を示す図である。
【図7】本発明の効果を説明する図である。
【図8】演算部の機能・動作原理を示す図である。
【発明を実施するための形態】
【0020】
図1は、本発明に係る残留磁束密度制御装置の概略構成を示している。図1に示すように、変圧器の各相の端子に接続する測定用端子であるプローブ1を備える。プローブ1は、各相に接続するため、本実施形態では、3個用意している。各プローブ1は、電圧・電流などを測定する測定回路7を介して制御部8に接続される。さらに、残留磁束密度制御装置は、マンマシンインタフェースとしての入力部4と、報知部5と、各部を動作させるための電源部6を備えている。
【0021】
入力部4は、電源のON/OFFや、各種のモードの設定や、制御開始等を指示するための操作スイッチ等がある。報知部5は、ブザーのように音声(音)による出力手段や、ランプ・ディスプレイなどの視覚による出力手段などがあり、動作結果を報知する。
【0022】
電源部6は、本実施形態では、電池を用いている。つまり、直流電源であり、CPUや各種の電子機器を駆動させるための電源電圧である。また、後述するように、直流電圧を用いた消磁等の残留磁束密度の制御を行う場合の電源にも利用する。具体的には、公称電圧1.2〜1.5[V]の電池(例えば、1.2[V]のニッケル水素電池)を4本直列に接続し、直列接続された電池全体の端子間電圧は4.8〜6[V]となり、出力は4〜5[W]程度となる。もちろん、この直列に接続する数は任意である。また、電池を並列接続して連続して、長寿命化を図るのも妨げない。また、出力電圧値を安定化させるため、後述するように、電池の出力に安定化回路(レギュレータ)を接続し、その安定化回路を介して出力し、3[V]程度の所定の直流電圧が出力されるようにしている。
【0023】
測定回路7は、変圧器の端子間電圧や、励磁電流などの電気的な特徴量を測定するもので、その測定結果は、制御部8(演算部2)に与えられ、各部における動作制御や、処理終了判定などに用いられる。
【0024】
制御部8は、変圧器の鉄心の残留磁束を制御する。すなわち、例えば、特開平7−94341号公報に開示された故障判定器では、周波数の異なる交流電圧を順次印加し、その周波数の異なる交流電圧を印加したときの変圧器の励磁電流を測定し、その測定された励磁電流値に基づいて所定の演算処理をして短絡の有無を判断する技術が開示されている。係る判定は、周波数が高くなるにつれて励磁電流の値が大きくなるか(健全・正常)、小さくなるか(短絡)により行うことができるので、上記の所定の演算処理は、例えば励磁電流特性の近似曲線を1階微分し、その微分した結果、増加傾向にあるか減少傾向にあるかにより、判定を行うことができる。
【0025】
また、そのように1階微分することなく、異なる周波数(例えば、1kHzと3kHz)の交流電圧(正弦波)を切り替えて出力し、それぞれの周波数の時の励磁電流を求め、その大小関係から巻線間短絡の有無を判定することもできる。この場合、周波数の高い時の励磁電流の方が大きい場合には、増加傾向にあるので正常となり、周波数の高い時の励磁電流の方が小さい場合には、減少傾向にあるので巻線間短絡が生じていると判断することができる。しかしながら、実際に上記の演算処理で故障判定をしようとすると、正しく判定できないことがある。これは、変圧器の鉄心の残留磁束が影響している。つまり、通常に使用された変圧器の鉄心には残留磁束があり、その大きさや磁界の向きは一定ではない。その理由は、鉄心の残留磁束は、その直前の遮断時の電圧や極性に影響されるからである。
【0026】
従って、残留磁束が異なると、同一の電圧を印加したとしても係る電圧の印加に伴い流れる励磁電流値も異なるので、図2に示すように、測定結果は、測定を行うたびに変化してしまう。その結果正しい判定ができなくなるおそれがある。そこで、本実施形態では、制御部8が、残留磁束密度を所望の値にすることで、判定の際の初期状態を一定にすることができ、安定した判定を行うことができる。残留磁束密度を0にすることで、消磁が行える。もちろん、本実施形態の残留磁束密度制御装置は、このように故障判定の前処理として使用することのみならず、各種の分野で利用できる。
