説明

有機組成物

本明細書には、式I[式中、Eは、かご型化合物であり;各Qは、同じであるか、または異なっていて、アリール、分枝状アリール、および置換アリールから選択され(置換基としては、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルが挙げられ;Aは、置換または非置換アリールアルキニル基を有する置換または非置換アリール(置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられる。);アリールとしては、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられる。)であり;hは、0から10であり;iは、0から10であり;jは、0から10であり;wは、0または1である。]
の少なくとも1種のオリゴマーまたはポリマーを含む組成物およびこのような組成物の形成法および使用法が提供される。
【化41】


【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示されている主題の分野は、組成物、特にテトラ置換アダマンタン誘導体および非置換または置換フェニル単位を介して結合しているそれらのオリゴマー類またはポリマー類、その調製法およびその使用法、特にマイクロエレクトロニック構成要素における誘電体材料または絶縁体材料としての使用法に関する。
【背景技術】
【0002】
誘電物質は、例えば、集積回路、マイクロチップ類、マルチチップモジュール類、積層回路ボードまたは他のマイクロエレクトロニック構成要素などの導電線間の絶縁材料として、半導体産業において広く使用されている。
【0003】
半導体産業の進歩は、高度の能力と機能性を示すと同時に、寸法が小さくなる集積回路の新世代の開発続行にかかっている。したがって、導電線は一層細くなければならず、より密に詰められる必要があるため、隣接導電線間のキャパシタンスが増加し、電流消費の増加、シグナル遅延時間の増大および混信増加などの一連の不利益を伴う。
【0004】
誘電材料を沈着するために用いられる方法は、2つに分類することができる。すなわち、スピンオン沈着(以後、SOD)と化学蒸着(以後、CVD)である。より低い比誘電率材料を開発する努力には、化学組成物(有機、無機、有機/無機の混合)の変更または誘電体マトリクス(多孔性、非多孔性)の変更が挙げられる。2.0から3.5の範囲の比誘電率を有する幾つかの材料の開発を表Iにまとめてある。(PE=増強プラズマ;HDP=高密度プラズマ)。しかし、表Iに示された出版物に開示されたこれらの誘電材料および誘電体マトリクスの多くは、高機械的安定性、高熱的安定性、高ガラス転移温度、高弾性率または高硬度などであると同時に基体、ウェーハまたは他の表面上に加工されることができる、低K誘電材料にとって要求される必要な、または最適な物理的かつ化学的性質を示すことができない。したがって、誘電材料または誘電層として使用し得る他の化合物および材料を研究することは、たとえ、これらの化合物または物質が、現在の形態では誘電材料として現在意図され得ないとしても有用であると考えられる。
【0005】
【表1】

【0006】
あいにくと、2.0から3.5の間の比誘電率を有する開発中の多数の有機SODは、上記の機械的および熱的性質の面で、ある一定の欠点を有している。したがって、この比誘電率の範囲にある誘電薄膜に関して改善された処理および性能を開発する必要性が産業界に存在している。
【0007】
ReichertおよびMathiasは、かご型ベース分子の種類であり、ダイヤモンド置換物として有用であることが教示されているアダマンタン分子を含む化合物およびモノマー類を記載している。(Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1993年、34(1)巻、495〜6頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1992年、33(2)巻、144〜5頁;Chem.Mater.1993年、5(1)巻、4〜5頁;Macromolecules、1994年、27(24)巻、7030−7034頁;Macromolecules、1994年、27(24)巻、7015〜7023頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1995年、36(1)巻、741〜742頁;第205回ACS National Meeting Conference Program、1993年、312頁;Macromolecules、1994年、27(24)巻、7024〜9頁;Macromolecules、1992年、25(9)巻、2294〜306頁;Macromolecules、1991年、24(18)巻、5232〜3頁;Veronica R.Reichert、PhD学位論文、1994年、55−06B巻;ACS Symp.Ser.:Step−Growth Polymers for High−Performance Materials、1996年、624巻、197〜207頁;Macromolecules、2000年、33(10)巻、3855〜3859頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1999年、40(2)巻、620〜621頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1999年、40(2)巻、577〜78頁;Macromolecules、1997年、30(19)巻、5970〜5975頁;J.Polym.Sci.、Part A:Polymer Chemistry、1997年、35(9)巻、1743〜1751頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1996年、37(2)巻、243〜244頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1996年、37(1)巻、551〜552頁;J.Polym.Sci.、Part A:Polymer Chemistry、1996年、34(3)巻、397〜402頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1995年、36(2)巻、140〜141頁;Polym、Prepr.(Am.Chem.Soc.、Div.Polym.Chem.)、1992年、33(2)巻、146〜147頁;J.Appl.Polym.Sci.、1998年、68(3)巻、475〜482頁)。ReichertおよびMathiasにより記載されたアダマンタンに基づく化合物およびモノマー類は、熱硬化物の核において、アダマンタン分子を有するポリマーを形成するために使用することを意図した実施形態にある。しかし、ReichertおよびMathiasらの研究において開示された化合物は、デザイン選択により、アダマンタンに基づく化合物の1種の異性体だけを含む。構造Aは、この対称的なパラ異性体、1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタンを示している:
【0008】
【化15】

【0009】
言い換えれば、ReichertおよびMathiasは、彼らの個々の、また共同の研究において、標的アダマンタンに基づくモノマーの1種の異性体だけを含む有用ポリマーを意図している。しかし、アダマンタンに基づくモノマーの単一異性体(対称的「全パラ−」異性体)の1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタンからポリマーを形成し、処理する場合、重大な問題が存在する。Reichertの学位論文(上記)およびMacromolecules、27巻(7015〜7034頁)(上記)によれば、対称的全パラ−異性体の1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタンは、H NMRスペクトルを得ることができるほどクロロホルムに十分溶解性であることが判ったが、溶液の13C NMRスペクトルを得る獲得時間は、実用的でないことが判ったとのことである。このように、Reichertの対称的「全パラ−異性体」の1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタンは、標準的な有機溶媒に不溶性であり、したがって、フローコーティング、スピンコーティング、またはディップコーティングなどの溶解性または溶媒に基づく処理を必要とする適用においては、有用ではないと考えられる。下記の比較実施例1を参照されたい。また、米国特許第5,017,734号を参照されたい。
【0010】
本明細書に全て、その全体が包含されている2001年10月17日出願の本発明者らの同一出願人による係属中の特許出願PCT/US01/22204(本発明者らの同一出願人による係属中の特許出願である2000年4月7日出願の米国特許出願第09/545058号;2000年7月19日出願の米国特許出願第09/618945号;2001年7月5日出願の米国特許出願第09/897936号;2001年7月10日出願の米国特許出願第09/902924号;および2001年10月18日に公開された国際公開WO01/78110の利益を主張している)において、異性体熱硬化性モノマーまたはダイマーの混合物を含む組成物が発見され、開示されているが、ここで前記混合物は、以下に相当する構造
【0011】
【化16】

を有する少なくとも1種のモノマーまたはダイマーを含み、
式中、Zは、かご型化合物およびケイ素原子から選択され;R’、R’、R’、R’、R’およびR’は、アリール、分枝状アリールおよびアリーレンエーテルから独立して選択され、アリール、分枝状アリールおよびアリーレンエーテルの少なくとも1つは、エチニル基を有し、R’は、アリールまたは置換アリールである。これらの熱硬化性混合物の形成法もまた詳細に開示された。この新規の異性体熱硬化性モノマーまたはダイマーの混合物は、マイクロエレクトロニクス適用における誘電性材料として有用であり、シクロヘキサノンなどの多くの溶媒に可溶性である。これらの望ましい性質により、この異性体熱硬化性モノマーまたはダイマーの混合物は、約0.1μmから約1.0μmの厚さの薄膜形成にとって理想的となる。
【0012】
本明細書にその全体が組み込まれる、2002年5月30日に出願され、2002年12月に変更され、同一出願人による係属中の特許出願第60/384403号において:(a)式A
【0013】
【化17】

のモノマー、および式B
【0014】
【化18】

の少なくとも1種のオリゴマーまたはポリマーを含む組成物が発見され、開示された。式中、Eは、かご型化合物(下記に定義されている)であり;各Qは、同じであるかまたは異なっており、アリール、分枝状アリールおよび置換アリールから選択され、前記置換基としては、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルが挙げられる。);Gは、アリールまたは置換アリールであり(置換基としては、ハロゲンおよびアルキルが挙げられる。);hは0から10であり;iは0から10であり;jは0から10であり;wは0または1である。意図されているQ基としては、アリールおよびアルケニル基およびアルキニル基で置換されたアリールが挙げられ、さらに意図されているQ基としては、(フェニルエチニル)フェニル部分、フェニルエチニル(フェニルエチニル)フェニル部分および(フェニルエチニル)フェニルフェニル部分が挙げられる。Gに関して意図されているアリール類としては、フェニル、ビフェニル、およびテルフェニルが挙げられる。さらに、意図されているG基はフェニルである。
【発明の開示】
【発明が解決しようとする課題】
【0015】
誘電体薄膜において、極めて望ましい特徴は、1000Åから25000Åまで、薄膜の厚さを調整できることである。スピンオン誘電体またはフォトレジストに対する薄膜の厚さは、スピニング速度および溶液粘度によって制御される。溶液粘度は、所与の温度におけるマトリクスの分子量、溶媒および溶液濃度の関数である。高分子量物質は、筋状化などの薄膜欠陥が生じるため望ましくない。同一所有され、その全体が本明細書に組み込まれる本発明者らの係属中特許出願(2001年10月17日出願のPCT/US01/22204)における、本発明の1,3,5,7−テトラ[3’/4’(フェニルエチニル)フェニル]アダマンタンのp−およびm−異性体混合物は、先行技術により改善されたものではあるが、極めて規則正しい四面体構造を有しているため、シクロヘキサノンやトルエンなどの典型的な有機溶媒における溶解性は限定されており、ゲル化や沈殿も生じる。先に記載された混合物の厚い薄膜(6,000Å超)は得られなかった。本発明者らの係属中の特許出願(2002年5月30日に出願され、2002年12月に変更された第60/384403号)において、開示されたアリール結合を有する混合物は、局所的な対称性を減少させ、したがって、本発明者らの先行発明と比較して溶解性を増加させた。このように、本明細書に記載された混合物のより厚い薄膜(16,000Åまで)を得ることができた。
【0016】
したがって、本発明者らの先行出願の主題の性能ならびに関連化合物および組成物の記載事項を改善するために、それらを変更する方法を有することは有益であると考えられる。
【課題を解決するための手段】
【0017】
式I
【0018】
【化19】

[式中、Eは、かご型化合物であり;各Qは、同じであるか、または異なっていて、アリール、分枝状アリールおよび置換アリールから選択され(置換基としては、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルが挙げられる。);Aは、置換または非置換アリールアルキニル基を有する置換または非置換アリール(置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられ、アリールとしては、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられる。)であり;hは、0から10であり;iは、0から10であり;jは、0から10であり;wは、0または1である。]
の少なくとも1種のオリゴマーまたはポリマーを含む組成物およびこれらの組成物の形成法および使用法が、本明細書に提供されている。
【発明を実施するための最良の形態】
【0019】
本発明者らの先行出願の主題の性能を改善するために、それを変更する方法が実際に発見され、それらを先に述べた目的に従って、関連化合物および組成物の記述と共に本明細書に記載している。
【0020】
式I
【0021】
【化20】

[式中、Eは、かご型化合物であり;各Qは、同じであるか、または異なっていて、アリール、分枝状アリールおよび置換アリールから選択され(置換基は、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルを含む。);Aは、置換または非置換アリールアルキニル基を有する置換または非置換アリール(置換基は、水素、ハロゲン、アルキル、フェニルまたは置換アリールを含み、アリールは、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールを含む。)であり;hは、0から10であり;iは、0から10であり;jは、0から10であり;wは、0または1である。]
の少なくとも1種のオリゴマーまたはポリマーを含む組成物。
【0022】
語句の「かご型構造」、「かご型分子」および「かご型化合物」は、交換可能に用いられることが意図されており、少なくとも1つの架橋が、環系の2個以上の原子を共有的に結びつけるように配置された少なくとも10個の原子を有している分子を言う。言い換えると、かご型構造、かご型分子またはかご型化合物は、共有結合原子によって形成された複数の環を含み、前記の構造、分子または化合物は、容積を有し位置しているある点が環を通過せずして、その容積を離れることができないように、その容積を規定している。前記架橋および/または環系は、1個以上のヘテロ原子を含み得、部分的に飽和した、または不飽和の芳香族であり得る。さらに意図されているかご型構造としては、フラーレン類および少なくとも1つの架橋を有するクラウンエーテル類が挙げられる。例えば、アダマンタンまたはジアマンタンは、かご型構造であるとみなされるが、ナフタレンまたは芳香族スピロ化合物は、この定義の範囲ではかご型構造とはみなされない。なぜならば、ナフタレンまたは芳香族スピロ化合物は、1つの、または1つ以上の架橋を有していないからである。
【0023】
意図されたかご型化合物は、単に炭素原子からなるものに必ずしも限定される必要はなく、N、S、O、Pなどのヘテロ原子もまた含み得る。ヘテロ原子は、非四角形の結合角配置を導入し得ることが有利である。意図されたかご型化合物の置換基および誘導体化に関しては、多くの置換基および誘導体化が適切であることが認識されるべきである。例えば、かご型化合物が比較的疎水性である場合、親水性溶媒中での溶解度を上げるために、親水性置換基を導入でき、またその逆もある。あるいは、極性が所望される場合、極性の副次的残基を、前記かご型化合物に添加できる。適切な置換基はまた、熱不安定性基、求核性基および求電子性基を含み得ることがさらに意図される。また、かご型化合物には官能基を使用できる(例えば、架橋反応、誘導体化反応などを促進するために)ことも理解されるべきである。かご型化合物が誘導体化される場合、誘導体化としてかご型化合物のハロゲン化が挙げられることが特に意図され、特に好ましいハロゲンはフッ素である。
【0024】
本明細書に詳細に記載されているかご型分子またはかご型化合物は、ポリマー骨格に結合する基でもあり得、したがって、かご型化合物が1つのタイプの空隙(分子間)を形成し、骨格の少なくとも一部とそれ自体との、または別の骨格との架橋が他のタイプの空隙(分子間)を形成できるナノ多孔性物質を形成できる。追加のかご型分子、かご型化合物およびこれらの分子や化合物の変形体は、2001年10月18日に出願されたPCT/US01/32569に詳述されており、それは参照により、その全体が本明細書に組み込まれる。
【0025】
上記で検討した本発明者らの2つの先行発明とは対照的に、本明細書に記載されている主題材料は、局所的対称性の減少を有することにより、典型的な有機溶媒中により可溶性であり、したがって、より厚い薄膜(19,000Åまで)を提供する。さらに、本組成物は、屈曲性および低溶融体粘度を提供するので有利である。
【0026】
意図された実施形態において、前記組成物は、式II
【0027】
【化21】

のアダマンタンモノマーの少なくとも1種のオリゴマーまたはポリマー、または
式III
【0028】
【化22】

のジアマンタンモノマーの少なくとも1種のオリゴマーまたはポリマーを含み、
式中、hは、0から10であり;iは、0から10であり;jは、0から10であり;式IIおよび式IIIの各Rは、同じであるか、または異なっており、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルから選択され;式IIおよび式IIIの各Aは、同じであるか、または異なっていて、置換または非置換アリールアルキニル基を有する置換または非置換アリールを含む。置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられ;アリールとしては、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられる。
【0029】
他の意図された実施形態において、Aは、式IV
【0030】
【化23】

であり、式中Bは、式:
【0031】
【化24】

を含み、
式中、nは、0、1、2または3であり;xは、1、2、3、4または5であり;yは、1、2、3、4または5であり、xy≧2であり;ArおよびArは、同じであるか、または異なっていて、置換または非置換アリール類である。置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられ;アリールとしては、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられ;Yは、上記と同じYであり;Zは、水素、フェニルエチニルまたは上記のBと同じである。
【0032】
さらに他の意図された実施形態において、Bは、以下のものから選択される。
【0033】
【表2】

【0034】
式IIおよび式IIIは、単位h、iおよびjのいずれか1つが、他の単位が存在する前に多数回反復してもよいし、または反復しなくてもよいランダムな、または不規則な構造を表す。このように、上記式IIおよび式IIIにおける単位の連続はランダムまたは不規則である。
【0035】
幾つかの意図された実施形態において、前記組成物は、hが0または1であり、iは1であり、jが0である上式IIの少なくとも1種のアダマンタンオリゴマーまたはポリマーを含む。このアダマンタン構造は、下式Vとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0036】
【化25】

【0037】
他の意図された実施形態において、前記組成物は、hが0または1であり、iは0であり、jは0である式IIIの少なくとも1種のジアマンタンオリゴマーまたはポリマーを含む。このジアマンタン構造は、下式VIとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0038】
【化26】

【0039】
さらに他の意図された実施形態において、前記組成物は、hが0である上式Vの少なくとも1種のアダマンタンオリゴマーまたはポリマーを含む。このアダマンタンダイマーは、下式VIIとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0040】
【化27】

【0041】
さらに他の意図された実施形態において、前記組成物は、hが0である上式VIの少なくとも1種のジアマンタンオリゴマーまたはポリマーを含む。このジアマンタンダイマーは、下式VIIIとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0042】
【化28】

【0043】
幾つかの実施形態において、前記組成物は、hが1である上式Vの少なくとも1種のアダマンタンオリゴマーまたはポリマーを含む。このアダマンタントリマーは、下式IXとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0044】
【化29】

【0045】
他の意図された実施形態において、前記組成物は、hが1である上式VIの少なくとも1種のジアマンタンオリゴマーまたはポリマーを含む。このジアマンタントリマーは、下式Xとして示され、式中、R、YおよびAは、上記に定義されたとおりである。
【0046】
【化30】

【0047】
さらに他の意図された実施形態において、前記組成物は、hが2であり、iが0であり、jが0である(線状オリゴマーまたはポリマー)、ならびにhが0であり、iが1であり、jが0である(分枝状オリゴマーまたはポリマー)上式IIの少なくとも1種のアダマンタンオリゴマーまたはポリマーを含む。したがって、この組成物は、R、YおよびAが上記に定義された下式XIに示されるアダマンタン線状テトラマー;
【0048】
【化31】

およびR、YおよびAが上記に定義された下式XIIに示されるアダマンタン分枝状テトラマー;
【0049】
【化32】

を含む。
【0050】
幾つかの意図された実施形態において、前記組成物は、hが2であり、iが0であり、jが0である(線状オリゴマーまたはポリマー)、ならびにhが0であり、iが1であり、jが0である(分枝状オリゴマーまたはポリマー)上式IIIの少なくとも1種のジアマンタンオリゴマーまたはポリマーを含む。したがって、本発明の組成物は、R、YおよびAが上記に定義された下式XIIIに示されるジアマンタン線状テトラマー;
【0051】
【化33】