【0027】
そして本実施形態の残留磁束密度制御装置は、電源部6の直流電圧を利用し、残留磁束を所望の値に制御する。巻線抵抗,巻数を考慮すると、現在の配電用変圧器の多くは数V程度の直流電源で鉄心の磁束密度を飽和させることが可能である。このことを利用すれば、小さな電圧で残留磁束密度の制御を行うことが可能となるので、残留磁束密度制御装置はコンパクトとなり、携帯可能となる。
【0028】
よく知られているように、鉄心に用いられる強磁性材料の磁化曲線(BH曲線)は、図3に示すようなヒステリシスカーブのような特性となり、磁界の強さH[A/m]を増加させるに従い、磁束密度B[T]は飽和する。その後、磁界の強さを0に戻しても、磁束密度は0にならず、所定の値の残留磁束密度となる。そして、上述したように残留磁束密度は、その直前で磁界を印加した際の磁界の強さと向き(正負)により異なり、図3に示すように、いったん飽和させた状態で磁界の強さを0にした場合の残留磁束密度が、最も大きく、最大磁束密度Bmとなる。直流電圧を印加した場合、その電圧値に応じた磁界が加わるので、係る直流電圧の電圧値を適度な値(数V程度)に設定することで、鉄心を飽和させることができる。
【0029】
このように磁気飽和させるために、演算部2は、電源部6から出力される直流電圧をプローブ1を介して変圧器の端子に印加する。変圧器に直流電圧を継続して印加させると、その変圧器の鉄心が飽和領域に達し、磁束が残留磁束として鉄心に残る。つまり、けい素鋼板やアモルファスは、大きな透磁率を有するので、これらを鉄心として作ったコイルの自己インダクタンスは大きな値を有する。そのため、このコイルに直流電源を印加させた場合、図4に示すように、励磁電流は時間をかけて徐々に大きくなる。そして、ある一定の電流値(起磁力)に達すると、見かけ上の透磁率は小さくなり自己インダクタンスも小さくなるため、励磁電流はほぼ瞬間的に巻線抵抗と電源電圧で決まる値に達する。換言すると、励磁電流を監視し、その値が急激に上昇したときが、鉄心が飽和したときと判定できる。
【0030】
また、同じ変圧器の場合、磁気飽和させない状況で外部磁界(H)をかけていた際に与えられたエネルギーが大きいほど、その外部磁界を印加する前後の残留磁束密度の差は、大きな値になる。従って、例えば正の飽和状態から負の飽和状態になるまでに加えたエネルギーを求め、その半分のエネルギーを逆向き(正の方向)に加えると、残留磁束は0になる。つまり、正の最大磁束密度Bmから、負の最大磁束密度−Bmになるのに必要なエネルギーの絶対値をEとすると、そのエネルギー(E)分だけ正の方向に外部磁界を印加して、外部磁界を0にすると、再び正の最大磁束密度Bmとなる。よって、その半分(50%)のエネルギー(0.5E)を加えた後に外部磁界を0にすると、“−Bm”と“Bm”の中間地点である“磁束密度=0”となり、消磁が完了する。
【0031】
上記の鉄心に加えるエネルギーに基づく残留磁束密度の制御は、具体的には、制御部8内の演算部(CPU)2が、図5に示す以下のアルゴリズムを実行することで行う。まず、演算部2は、変圧器の鉄心を正の飽和状態にする(S1)。具体的には、電源部6から出力される電圧(正の直流電圧)をそのまま一定時間変圧器に印加することで、鉄心を飽和させる。つまり、鉄心のヒステリシスカーブ(B−H特性)の一例を示すと、図6のようになる。そして、係る正の直流電圧を印加する際の残留磁束は、上述したようにその大きさや磁界の向きがばらばらである。そこで、演算部2は、確実に飽和するために十分な時間(例えば1秒)だけ直流電圧を印加し(図6中(1)参照)、その後、電源を遮断する。これにより、鉄心に加わる磁界Hも0になり、最大残留磁束Bmとなる。このように、一度正の向きに飽和させることで、その直前の使用状態に基づく残留磁束の大きさ・磁界の向きのばらつきが解消され、同じ初期状態にすることができる。
【0032】
なお、例えば短絡しているような場合には、直流電圧の印加と共に大きな電流が流れるので、たとえ1秒でも係る状態が継続するのは好ましくない。そこで、この処理の実行時も励磁電流を監視し、電流値が急激に増加したり、所定の基準値を超えたりするなど、予め設定した停止条件場合を満たした場合には、遮断するようにすると良い。
【0033】
なおまた、本実施形態では、正の直流電圧を印加して正の飽和状態にするようにしたが、最初に負の直流電圧を印加し、負の飽和状態にするようよしても良い。その場合には、以下の説明における各処理ステップで印加する直流電圧の向きを逆にすればよい。この処理ステップS1を実行する機能が、初期処理手段に対応する。
【0034】
次に、演算部2は、変圧器に負の直流電圧を印加し、鉄心を負の飽和状態にする。ここでは、処理ステップS1のように一定時間を印加するのではなく、励磁電流を監視し、飽和するまで所定の直流電圧を印加する。演算部2は、プローブ1を介して変圧器に印加している直流電圧の電圧値の積算値である第1積算電圧値V1をリセットするとともに負の直流電圧を印加開始する(S2)。この第1積算電圧値V1は、バッファメモリ3に格納されるので、そのバッファメモリ3の値を0にする。
【0035】
演算部2は、サンプリングタイムごとに現在の電圧値Viを取得し、バッファメモリ3に格納された第1積算電圧値V1を読み出し、現在の電圧値Viを足し込んで、新たな第1積算電圧値V1を求め、バッファメモリ3に上書きする(S3)。すなわち、負の直流電圧の印加により外部磁界を加えているが、そのとき変圧器(鉄心)に加えるエネルギーは、電圧値と電流値の積を時間積分することにより求めることができる。そして、本実施形態では、負の直流電圧の印加時並びに後述する正の直流電圧の印加時において、ともに同一のサンプリングタイムで一定間隔ごとに電圧値の現在値を取得することで、時間情報の取得を省略するようにした。もちろん、一定間隔ごとに取り込まない場合には、今回取得した電圧値の現在値に対し、前回の現在値の取得から今回の現在値の取得までの時間を乗算することで、その期間に加えたエネルギーに対応する値を求めることになる。なお、電圧値Viは、絶対値である。
【0036】
また、より正確に加えたエネルギーを求めるためには、磁化するために消費した励磁電流の電流値も積算するのが好ましいが、図4に示すように、積算しているほぼ全区間に渡り、電流値はほぼ0となるとともに、飽和して電流値が増加する領域では、鉄心を飽和させる磁化のために要する電力よりも巻き線での消費電力分が大きく影響することになる。そこで、電流値の積分をすると、かえって磁気飽和させるため要した正確なエネルギーを求めることができなくなるので、本実施形態では、電流値の積算は行わないようにした。そして、電圧の積分であれば電流の立ち上がりに大きく影響せず、鉄心の飽和に必要なエネルギーを算出することができる。なお、本実施形態では、電源部6に電池を用いているため、電圧値も徐々に低下する。この電圧の積算を行う処理ステップS3を実行する機能が、飽和エネルギー算出手段に対応する。
【0037】
次に、演算部2が、励磁電流が急激に増加したか否かを判断する(S4)。係る判断をする処理ステップを実行する機能が、飽和検出手段に対応する。励磁電流がほぼ0の状態で微増している区間(図4中、区間A)では、未飽和の状態であり、その区間は、処理ステップS4の分岐判断はNoのままであるので、負の直流電圧は継続して印加しつつ、励磁電流の監視を継続して行うとともにサンプリングタイムごとに電圧値の積算を行う。
【0038】