およびR、YおよびAが上記に定義された下式XIVに示されるジアマンタン分枝状テトラマー;
【0052】
【化34】

を含む。
【0053】
幾つかの実施形態において、前記組成物は、上式VIIのアダマンタンダイマーおよび上式IXのアダマンタントリマーを含む。意図された実施形態において、本組成物は、上式VIIIのジアマンタンダイマーおよび上式Xのジアマンタントリマーを含む。
【0054】
他の実施形態において、本組成物は、上式VIIのアダマンタンダイマーおよびh、iおよびjの少なくとも1つが少なくとも1である上式IIの少なくとも1種のアダマンタンオリゴマーまたはポリマーを含む。さらに他の意図された実施形態において、前記組成物は、上式VIIIのジアマンタンダイマーおよびh、iおよびjの少なくとも1つが少なくとも1である上式IIIの少なくとも1種のジアマンタンオリゴマーまたはポリマーを含む。
【0055】
熱硬化性成分:
【0056】
本明細書に用いられる語句の「橋頭炭素」とは、他の3つの炭素に結合している任意のかご型構造炭素を言う。したがって、例えば、アダマンタンは、4個の橋頭炭素を有し、一方、ジアマンタンは、8個の橋頭炭素を有する。
【0057】
語句の「低比誘電率ポリマー」および/または「低比誘電率材料」は、交換可能に用いられることが意図されており、本明細書では、凡そ3.0以下の比誘電率を有する有機ポリマー、有機金属ポリマーまたは無機ポリマーを言う。低誘電体材料は、典型的には、100オングストロームから25,000オングストロームの厚さを有する薄層の形態で製造されるが、厚膜、ブロック、シリンダー、球状物としても使用できる。幾つかの実施形態において、少なくとも1つの層は、約25,000オングストロームまでの厚さを含む。他の実施形態において、少なくとも1つの層は、約16,000オングストロームまでの厚さを含む。さらに他の実施形態において、少なくとも1つの層は、約10,000オングストロームまでの厚さを含む。さらなる実施形態において、少なくとも1つの層は、約5,000オングストロームまでの厚さを含む。さらに他の実施形態において、少なくとも1つの層は、約1,000オングストロームまでの厚さを含む。
【0058】
本明細書に用いられる用語の「層」は、表面および/または基体に適用された薄膜/またはコーティングを含む。本明細書で意図されている基体および表面は、任意の所望の実質的に固形の物質を含み得る。特に望ましい基体層は、薄膜、ガラス、セラミック、プラスチック、金属またはコーティングされた金属または複合物質を含むと考えられる。幾つかの実施形態において、前記基体は、ケイ素またはゲルマニウムヒ化物ダイスまたはウェーハ表面、銅、銀、ニッケル、または金メッキの鉛フレームに見られるようなパッケージ表面、回路ボードまたはパッケージインターコネクトトレースに見られるような銅表面、壁経由または補強材インターフェース(「銅」は、裸の銅およびその酸化物の意図を含む)、ポリイミドに基づくフレックスパッケージに見られるようなポリマーに基づくパッケージングまたはボードインターフェース、鉛または他の金属合金はんだボール表面、ガラスおよびポリイミドなどのポリマーを含む。他の実施形態において、前記基体は、パッケージングおよび回路ボード産業において一般的であるシリコン、銅、ガラスおよび他のポリマーなどの物質を含む。
【0059】
一般に、h、i、およびjは0から10の整数であり、意図された実施形態において、0から5の整数であり、さらに意図された実施形態において、0から2の整数である。したがって、最も簡単なアダマンタンオリゴマーは、2つのアダマンタン構造が、非置換または置換アリール単位を介して結合している上式VIIに示されるダイマー(上式IIにおけるhが0、iが0、jが0)である。したがって、最も簡単なジアマンタンオリゴマーは、2つのジアマンタン構造が、非置換または置換アリール単位を介して結合している上式VIIIに示されるダイマー(上式IIIにおけるhが0、iが0、jが0)である。
【0060】
式II、III、IV、V、VI、VII、VIII、IX、X、XI、XII、XIIIおよびXIVにおいて、RC≡C−タイプのアダマンタン環またはジアマンタン環に結合したフェニル環上の置換エチニル基の個々のR基は、各場合において、同じであるか、または異なっている。Rは、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルから選択される。各Rは、非分枝状でも分枝状でもよく、非置換でも置換されていてもよく、前記置換基は、非分枝状でも分枝状でもよい。アルキル基、アルケニル基、アルキニル基、アルコキシル基、ヒドロキシアルキル基、ヒドロキシアルケニル基およびヒドロキシアルキニル基は、約2個から約10個の炭素原子を含有し、アリール基、アリールエーテル基およびヒドロキシアリール基は、約6個から約18個の炭素原子を含有することが意図されている。Rが、アリールを表す場合、意図された実施形態において、Rはフェニルである。意図された実施形態において、フェニル基上のRC≡C基の少なくとも2つは、2つの異なった異性体である。少なくとも2つの異なった異性体の例としては、メタ、パラおよびオルト異性体が挙げられる。意図された実施形態において、少なくとも2つの異なった異性体は、メタおよびパラ異生体である。
【0061】
式III、IV、V、VI、VII、VIII、IX、X、XI、XII、XIIIおよびXIVにおいて、フェニル環の各Yは、各場合において、同じであるか、または異なっており、水素、アルキル、アリール、置換アリールまたはハロゲンから選択される。Yがアリールの場合、アリール基の例としては、フェニルまたはビフェニルが挙げられる。意図された実施形態において、Yは水素、フェニルおよびビフェニルから選択され、さらに意図された実施形態において、水素である。
【0062】
用語の「アルキル」は、本明細書において、分枝鎖または直鎖飽和炭化水素基またはメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、オクチル、デシル、テトラデシル、ヘキサデシル、エイコシル、テトラコシルなどの1個から24個の炭素原子の置換基を意味するものとして用いられる。幾つかの実施形態において意図されたアルキル基は、1個から12個の炭素原子を含有する。用語の「環式アルキル」とは、その構造が1つ以上の閉環によって特徴づけられているアルキル化合物を意味する。環式アルキルは、化合物に存在する環の数によって、単環式、二環式、三環式または多環式であり得る。用語の「アリール」は、本明細書において、5個から7個の炭素原子の単環式芳香族種または5個から7個の炭素原子の単環式芳香族種により構成されている化合物を意味するものとして用いられ、典型的には、フェニル、ナフタリル、フェナントリル、アントラシルなどである。場合によっては、これらの基は、1個から4個、より好ましくは、1個から2個のアルキル、アルコキシ、ヒドロキシおよび/またはニトロ置換基によって置換されている。
【0063】
用語の「アルケニル」は、本明細書において、2個から24個の炭素原子および少なくとも1つの二重結合を含有する分枝鎖または直鎖の炭化水素鎖を意味するものとして用いられる。本明細書において、好ましいアルケニル基は、1個から12個の炭素原子を含有する。用語の「アリールアルキレン」は、本明細書において、アルキレンおよび単環式アリール種の双方を含有する部分であって、典型的には、アルキレン部分に約12個未満の炭素原子を含有し、アリール置換基が、アルキレン結合基を介して関心対象の構造に結合している前記部分を意味するものとして用いられる。例となるアリールアルキレン基は、「j」が1から6の範囲にある整数であり、「Ar]がアリール種である構造−(CH−Arを有する。
【0064】
上式XIIの分枝状アダマンタン構造に加えて、上記式IIは、hが0、iが0およびjが1の場合、下式XVに示されるさらなる分枝化を表すことが理解されるべきである。分枝化は、式XV構造の分枝化を越えて生じ得ることが理解されるべきである。なぜならば、式XVの構造の生じようとしているアダマンタン単位のさらなる分枝化もまた生じ得るからである。
【0065】
【化35】

【0066】
上式XIVの分枝状ジアマンタン構造に加えて、上式IIIは、hが0、iが0およびjが1の場合、下式XVIに示されるさらなる分枝化を表すことが理解されるべきある。分枝化は、式XVI構造の分枝化を越えて生じ得ることが理解されるべきである。なぜならば、式XVIの構造の生じようとしているジアマンタン単位のさらなる分枝化もまた生じ得るからである。
【0067】
【化36】