励磁電流が急激に増加する(図4中、“X”)と、処理ステップS4の分岐判断がYesとなり、鉄心が負の飽和状態になったと推定できる(図6中(3)参照)。この判断は、例えば、予め閾値(例えば、5[A])を設定しておき、励磁電流の電流値が閾値を超えたならばS4の分岐判断はYesとすることができる。また、前回の励磁電流の値を記憶しておき、今回の励磁電流との差が一定のしきい値以上となった場合に急増したと判定することができる。
【0039】
励磁電流が急激に増加したならば、演算部2は、電源を遮断する(S5)。この電源の遮断は、最終的に変圧器に負の直流電圧が印加されず、励磁電流が巻線に流れなければよい。このように励磁電流が急激に増加したときに直流電圧の印加を遮断すると、逆起電力が発生し、その後徐々に電圧が低下して0に戻る(図6中(4)参照)。この逆起電力が0になったとき、鉄心には、図6に示すように、負の一定の残留磁束(負の最大磁束密度−Bm)が発生している。演算部2は、このように起電力が0になるのを待つ(S6)。
【0040】
次いで、演算部2は、プローブ1を介して変圧器に印加している正の直流電圧の電圧値の積算値である第2積算電圧値V2をリセットするとともに正の直流電圧を印加開始する(S7)。この第2積算電圧値V2は、バッファメモリ3に格納されているので、そのバッファメモリ3の値を0にする。
【0041】
演算部2は、サンプリングタイムごとに現在の電圧値Viを取得し、バッファメモリ3に格納された第2積算電圧値V2を読み出し、現在の電圧値Viを足し込んで、新たな第2積算電圧値V2を求め、バッファメモリ3に上書きする(S8)。そして、演算部2は、求めた第2積算電圧値V2が、負の飽和状態にする際に要したエネルギーに対応する第1積算電圧値V1の半分であるか否かを判断する(S9)。
【0042】
S9でYesとなると(図6中(5)参照)、演算部2は、電源を遮断する(S10)。この電源の遮断は、最終的に変圧器に負の直流電圧が印加されず、励磁電流が巻線に流れなければよい。この電圧の遮断により逆起電力が発生し、その後徐々に電圧が低下して0に戻る(図6中(6)参照)。処理ステップS10で電圧を遮断するまでに変圧器の鉄心に加えたエネルギーは、正の飽和状態から負の飽和状態にするのに要したエネルギーの半分であるので、この逆起電力が0になったときの残留磁束密度は、0になり消磁処理が完了する。
【0043】
本実施形態のように、まず消磁を行い、その後に、周波数−励磁電流特性を測定すると、図7に示すように、同じ変圧器に対して複数回測定を行ったとしても、ほとんど同じ値(特性)を示すことが確認できた。これに対し、先に説明した通り、消磁を行わないで測定した場合、図2に示すように、測定毎に測定結果が異なる。この図2と図7とを比較することで消磁を行うことの効果が確認できる。その結果、本装置にて消磁を行った後に周波数−励磁電流特性に基づく巻線間短絡の有無の故障判定を行った場合、高性能な検出・判定が行える。
【0044】
上述した実施形態では、残留磁束密度を0にして消磁する制御を行うようにしたが、本発明はこれに限ることはなく、残留磁束密度を任意の値に設定することができる。一例としては、負の飽和状態から正の方向に外部磁界を印加し、75%分のエネルギー(0.75E,V2=0.75V1)を加えることで、正の最大磁束密度の半分(Bm/2)にすることができ(図8(a)参照)、25%分のエネルギー(0.25E,V2=0.25V1)を加えることで、負の最大磁束密度の半分(−Bm/2)にすることができる(図8(b)参照)。
【0045】
つまり、処理ステップS9の分岐判断で、V1に乗算する係数を変えることで、当該ステップの分岐判断の条件を充足するV2の値が変わり、それに伴い最終的な残留磁束密度が制御できる。つまり、処理ステップS7で正の直流電圧を印加している際に加えるエネルギーが、正の飽和状態から負の飽和状態にする際に加えたエネルギー(第1積算電圧値)のX%とした場合、処理ステップS9は、