【0068】
接着増進剤:
【0069】
意図された実施形態において、本明細書に記載されている組成物に接着増進剤が加えられる。接着増進剤は、本組成物と反応するコモノマーか、または本組成物への添加物であり得る。
【0070】
本明細書に用いられる「接着増進剤」とは、熱分解性ポリマーと共に用いられる場合、熱分解性ポリマーと較べて基体へのその接着を改善する任意の成分を意味する。熱分解性ポリマーと共に、少なくとも1種の接着増進剤を用いることが好ましい。前記接着増進剤は、熱分解性ポリマー前駆体と反応するコモノマーまたは熱分解性ポリマー前駆体に対する添加物であり得る。有用な接着増進剤の例は、2002年5月30日に出願され、同一出願人による係属中の米国特許出願第158513号に開示されており、その全体が参照により本明細書に組み込まれる。
【0071】
本明細書に意図された接着増進剤は、少なくとも二官能性を有する化合物を含むことができ、前記二官能性は、同じであっても、または異なっていてもよく、前記第1の官能性と前記第2の官能性の少なくとも1つは、Si含有基;N含有基;Oに結合したCを含有する基;ヒドロキシル基;およびCに二重結合したCを含有する基からなる群から選択される。本明細書に用いられる語句の「少なくとも二官能性を有する化合物」とは、以下のように相互作用、反応、または結合形成をすることのできる少なくとも2つの官能基を有する任意の化合物を意味する。前記官能基は、付加反応、求核性および求電子性の置換または脱離、ラジカル反応などの多数の方法で反応し得る。さらに代替となる反応としては、ファンデルワールスなどの非共有結合、静電結合、イオン結合および水素結合の形成を挙げることもできる。
【0072】
少なくとも1種の接着増進剤の幾つかの実施形態において、前記第1の官能性と前記第2の官能性の少なくとも1つは、Si含有基;N含有基;Oに結合したCを含有する基;ヒドロキシル基;およびCに二重結合したCを含有する基から選択されることが好ましい。好ましくは、Si含有基は、Si−H、Si−OおよびSi−Nから選択され;N含有基は、C−NHまたは他の第二級および第三級アミン類、イミン類、アミド類およびイミド類などから選択され;Oに結合したCを含有する基は、(ケトン類およびアルデヒド類、エステル類、−COOH、1個から5個の炭素原子を有するアルコキシル類、エーテル類、グリシジルエーテル類などの)=CO、カルボニル基;およびエポキシ類から選択され;ヒドロキシル基はフェノールであり;Cに二重結合したCを含有する基は、アリル基およびビニル基から選択される。半導体適用に関して、より好ましい官能基としては、Si含有基;Oに結合したCを含有する基;ヒドロキシル基;およびビニル基が挙げられる。
【0073】
意図された接着増進剤は、またフェノール系含有樹脂、CRJ−406またはHRJ−11040(双方とも、Schenectady International社より)などのノボラック樹脂、有機アクリレートおよび/またはスチレン樹脂をさらに含む有機樹脂に基づく材料も含み得る。他の接着増進剤は、ポリジメチルシロキサン物質、エトキシまたはヒドロキシ含有シランモノマー類、ビニル含有シランモノマー類、アクリレート化シランモノマー類、または水素化シリル類を含み得る。
【0074】
Si含有基を有する意図された接着増進剤の例は、式I:(R14(R15Si(R16(R17のシラン類であり、式中、R14、R15、R16、およびR17は、各々独立して、水素、ヒドロキシル、不飽和または飽和アルキル、置換または非置換アルキルであり(前記置換基は、アミノまたはエポキシ、飽和または不飽和アルコキシル、不飽和または飽和カルボン酸基またはアリールである。);R14、R15、R16、およびR17のうち少なくとも2つは、水素、ヒドロキシル、飽和または不飽和アルコキシル、不飽和アルキル、または不飽和カルボン酸基を表し;k+l+m+n≦4である。例としては、[HC=CHSi(CHH、および(R18は、CHO、CO、AcO、HC=CH、またはHC=C(CH)O−、またはビニルフェニルメチルシランである。)HC=CHSi(R18などの]ビニルシラン類;式HC=CHCH−Si(OCHCHおよびHC=CHCH−Si(H)(OCHのアリルシラン類;(3−グリシドキシプロピル)メチルジエトキシシランおよび(3−グリシドキシプロピル)トリメトキシシランなどのグリシドキシプロピルシラン類;R19が、アルキル、好ましくはメチルまたはエチルである式HC=C(CH)COO(CH−Si(OR19のメタクリルオキシプロピルシラン類;HN(CHSi(OCHCH、HN(CHSi(OH)、またはHN(CHOC(CHCH=CHSi(OCHなどのアミノプロピルシラン誘導体が挙げられる。前記シラン類は、Gelestから商品として入手できる。
【0075】
Oに結合したCを含有する基を有する好ましい接着増進剤の一例は、限定はしないが、TriQuestから商品として入手できる1,1,1−トリス−(ヒドロキシフェニル)エタントリグリシジルエーテルなどのグリシジルエーテル類である。
【0076】
Oに結合したCを含有する基を有する好ましい接着増進剤の一例は、少なくとも1つのカルボン酸基を含有する不飽和カルボン酸のエステル類である。例としては、三官能性メタクリレートエステル、三官能性アクリレートエステル、トリメチロールプロパントリアクリレート、ジペンタエリトリトールペンタアクリレートおよびグリシジルメタクリレートが挙げられる。前記のものは全て、Sartomerから商品として入手できる。
【0077】
ビニル基を有する好ましい接着増進剤の例は、環式基がピリジン、芳香族またはヘテロ芳香族であるビニル環式ピリジンオリゴマー類である。有用な例としては、限定はしないが、Reillyから商品として入手できる2−ビニルピリジンおよび4−ビニルピリジン;ビニル芳香族;および限定はしないが、ビニルキノリン、ビニルカルバゾール、ビニルイミダゾールおよびビニルオキサゾールなどのビニルヘテロ芳香族が挙げられる。
【0078】
Si含有基を有する好ましい接着増進剤の一例は、参照によりその全体が本明細書に組み込まれる、1999年12月23日出願の同一出願人による係属中の承認された米国特許出願第09/471299号に開示されているポリカルボキシシランである。前記ポリカルボキシシランは、式II:
【0079】
【化37】

に示されたものであり、
式中、R20、R26およびR29は各々独立して、置換または非置換アルキレン、シクロアルキレン、ビニレン、アリレンまたはアリーレンを表し;R21、R22、R23、R24、R27およびR28は各々独立して、水素原子またはアリキル、アルキレン、ビニル、シクロアルキル、アリルまたはアリールを含む有機基を表し、線状であっても、または分枝状であってもよく;R25は、有機シリコン、シラニル、シロキシルまたは有機基を表し;p、q、rおよびsは、[4≦p+q+r+s≦100,000]の条件を満足させ、qとrとsは合わせて、または独立してゼロであり得る。有機基は、18個までの炭素原子を含有し得るが、一般には約1個から約10個の炭素原子を含有し得る。有用なアルキル基としては、−CH−およびt>1である−(CH−が挙げられる。
【0080】
意図されたポリカルボシラン類としては、R20が、置換または非置換アルキレンまたはフェニルであり、R21基が、水素原子であり、ポリカルボシラン鎖に付随基がなく;q、rおよびsが全てゼロであるジヒドリドポリカルボシラン類が挙げられる。ポリカルボシラン類の他の好ましい基は、式IIのR21、R22、R23、R24、R25、およびR28基が、2個から10個の炭素原子を有する置換または非置換のアルケニル基である。前記アルケニル基は、エテニル、プロペニル、アリル、ブテニルまたは10個までの炭素原子を有する任意の他の不飽和有機骨格基であり得る。前記アルケニル基は、実際はジエニルであってもよく、他のアルキルまたは不飽和有機ポリマー骨格上に付加または置換されている不飽和アルケニル基が挙げられる。これらの好ましいポリカルボシラン類としては、ポリジヒドリドカルボシラン、ポリアリルヒドリジドカルボシランなどのジヒドリド置換またはアルケニル置換されたポリカルボシラン、およびポリジヒドリドカルボシランとポリアリルヒドリドカルボシランとのランダムコポリマー類が挙げられる。
【0081】
より好ましいポリカルボシラン類において、式IIのR21基は水素原子であり、R21はメチレンであり、付加基、q、rおよびsはゼロである。本発明の他の好ましいポリカルボシラン化合物は、R21およびR27が水素であり、R20およびR29がメチレンであり、R28がアルケニルであり、付加基、qおよびrがゼロである式IIのポリカルボシラン類である。前記ポリカルボシラン類は、周知の先行技術法から調製し得るか、またはポリカルボシラン組成物の製造元により提供され得る。最も好ましいポリカルボシラン類において、式IIのR21基は水素原子であり;R24は−CH−であり;q、rおよびsはゼロであり;pは5から25である。これらの最も好ましいポリカルボシラン類は、Starfire Systems社から入手できる。これらの最も好ましいポリカルボシラン類の特定例は以下のものである:
【0082】
【表3】

【0083】
式IIに見ることができるように、利用されるポリカルボシラン類は、r>0の場合、シロキシル基の形態における酸化基を含有し得る。したがって、R25は、r>0の場合、有機シリコン、シラニル、シロキシルまたは有機基を表す。ポリカルボシラン類(r>0)の酸化体は、本発明において非常に効果的に働き、また十分本発明の範囲内にあることを理解すべきである。同じく明らかであるが、rは、p、qおよびsとは独立にゼロであり得、唯一の条件は、式IIのポリカルボシラン類のp、q、rおよびs基は、条件[4≦p+q+r+s≦100,000]を満足させなければならなく、qおよびrは合わせて、または独立してゼロであり得る。
【0084】
ポリカルボシランは、多くの製造元から現在商品として入手できる出発物質から、従来の重合化法を用いて製造できる。ポリカルボシラン類合成の一例としては、一般的な有機シラン化合物またはポリシランを出発物質として、不活性雰囲気下、ポリシランとポリボロシロキサンとの混合物を加熱し、それによって対応するポリマーを製造するか、または不活性雰囲気下、ポリシランと低分子量カルボシランとの混合物を加熱し、それによって対応するポリマーを製造するか、または不活性雰囲気下、ポリボロジフェニルシロキサンなどの触媒存在下、ポリシランと低分子カルボシランとの混合物を加熱し、それによって対応するポリマーを製造することによって、出発物質を製造できる。また、ポリカルボシラン類は、参照によりその全体が本明細書に組み込まれる米国特許第5,153,295号に報告されたグリニャール反応によっても合成できる。
【0085】
ヒドロキシル基を有する好ましい接着増進剤の一例は、式III:−[R30(OH)(R31)]−のフェノールホルムアミド樹脂またはオリゴマー類であり、式中R30は、置換または非置換アルキレン、シクロアルキレン、ビニル、アリルまたはアリールであり;R31は、アルキル、アルキレン、ビニレン、シクロアルキレン、アリレンまたはアリールであり;u=3〜100である。有用なアルキル基の例としては、−CH−およびv>1である−(CH−が挙げられる。特に有用なフェノールホルムアミド樹脂オリゴマーは、1500の分子量を有しており、Schenectady International社から商品として入手できる。
【0086】
本接着増進剤は、意図された実施形態において、本組成物の重量を基準として、約1重量%から約10重量%、また、より意図された実施形態において、約2重量%から約7重量%の有効な少量で添加される。
【0087】
ポロゲン(POROGEN):
【0088】
意図された実施形態において、本発明の組成物にポロゲンが添加される。細孔または空隙は、細孔または空隙または自由容積の増加が残されるように、構造の再配置または材料の損失の結果、形成され得る。前記材料、コーティングおよび/または薄膜における細孔または空隙は、前記材料、コーティングおよび/または薄膜のエッチング選択性および/またはストリッピング選択性をもたらす追加の表面積を、前記コーティングまたは薄膜に生み出す。充填材料の多孔度は、一般に誘電体材料の多孔度とほぼ同じであり、双方の例において、その多孔度は、フォトレジスト材料の多孔度よりも大きい。これらのドライエッチング選択性は、エッチングを介したフォトレジストパターン化からの臨界ディメンションの適切な転送を維持するために、時折必要である。ポロゲンが、材料における吸収組成物および/またはコーティング化合物のマトリクスに適合性であるかどうかを決定するためにポロゲンの分子量を用いることもできる。この適合性比率は、吸収組成物および/またはコーティング化合物のマトリクスの溶解度パラメータに関連する。理想的な場合では、ポロゲンは、焼成前のマトリクスコーティング製剤の溶解度パラメータと対等でなければならず、したがって、製剤の分子量が知られていれば、ポロゲンの適切な分子量は、前記溶解度パラメータを前記マトリクスに合わせることにより決定できる。溶解度パラメータは、薄膜欠陥、比誘電率、ウェットエッチング試験、顕微鏡または電子顕微鏡走査による欠陥検査との関係により実験的に、または群寄与法を用いた計算により、または凝集エネルギーの分子モデルにより決定できる(参考文献、Physical Propertics of Polymers Handbook、16章「Solubility Parameters」Y.Du、Y.Xue、H.L.Frisch 227〜239頁;James E.Mark編集、1996年、American Institute of Physics、ニューヨーク州ウッドベリー所在)。
【0089】
本明細書に用いられる用語の「細孔」は、材料内の空隙およびセルならびに材料内の気体によって占められた空間を意味する他の任意の用語を含む。また、用語の「細孔」は、自由容積が増加した(「細孔性」が導入された)材料密度の差異も含み得る。適切な気体としては、比較的純粋な気体およびそれらの混合物が挙げられる。主にNとOとの混合物である大気が、通常、細孔内に分布されているが、窒素、ヘリウム、アルゴン、COまたはCOなどの純粋気体もまた意図される。細孔は、典型的には球状であるが、その代替として、またはそれに加えて、管状、薄層状、円盤状、他の形状の空隙または前記形状の組合せを含むことができ、また、開放的または閉鎖的であり得る。本明細書に用いられる用語の「ポロゲン」は、細孔を形成するために利用できる種々の機構を有し得るが、一般には除去された際に、「細孔」または「空隙」もしくは「細孔」または「空隙」を生み出すために再配置できる物質を残す材料である。一実施形態において、ポロゲンは、放射線により、熱的、化学的、または湿気による分解性、解体性、解重合性であるか、さもなければ、崩壊できる分解性材料であり、固体、液体または気体材料が挙げられる。
【0090】
本明細書に教示されている主題の他の態様において、ポロゲンは、2つの目的または多段階の目的に役立ち得る。ポロゲンは、極性および/または官能基に基づき、特定のコーティング組成物のために特別に選択され得る。ポロゲンが、焼成前(顕著な細孔/空隙なし)または焼成後(材料内に細孔/または空隙が存在)のいずれかに、前記組成物内に組み込まれると、それはポロゲン間の極性の違いを利用することにより、またはポロゲン上の官能基を利用することにより、ストリッピング溶液および/またはエッチング溶液をポロゲンに引き寄せる「磁石」として、効果的に働くことになる。ポロゲンによるこの誘因効果は、幾つかの方法において活性化できる。例えば、ポロゲンが室温で吸収組成物および/またはコーティング材料内へ組み込まれる場合に起こる発熱反応があり得るか、ポロゲンを「活性化」するために加える必要のある外部エネルギーおよび/または熱があり得るか、または吸収組成物および/またはコーティング材料に加えられるポロゲンを「活性化」する圧力差があり得る。ポロゲンに細孔および/または空隙を生成させる意図なしで、ポロゲンを材料修飾剤として、前記組成物に添加できる。材料、コーティング、および/または薄膜内に細孔または空隙が形成されると、先の実施形態に記載したように細孔/空隙は、前記材料、コーティングおよび/または薄膜のエッチング選択性および/またはストリッピング選択性を結果として高める追加の表面積を、前記コーティングまたは薄膜に生み出す。
【0091】
幾つかの意図された実施形態において、分解されたポロゲンを、部分的にまたは完全に架橋されたマトリクスから除去するか、または揮発させるか、または拡散させ、引き続いて完全硬化させたマトリクス内に細孔を生み出し、したがって、マトリクスの比誘電率を低下させ、犠牲的(sacrificial)性質を高める。他の実施形態において、ポロゲンは分解せずに、前記マトリクスから溶解でき、「細孔」を残す材料であり得る。第3の実施形態において、ポロゲンは分解せずに、250℃〜350℃の範囲などの特定の高温において十分に揮発性であって消散する材料であり得る。ポロゲンおよび分解されたポロゲン断片を除去するために、COなどの超臨界物質が使用できる。熱分解性ポロゲンに関しては、ポロゲンが、その物質の最低架橋温度より高い分解温度を有する物質を含むことが好ましい。この新規なポロゲンは、約300℃までの減成または分解温度を有することが好ましく、幾つかの場合では、約300℃超であることが好ましい。減成された、または分解されたポロゲンは、ポロゲンと組み合わせた物質の最低架橋温度より高い温度で揮発することが好ましい。減成された、または分解されたポロゲンは、約50℃から約450℃の間の温度で揮発することが好ましい。
【0092】
意図された実施形態における使用に好適な他の好適なポロゲンとしては、ポリマー類、好ましくは、ヒドロキシルまたはアミノなどの1種以上の反応性基を含有するポリマー類が挙げられる。これらの一般的なパラメータ内で、本明細書に開示された組成物および方法における使用に好適なポリマーポロゲンは、例えば、ポリアルキレンオキシド、ポリアルキレンオキシドのモノエーテル、ポリアルキレンオキシドのジエーテル、ポリアルキレンオキシドのビスエーテル、脂肪族ポリエステル、アクリル系ポリマー、アセタールポリマー、ポリ(カプロラクトン)、ポリ(バレラクトン)、ポリ(メチルメトアクリレート)、ポリ(ビニルブチラール)および/またはそれらの組合せである。ポロゲンが、ポリアルキレンオキシドのモノエーテルである場合、特定の一実施形態は、酸素原子間のCから約Cアルキル鎖およびCから約Cアルキルエーテル部分であり、前記アルキル鎖は置換または非置換であり、例えば、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテル、またはポリプロピレングリコールモノメチルエーテルである。
【0093】
少なくとも2つの融合芳香族環を含み、前記融合芳香族環の各々が、その上に少なくとも1つのアルキル置換基を有し、隣接芳香族環上のアルキル置換基の少なくとも2つの間に結合が存在するポロゲンを本発明に使用できる。意図されたポロゲンとしては、非官能基化ポリアセナフチレンホモポリマー、官能基化ポリアセナフチレンホモポリマー、下記のポリアセナフチレンコポリマー類、ポリ(2−ビニルナフタレン)、およびビニルアントラセンおよび互いの混合物が挙げられる。他の有用なポロゲンとしては、アダマンタン、ジアマンタン、フラーレンおよびポリノルボルネンが挙げられる。これらのポロゲンの各々は互いに、またはポリカプロラクトン、ポリスチレンおよびポリエステルなどの他のポロゲン材料と混合できる。有用な混合物としては、非官能基化ポリアセナフチレンホモポリマーおよびポリカプロラクトンが挙げられる。より意図されたポロゲンは、非官能基化ポリアセナフチレンホモポリマー、官能基化ポリアセナフチレンホモポリマー、ポリアセナフチレンコポリマーおよびポリノルボルネンである。
【0094】
有用なポリアセナフチレンホモポリマー類は、意図された実施形態において、約300から約20,000;より意図された実施形態において、約300から約10,000;最も意図された実施形態において、約1000から約7,000の範囲の重量平均分子量を有することができ、2,2’−アゾビスイソブチロニトリル(AIBN);ジ−t−ブチルアゾジカルボキシレート;ジ−イソプロピルアゾジカルボキシレート;1,1’−アゾビス(シクロヘキサンカルボニトリル);過酸化ベンゾイル(BPO);過酸化t−ブチル;および三弗化硼素ジエチルエーテラートなどの種々の開始剤を用いて、アセナフチレンから重合化できる。前記ポリアセナフチレンホモポリマーは、鎖端に三重結合または二重結合などの官能性末端基または、アリルアルコール;プロパルギルアルコール;ブチノール;ブテノール;またはヒドロキシエチルメタクリレートなどの二重結合または三重結合アルコールによってクエンチされるカチオン性重合化を有し得る。
【0095】
有用なポリアセナフチレンコポリマー類は、線状ポリマー類、星型ポリマー類または高分枝状ポリマー類であり得る。前記コモノマーは、ポリアセナフチレンホモポリマーのコンフォメーションと同様なコポリマーコンフォメーションを生じる嵩張った側基、またはポリアセナフチレンホモポリマーのコンフォメーションと異なるコポリマーコンフォメーションを生じる嵩張らない側基を有し得る。嵩張った側基を有するコモノマー類としては、ビニルピバレート;t−ブチルアクリレート;スチレン;α−メチルスチレン;t−ブチルスチレン;2−ビニルナフタレン;5−ビニル−2−ノルボルネン;ビニルシクロヘキサン;ビニルシクロペンタン;9−ビニルアントラセン;4−ビニルビフェニル;テトラフェニルブタジエン;スチルベン;t−ブチルスチルベン;およびインデンが挙げられ;および意図された実施形態において、ビニルピバレートが挙げられる。ヒドリドポリカルボシランは、アセナフチレンおよび前記コモノマー類の少なくとも1種と共に、追加のコモノマーまたはコポリマー成分として使用できる。有用なヒドリドポリカルボシランの例は、10%または75%のアリル基を有する。嵩張らない側基を有するコモノマー類としては、酢酸ビニル;メチルアクリレート;メチルメタクリレート;およびビニルエーテルが挙げられ、意図された実施形態において、酢酸ビニルが挙げられる。
【0096】
意図された実施形態において、コモノマー量は、前記コポリマーの約5モルパーセントから約50モルパーセントの範囲にある。これらのコポリマーは、開始剤を用いて、フリーラジカル重合によって製造できる。有用な開始剤としては、意図された実施形態において、2,2’−アゾビスイソブチロニトリル(AIBN);ジ−t−ブチルアゾジカルボキシレート;ジ−イソプロピルアゾジカルボキシレート;ジ−エチルアゾジカルボキシレート;ジ−ベンジルアゾジカルボキシレート;ジ−フェニルアゾジカルボキシレート;1,1’−アゾビス(シクロヘキサンカルボニトリル);過酸化ベンゾイル(BPO);および過酸化t−ブチルが挙げられ、より意図された実施形態において、AIBNが挙げられる。コポリマー類は、三弗化硼素ジエチルエーテラートなどの開始剤を用いて、カチオン性重合化によっても製造できる。意図された実施形態において、コポリマーは、約500から約15,000の分子量を有する。
【0097】
アセナフチレンとコモノマー類とのコポリマー類の熱的性質を、以下の表2に記載している。表2において、BAはブチルアクリレートを表し;VPはビニルピバレートを表し;VAは酢酸ビニルを表し;AIBNは、2,2’−アゾビスイソブチロニトリルを表し;BFは、三弗化硼素ジエチルエーテラートを表し;DBADCは、ジ−t−ブチルアゾジカルボキシレートを表し;W1は、室温から250℃までの重量損失パーセンテージを表し;W2は、250℃で10分間の重量損失パーセンテージを表し;W3は、250℃から400℃までの重量損失パーセンテージを表し;W4は、400℃で1時間の重量損失パーセンテージを表し;W5は、総重量損失を表す。
【0098】
【表4】