V2=(X/100)V1
となる。
そして、その場合の残留磁束密度は、
Xが50%以上の場合、
Bm/[100/{2(X−50)}]
=2(X−50)Bm/100
Xが50%未満の場合、
−Bm/{100/(2X)}
=(2X)Bm/100
となる
【符号の説明】
【0046】
1 プローブ
2 演算部
3 バッファメモリ
4 入力部
5 報知部
6 電源部
7 測定回路
8 制御部

【特許請求の範囲】
【請求項1】
変圧器に直流電圧を印加して正又は負の飽和状態にする初期処理手段と、
飽和状態の前記変圧器に、逆の向きの飽和状態にするための直流電圧を印加する直流電圧印加手段と、
前記変圧器の鉄心が飽和状態になったことを検知する飽和検知手段と、
前記初期処理手段で飽和された前記変圧器に対し、前記飽和検知手段で飽和が検知されるまでの間、前記初期処理手段と逆向きの直流電圧を印加し、前記鉄心が飽和状態になったら直ちに遮断し、その直流電圧の印加開始から遮断するまでに要した飽和させるネルギーを求める飽和エネルギー算出手段と、
前記初期処理手段と同じ向きの直流電圧を印加し、その印加時に前記変圧器に加えるエネルギーを監視し、当該エネルギーが、前記飽和エネルギー算出手段で求めた前記飽和させるエネルギーに対して設定した値になった際に前記同じ向きの直流電圧の印加を遮断する制御手段と、
を備えたことを特徴とする変圧器鉄心の残留磁束密度制御装置。
【請求項2】
前記飽和エネルギー算出手段は、前記直流電圧の電圧値の積分値を求めるものであることを特徴とする請求項1に記載の変圧器鉄心の残留磁束密度制御装置。
【請求項3】
前記制御手段は、監視したエネルギーが、前記飽和エネルギー算出手段で求めた前記飽和させるエネルギーの半分になった場合に前記遮断を行うことを特徴とする請求項1または2に記載の変圧器鉄心の残留磁束密度制御装置。
【請求項4】
前記飽和検知手段は、前記直流電圧印加手段により前記変圧器へ直流電圧を印加することで流れる励磁電流の電流値に基づいて飽和の有無を判断するものであることを特徴とする請求項1から3のいずれかに記載の直流を用いた変圧器鉄心の残留磁束密度制御装置。
【請求項5】
前記直流電圧の電源は、電池であることを特徴とする請求項1から4のいずれか1項に記載の変圧器鉄心の残留磁束密度制御装置
【請求項6】
変圧器に直流電圧を印加して正又は負の飽和状態にする初期処理、
その初期処理を実行して飽和状態となった前記変圧器に、その初期処理と逆向きの直流電圧を印加して飽和状態にした後、その直流電圧の印加を遮断し、前記直流電圧の印加開始から、前記遮断するまでに要した飽和させるネルギーを求める飽和エネルギー算出処理、
その飽和エネルギー算出処理で求めたエネルギーに対する設定された割合のエネルギー分だけ前記初期処理で印加した直流電圧と同じ向きの直流電圧を前記変圧器に印加する処理、
を実行する変圧器鉄心の残留磁束密度制御方法。
【請求項7】
前記飽和させるネルギーは、前記直流電圧の電圧値の積分により求めることを特徴とする請求項6に記載の変圧器鉄心の残留磁束密度制御方法。
【請求項8】
前記割合は、50%であることを特徴とする請求項6または7に記載の変圧器鉄心の残留磁束密度制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−216630(P2011−216630A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−82704(P2010−82704)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000002842)株式会社高岳製作所 (72)
【出願人】(000003687)東京電力株式会社 (2,580)