【0099】
線状ポリマー類、星形ポリマー類、架橋ポリマー性ナノスフィア類、ブロックコポリマー類および高分枝状ポリマー類が上記の新規な熱硬化性成分と共に使用できる。好適な線状ポリマー類は、ポリ(エチレンオキシド)およびポリ(プロピレンオキシド)などのポリエーテル類;ポリ(メチルメタクリレート)などのポリアクリレート類;ポリ(プロピレンカルボネート)およびポリ(エチレンカーボネート)などの脂肪族ポリカーボネート類;ポリエステル類;ポリスルホン類;ポリスチレン(ハロゲン化スチレンおよびヒドロキシ置換スチレンから選択されるモノマー単位を含む);ポリ(α−メチルスチレン);ポリアクチド類;および他のビニルに基づくポリマー類である。有用なポリエステルポロゲン類としては、ポリカプロラクトン;ポリエチレンテレフタレート;ポリ(オキシアジポイルオキシ−1,4−フェニレン);ポリ(オキシテレフタロイルオキシ−1,4−フェニレン);ポリ(オキシアジポイルオキシ−1,6−ヘキサメチレン);約500から約2500の分子量を有するポリ(ヘキサメチレンカーボネート)などのポリカーボネート;および約300から約6,500の分子量を有するポリ(ビスフェニルA−co−エピクロロヒドリン)などのポリエーテルが挙げられる。好適な不活性架橋ナノスフェア(ナノ乳濁液として調製)は、好適にはポリスチレンまたはポリ(メチルメタクリレート)からなる。好適なブロックコポリマーは、ポリ(スチレン−co−α−メチルスチレン)、ポリ(スチレン−エチレンオキシド)、ポリ(エーテルラクトン類)、ポリ(エステルカーボネート類)およびポリ(ラクトンラクチド)である。好適な高分枝状ポリマーは、高分枝状ポリエステル、例えば、高分枝状ポリ(カプロラクトン)ならびにポリエチレンオキシドおよびポリプロピレンオキシドなどのポリエーテル類である。他の有用なポロゲンは、エチレングリコール−ポリ(カプロラクトン)である。有用なポリマーブロックとしては、ポリビニルピリジン類、水素化ポリビニル芳香族、ポリアクリロニトリル類、ポリシロキサン類、ポリカプロラクタム類、ポリウレタン類、ポリブタジエン類およびポリイソプレン類などのポリジエン類、ポリビニルクロリド類、ポリアセタール類およびアミンキャップドアルキレンオキシド類が挙げられる。他の有用な熱硬化性材料としては、ポリイソプレン類、ポリテトラヒドロフラン類およびポリエチルオキサゾリン類が挙げられる。
【0100】
細孔生成を検討する際、用語の「減成する」とは、共有結合の切断を言う。このような結合切断は、不均一開裂および均一開裂などの多数の方法において生じ得る。結合の切断は、完全である必要はない。すなわち、必ずしも全ての切断可能な結合を開裂させる必要はない。また、結合の切断は、幾つかの結合においては、他の結合においてよりも速く生じ得る。例えば、エステル結合は、一般にアミド結合よりも不安定であり、したがって、より速い速度で開裂する。また結合の切断は、減成した部分の化学組成に依って、互いに異なる断片の放出をもたらし得る。
【0101】
熱分解性ポロゲン類に関し、細孔生成法の好ましい実施形態において、ポロゲンを出発成分またはモノマーに実質的に減成または分解するために熱エネルギーをポリゲン含有材料に加える。本明細書に用いられる「実質的に減成する」とは、ポロゲンの少なくとも約40重量パーセントが減成または分解することを好ましくは意味する。より好ましい実施形態において、ポロゲンの少なくとも約50重量パーセントが減成または分解し、最も好ましい実施形態において、ポロゲンの少なくとも約80重量パーセントが減成または分解する。他の実施形態において、フォトリソグラフィ現像時またはポロゲン含有材料の実際のウェットストリッピング時などの個々の処理段階において、または他の処理段階との組み合わせにおいて、ポロゲンが溶出する。
【0102】
意図された一実施形態では、無機化合物マトリクスから実質的に減成または分解したポロゲンを揮発させるためにも熱エネルギーが加えられる。減成工程と揮発工程の双方で、同じ熱エネルギーを用いることが好ましい。揮発した減成ポロゲン量が増加するにつれ、材料、コーティングおよび/または薄膜の得られる多孔性は増加する。
【0103】
少なくとも1種のポロゲンを除去、または少なくとも部分的に除去するために、参照によりその全体が本明細書に組み込まれる、同一出願人による特許公報PCT/US96/08678および米国特許第6,042,994号;米国特許第6,080,526号;米国特許第6,177,143号;および米国特許第6,235,353号に教示されている熱、溶媒中溶解、選択的エッチング、放射線への曝露、紫外線、x線、レーザまたは赤外線照射などの電磁気照射;音波処理または物理的圧力などの機械的エネルギー;またはガンマ線、アルファ線、中性子ビームまたは電子ビームなどの粒子照射などの任意の好適な操作または条件を使用し得る。
【0104】
熱分解性ポロゲンに関し、意図された実施形態において、ポロゲンは、それと組み合わされた材料のガラス転移温度(Tg)未満でそれと組み合わされた材料の硬化温度より高い分解温度を有する材料を含む。
【0105】
一実施形態において、ポロゲンは熱硬化成分に結合する。意図された実施形態において、ポロゲンは、約350℃以上の減成または分解温度を有する。意図された実施形態において、減成または分解されたポロゲンは、ポロゲンが組み合わされている材料の硬化温度より高く、および前記材料のTg未満の温度で揮発する。意図された実施形態において、減成または分解されたポロゲンは、約96℃超の温度で揮発する。
【0106】
語句の「ポロゲンは熱硬化成分に結合する」は、付加反応、求核性および求電子性置換または脱離、ラジカル反応などを含む。さらに代替反応は、ファンデルワールス、静電結合、イオン結合および水素結合などの非共有結合の形成も含む。
【0107】
幾つかの意図された実施形態において、ポロゲンは、非置換ポリノルボルネン、置換ポリノルボルネン、ポリカプロラクトン、非置換ポリスチレン、置換ポリスチレン、ポリアセナフチレンホモポリマー、ポリアセナフチレンコポリマーを含む。より意図されたポロゲンは、置換ポリノルボルネンである。意図された実施形態において、ポロゲンは、エポキシ基、ヒドロキシ基、カルボン酸基、アミノおよびエチニルからなる群から選択された官能基を有する。意図された実施形態において、ポロゲンは、その両端のうちの少なくとも一端に官能基を有する。
【0108】
意図された実施形態において、ポロゲンは、エチニル含有基を介して、熱硬化成分に結合している。一実施形態において、エチニル含有基は、最初にポロゲンと反応する。意図された実施形態において、エチニル含有基は、最初に熱硬化成分と反応する。有用なエチニル含有基としては、フッ素;アミン;またはヒドロキシが挙げられ、意図された実施形態において、アセチレン;4−エチニルアニリン;3−ヒドロキシフェニルアセチレン;4−フルオロフェニルアセチレン;および1−エチルシクロヘキシルアミンである。意図された実施形態において、共有結合は、エチニル含有基を介して、ポロゲンと熱硬化成分との間に形成される。
【0109】
有用なポリアセナフチレンホモポリマーは、意図された実施形態において、約300から約20,000;より意図された実施形態において、約300から約10,000;最も意図された実施形態において、約300から約7,000の範囲の重量平均分子量を有し得る。
【0110】
使用される熱硬化成分量は、約50から約90重量パーセントであり、一方、使用されるポロゲン量は、約10から約50重量パーセントである。意図された実施形態において、上記の接着増進剤を、熱硬化成分結合ポロゲンに添加する。接着増進剤および熱硬化成分結合ポロゲンを含む組成物を基準にして、約0.1から約15重量パーセントの接着増進剤が用いられ、約5から約50重量パーセントの熱硬化成分結合ポロゲンが用いられる。
【0111】
他の実施形態において、ポロゲンと熱硬化成分とは、物理的混合物を形成する。意図された実施形態において、ポロゲンは、約350℃超の減成または分解温度を有する。意図された実施形態において、減成または分解されたポロゲンは、ポロゲンが組み合わされている材料の硬化温度より高く、および前記材料のTg未満の温度で揮発する。意図された実施形態において、減成または分解されたポロゲンは、約280℃超の温度で揮発する。
【0112】
細孔生成:
【0113】
前記したように、本明細書における用語の「減成する」とは、共有結合の切断を言う。このような結合切断は、不均一開裂および均一開裂などの多数の方法において生じ得る。結合の切断は、完全である必要はない。すなわち、必ずしも全ての切断可能な結合を開裂させる必要はない。また、結合の切断は、幾つかの結合においては、他の結合においてよりも速く生じ得る。例えば、エステル結合は、一般にアミド結合よりも不安定であり、したがって、より速い速度で開裂する。また結合の切断は、減成した部分の化学組成に依って、互いに異なる断片の放出をもたらし得る。
【0114】
熱分解性ポロゲン類に関し、細孔生成法の好ましい実施形態において、ポロゲンを出発成分またはモノマーに実質的に減成または分解するために熱エネルギーをポリゲン含有材料に加える。本明細書に用いられる「実質的に減成する」とは、意図された実施形態において、少なくとも80重量パーセントのポロゲンが減成または分解することを意味する。上記式Iおよび式IIの意図された熱硬化成分では、Tgが約400℃から約450℃であり、したがって、約350℃またはそれより高い減成または分解温度を有する当該ポロゲンは、この熱硬化成分を共にして特に有用である。意図されたポリアセナフチレンに基づくホモポリマーまたはコポリマーのポロゲンに関し、熱脱離質量分析などの分析法を用いることにより、ポロゲンが、その出発成分であるアセナフチレンモノマーおよびコモノマーへと減成、分解または脱重合することを本発明者らは見出した。
【0115】
また、実質的に減成または分解したポロゲンを熱硬化成分マトリクスから揮発させるためにも熱エネルギーが加えられる。意図された実施形態において、減成工程と揮発工程の双方で同じ熱エネルギーが用いられる。揮発した減成ポロゲン量が増加するにつれて、熱硬化成分の得られる多孔性は増加する。上記式Iおよび式IIの意図された熱硬化成分では、Tgが約400℃から約450℃であり、したがって、約280℃またはそれより高い揮発温度を有する当該の実質的に減成されたポロゲンは、前記熱硬化成分を共にして特に有用である。
【0116】
意図された実施形態において、熱硬化成分の架橋に用いられる硬化温度でポロゲンは実質的に減成し、熱硬化性マトリクスから揮発する。典型的な硬化温度および硬化条件は、下記の「実用性」の節に記載される。
【0117】
生じた細孔は、マトリクスの至る所に均一に、またはランダムに分散させ得る。意図された実施形態において、前記細孔は、マトリクスの至る所に均一に分散させる。
【0118】
あるいは、前記熱硬化成分に悪影響を及ぼすことなく、ポロゲンを少なくとも部分的に除去する他の操作または条件を使用し得る。意図された実施形態において、ポロゲンは実質的に除去される。典型的な除去法としては、限定はしないが、紫外線、x線、レーザまたは赤外線照射などの限定はしないが、電磁気照射などの放射線への曝露、;音波処理または物理的圧力などの機械的エネルギー;またはガンマ線、アルファ線、中性子ビームまたは電子ビームなどの粒子照射などが挙げられる。
【0119】
有用性:
【0120】
上記の組成物の各々は、下記に開示されたとおり処理でき、また利用できる。また、本組成物の各々は接着増進剤、消泡剤、洗浄剤、難燃剤、顔料、可塑剤、安定化剤、ストリエーション調節剤および界面活性剤などの付加成分も含み得る。
【0121】
本組成物は、特定の結果を得るために、他の特定の添加物と組み合わせることができる。そのような添加物の典型は、磁気媒体、光学媒体または他の記録媒体に利用するための磁気粒子、例えば、場合によってはコバルトとの混合物におけるバリウム、フェライト、酸化鉄などの金属含有化合物または他の金属含有粒子;導電性シーラント、導電性接着剤、導電性コーティング、電磁場干渉(EMI)/ラジオ周波数干渉(RFI)遮蔽コーティング、静止散逸および電気接点として利用するための金属または炭素などの導電性粒子である。これらの添加物を使用する場合、本組成物は、結合剤として作用し得る。また、本組成物は、金属、半導体類、コンデンサ類、インダクタ類。導体類、太陽電池類、ガラスおよびガラス繊維類、クオーツおよびクオーツ繊維に対して表面不活性を付与するコーティングなど、製造、貯蔵または利用環境に対する保護物質としても使用し得る。
【0122】
また、本組成物は、船部品;電気スイッチ封入物;浴槽およびシャワーコーティングとしてそのような対象物上の抗付着コーティングにおいて;抗カビコーティングにおいて;または物品に対し、耐炎性、耐候性または耐湿性を付与するためにも有用である。本組成物の耐熱性範囲のため、本組成物は、低温容器類、オートクレーブ類、オーブン類ならびに熱交換器および他の加熱または冷却表面およびマイクロ波照射に曝露される物品上にコーティングできる。
【0123】
本組成物は、誘電体材料として特に有用である。前記誘電体材料は、意図された実施形態において、約3.0未満か、またはそれに等しい比誘電率、より意図された実施形態において、約2.3から3.0の比誘電率を有する。前記誘電体材料は、意図された実施形態において、少なくとも約350℃のガラス転移温度を有する。
【0124】
コーティング溶液を形成する意図された方法は、a)本明細書に記載された組成物の少なくとも1種を提供すること;b)少なくとも1種の溶媒を提供すること;c)少なくとも1種の組成物と少なくとも1種の溶媒とを組み合わせて、前記溶液を形成することを含む。追加の方法において、接着増進剤、ポロゲンまたは前記のものを含む他の成分など、少なくとも1種の他の成分を提供でき、少なくとも1種の組成物と少なくとも1種の溶媒とを組み合わせて前記溶液を形成できる。
【0125】
本組成物の層は、噴霧、圧延、浸漬、スピンコーティング、フローコーティング、鋳込などの溶液技法により形成でき、スピンコーティングは、マイクロエレクトロニクスに対して意図されている。本発明の本組成物をそのような溶液に使用するために、好適な溶媒としては、所望の温度で揮発する任意の好適な純粋または混合物の有機分子、有機金属分子、または無機分子が挙げられる。典型的な溶媒はまた、本明細書において、コーティング組成物およびコーティング材料として使用されることが意図されているモノマー類およびポリマー類と溶媒和することのできる溶媒である。意図された溶媒としては所望の温度で揮発する任意の好適な純粋または混合物の有機分子、有機金属分子、または無機分子が挙げられる。前記溶媒は、また、任意の好適な純粋または混合物の極性または非極性化合物を含み得る。
【0126】
好適な溶媒としては、非プロトン性溶媒、例えば、シクロペンタノン、シクロヘキサノン、シクロヘプタノンおよびシクロオクタノンなどの環式ケトン類;アルキルが約1個から4個の炭素原子を有するN−アルキルピロリジノンなどの環式アミド類;およびN−シクロヘキシルピロリジノンおよびそれらの混合物が挙げられる。他の種々多様な有機溶媒を、それらがコーティング溶液として生じる溶液の粘度を効果的に制御する限りで、本明細書において使用し得る。撹拌および/または加熱などの種々の促進手段を、溶解の助けとなって使用し得る。他の好適な溶媒としては、メチルエチルケトン、メチルイソブチルケトン、ジブチルエーテル、環式ジメシルポリシロキサン類、ブチロラクトン、γ−ブチロラクトン、2−ヘプタノン、エチル3−エトキシプロピオネート、ポリエチレングリコール[ジ]メチルエーテル、プロピレングリコールメチルエーテルアセテート(PGMEA)、アニソールおよびメシチレン、キシレン、ベンゼンおよびトルエンなどの炭化水素溶媒が挙げられる。意図された溶媒はシクロヘキサノンである。層の厚さは、典型的には0.1ミクロンから約15ミクロンの間である。マイクロエレクトロニクスに関する誘電中間層としては、層の厚さは一般に2ミクロン未満である。前記組成物に加えられる溶媒量は、少なくとも70重量パーセントである。
【0127】
意図された実施形態において、本組成物は、溶媒に溶解させ、約30℃のから約350℃の温度で、約0.5時間から約60時間処理される。
【0128】
本明細書に開示された組成物は、充填媒介犠牲層、層化材料、半導体処理に用いられる層、または電気的成分に用いられる層を形成するために、特定の製造法に依り、実質的には、従来のスピンオン沈着法、蒸着または化学蒸着によって、種々の基体および/または表面に適用し得る。
【0129】
本組成物は、表面に本組成物の複数層および金属導電体の複数層を有する相互連接における中間層誘電体として使用し得る。これは、別個の金属導電体間に本組成物の領域または集積回路の同一層または同一面における導電体領域を含み得る。
【0130】
意図されたコーティング材料、コーティング溶液および薄膜は種々の電気装置、マイクロエレクトロニック装置、特に半導体集積回路およびハードマスク層、誘電層、エッチングストップ層、および埋め込みエッチングストップ層などの電気的構成要素および半導体構成要素のための種々の層化材料の製造に利用でき有用である。これらのコーティング材料、コーティング溶液および薄膜は、層化材料および層化装置のために使用し得るアダマンタンに基づく化合物、ジアマンタンに基づく化合物、シリコンコア化合物、有機誘電体およびナノ多孔性誘電体などの他の材料に極めて適合性である。本明細書で意図されたコーティング材料、コーティング溶液および薄膜にかなり適合性である化合物は、2001年10月17日出願のPCT出願PCT/US01/32569;2001年12月31日出願のPCT出願PCT/US01/50812;米国特許出願第09/538276号;米国特許出願第09/544504号;米国特許出願第09/587851号;米国特許第6,214,746号;米国特許第6,171,687号;米国特許第6,172,128号;米国特許第6,156,812号;2002年1月15日出願の米国特許出願第60/350187号;2002年1月8日出願の米国特許出願第60/347195号に開示されており、これらは全て参照により、その全体が本明細書に組み込まれる。
【0131】
本明細書に記載された化合物、コーティング、薄膜、材料などは電気的構成要素および/または半導体構成要素を形成するか、それらの一部となるか、または一部を形成するために使用し得る。本明細書に用いられる用語の「電気的構成要素」とは、何らかの所望の電気的作用を得るために、回路において使用し得る装置または部品をも意味する。本明細書において意図された電気的構成要素は、自発的構成要素と受動的構成要素への分類など、多くの異なった方法で分類できる。自発的構成要素は、通常、その操作に電源を必要とする増幅、発振、またはシグナル制御などの何らかの動的機能の能力がある電気的構成要素である。例としては、双極トランジスタ類、電界効果トランジスタ類および集積回路がある。受動的構成要素は、操作が静的である、すなわち、普通は増幅または発振の能力がなく、通常、それらの特徴的な操作のための電源を必要としない電気的構成要素である。例としては、従来の抵抗器類、コンデンサ類、誘電体類、ダイオード類、整流器類およびヒューズ類がある。
【0132】
また、本明細書において意図された電気的構成要素は、導電体、半導体、または絶縁体として分類することもできる。ここで導電体類は、電荷担体(電子など)を電流において、原子間に容易に移動させる構成要素である。導電体構成要素の例としては、回路トレースおよびバイアス含有金属がある。絶縁体は、その機能が、電流の導電に極めて抵抗性である電気的に他の構成要素と分離するために使用されるような材料の能力に実質的に関連している構成要素であり、一方、半導体は、導電体と絶縁体との間の生来の抵抗率で電流を導電する材料の能力に実質的に関連している機能を有している構成要素である。半導体構成要素の例としては、トランジスタ類、ダイオード類、幾つかのレーザ類、整流器類、サイリスタ類、光センサ類がある。
【0133】
また、本明細書において意図された電気的構成要素は、電力源または電力消費体として分類することもできる。電力源構成要素は、典型的には他の構成要素に電力を供給するために用いられ、バッテリー類、コンデンサ類、コイル類および燃料電池類が挙げられる。電力消費構成要素としては、抵抗器類、トランジスタ類、集積回路類(IC類)、センサ類などが挙げられる。
【0134】
さらに本明細書において意図された電気的構成要素は、また、個別的または集積的として分類することもできる。個別的構成要素は、ある特定の電気的性質を、回路における一箇所に集中させて提供する装置である。例としては、抵抗器類、コンデンサ類、ダイオード類およびトランジスタ類がある。集積構成要素は、複数の電気的性質を、回路における一箇所に提供できる構成要素の組合せである。例としては、複数の構成要素と接続トレースとが組み合わされて、ロジックなどの複数のまたは複合的な機能を実施する集積回路がある。
【0135】
IC類への本ポリマーの適用において、本組成物の溶液は、例えば、スピンコーティングなどの従来のウェットコーティング法を用いて、半導体ウェーハに適用されるが、スプレーコーティング、フローコーティングまたは浸漬コーティングなどの他のよく知られたコーティング法が特定の場合に使用できる。例えば、本組成物のシクロヘキサノン溶液は、中に組立て製造された電気的導電性構成要素を有する基体上へ、スピンコーティングされ、次いでコーティングされた基体は熱処理に供される。本組成物は、減法金属(アルミニウムおよびアルミニウム/タングステンなど)処理および二重ダマシーン(damascene)(銅など)処理に使用し得る。本組成物の例示的製剤は、非金属の裏張りを有する従来の器具における微量金属汚染を防ぐため、清潔取扱いプロトコルを遵守し、周囲条件で本組成物を、シクロヘサノン溶媒に溶解させることによって調製される。得られた溶液は、意図された実施形態において、溶液の総重量を基準にして、約1重量パーセントから約50重量パーセントの本組成物、および約50重量パーセントから約99重量パーセントの溶媒を含み、より意図された実施形態において、約3重量パーセントから約30重量パーセントの本組成物、および約70重量パーセント約97重量パーセントの溶媒を含む。
【0136】
本明細書に記載された組成物の利用法の例は以下のとおりである。本組成物の溶媒溶液は、前記組成物を基準にして、約5重量パーセント(%)から約10重量パーセント(%)の量で提供される。平面または組織分布面または基体上への本組成物の適用は、従来の任意の器具により実施でき、意図された実施形態において、スピンコーターを用いて実施できる。なぜならば、本明細書に使用される組成物は、そのようなコーターにとって、好適に制御された粘度を有しているからである。スピンコーティング時の簡単な大気乾燥などの任意の好適な手段により、周囲環境への曝露により、またはホットプレート上で350℃までの加熱により、溶媒の完全蒸発を採用し得る。前記基体は、その基体上に、本組成物の少なくとも一層を有し得る。
【0137】
本明細書に開示された組成物は、マイクロチップ類、マルチチップモジュール類、積層回路ボード、またはプリント済み配線回路における誘電基体材料としても使用できる。本組成物から構成された回路ボードは、その表面に種々の電気的導電体回路のためのパターンを乗せている。前記回路ボードは、織り込み非導電繊維またはガラス布などの種々の補強材を含み得る。このような回路ボードは、片面であっても、または両面であってもよい。
【0138】
本組成物を電気的組織分布基体に適用後、コーティングされた構造物は、コーティングを重合化するために、約50℃から約450℃までの範囲の温度に上げて焼成と硬化の熱処理に供する。意図された硬化温度は、少なくとも約300℃である。一般に硬化は、約350℃から約425℃の温度で実施されることが意図されている。硬化は電気炉、ホットプレートなどの従来の硬化チャンバ内で実施でき、一般に硬化チャンバ内の不活性(非酸化的)雰囲気(窒素)下で実施される。炉またはホットプレートによる硬化に加えて、本組成物は、参照によりそれらの全体が本明細書に組み込まれる同一出願人による特許公報PCT/US96/08678および米国特許第6,042,994号;米国特許第6,080,526号;米国特許第6,177,143号;および米国特許第6,235,353号に教示されるように、紫外線照射、マイクロ波照射または電子ビーム照射への曝露によっても硬化できる。本発明の実践においては、任意の非酸化的還元的雰囲気(例えば、アルゴン、ヘリウム、水素および窒素処理気体)が使用できる。
【0139】
先に示したように、当該コーティングは中間層として作用でき、他の誘電(SiO)コーティング、SiO修飾セラミック酸化物層、シリコン含有コーティング、シリコン−炭素含有コーティング、シリコン−窒素含有コーティング、シリコン−窒素−炭素含有コーティング、ダイヤモンド様炭素コーティング、チタン窒化物コーティング、タンタル窒化物コーティング、タングステン窒化物コーティング、アルミニウムコーティング、銅コーティング、タンタルコーティング、有機シロキサン類コーティング、有機シリコンガラスコーティングおよびフッ化シリコンガラスコーティングなどの他のコーティングの最上部にあるか、またはそれらに被覆されていてもよい。このような多層コーティングは、参照により本明細書に組み込まれる米国特許第4,973,526号に教示されている。また、十分に示されているように、本法において調製された本組成物は、組立て製造された電気的または半導体の基体上の隣接導電体通路間のインターライン誘電層として容易に形成できる。
【0140】
本組成物は、意図された実施形態において、50オングストロームという薄さ、または≧1.0ミクロン(10,000オングストローム)、さらに≧1.5ミクロン(15,000オングストローム)という厚さを有する薄膜を創製することができる点で有利である。このように、本組成物の意図された層は、約1.5ミクロンまでか、またはそれ以上の厚さを有する。
【0141】
本薄膜は、集積回路製造のため、二重ダマシーン(銅など)処理および減法金属(アルミニウムまたはアルミニウム/タングステンなど)処理において使用できる。本組成物は、完成ウェーハを包むためにエッチングストップ、ハードマスク、エア架橋または受動コーティングとして使用できる。本組成物は、参照によりその全体が本明細書に組み込まれるMichael E.Thomas、「Spin−On Stacked Film for Low keff Dielectrics」、Solid State Technology(2001年7月)に教示されている望ましい全てのスピンオン積層薄膜において使用できる。当該層は、同一出願人による米国特許第6,143,855号および2002年2月19日出願の係属中米国出願第10/078919号に教示されているようなオルガノシロキサン類;Honeywell International社の商品として入手できるHOSP(登録商標)製品;同一出願人による米国特許第6,372,666号に教示されているようなナノ多孔性シリカ;Honeywell International社の商品として入手できるNANOGLASS(登録商標)E製品;同一出願人による米国特許第6,472,076号に教示されているオルガノシルセスキオキサン類;これらの全体が本明細書に組み込まれる、同一出願人による米国特許第6,440,550号に教示されているフルオロシルセスキオキサン類を含む他の層と共に、積層において使用できる。
【実施例】
【0142】
分析試験法:
【0143】
ゲル透過クロマトグラフィー(GPC1):
【0144】
この分析は、Water 717プラスAutosampler、Watersインラインデガッサー、Waters 515 HPLCポンプ、Waters 410示差屈折計(RI検出器)、および2本のカラム:HP Plゲル5μ MIXED DからなるWaters液体クロマトグラフィーシステムにより行った。分析条件は以下のとおりであった:
【0145】
【表5】

【0146】
10ミリグラムの固体製品を、1ミリリットルのテトラヒドロフランに溶解した。含量、言い換えると、面積%を算出するため、クロマトグラムにおいて、モノマーに帰属するピーク面積またはオリゴマーもしくはポリマーに帰属するピーク面積を、全ピーク面積の合計と関係づける。
【0147】
ゲル透過クロマトグラフィー(GPC2):
【0148】
この方法は、ダイマーおよびトリマーのピークについてのさらなる詳細を提供するために使用できる。以下の条件が用いられる:
【0149】
【表6】

【0150】
含量、言い換えると、面積%を算出するため、クロマトグラムにおいて、モノマーに帰属するピーク面積またはオリゴマーもしくはポリマーに帰属するピーク面積を、全ピーク面積の合計と関係づける。
【0151】
ゲル透過クロマトグラフィー(GPC3):
【0152】
Waters996ダイオードアレイおよびWaters410示差屈折計検出器を備えたWaters2690分離モジュールにより分離を行った。2本のPLゲル3μm Mixed−E 300×7.5mmカラム上でクロロホルム流速1ml/分により分離を行った。約1mg/ml濃度の溶液25μlの注入容量を2回繰り返した。良好な再現性が見られた。
【0153】
カラムは、20,000から500の間の分子量の比較的単分散のポリスチレン標品によって補正した。低分子量標品により、ブチル末端スチレンモノマーから9種のスチレンによるオリゴマーに相当する9種の異なる成分を分割できた。前記標品のピーク分子量の対数は、溶出時間の第三位多項に合わせた。装置広幅化をトルエンの平均溶出時間に対する最大半減における全幅の比から評価した。
【0154】
下記の調製液1および2の吸光度は、約284nmで最大であった。クロマトグラムは、約300nm以下の波長における吸光度で同様な形状を有した。ここに提供された結果は、254nmの吸光度に相当する。同時に溶出していたと考えられるポリスチレンの分子量によってピークを同定した。これらの値を調製液1および2のオリゴマー分子量の測定値として考えてはいけない。より長時間における高級オリゴマー類、トリマー類、ダイマー類、オリゴマー類および不完全オリゴマー類の連続溶出を定量化できる。
【0155】
各成分は、単分散種に関して見られると考えられる成分よりも幅広であった。この幅を、ピーク最大半減における分での全幅から分析した。装置広幅化の原因を概略的に明らかにするため、以下を算出した。
【0156】
補正=[幅実測−幅装置1/2
式中、幅装置は、トルエンに関する溶出時間に対するピークの溶出時間の比によって補正したトルエンの実測幅である。ピーク幅は、検量線により分子量幅に変換され、ピーク分子幅に対する比率で表された。スチレンオリゴマー類の分子量は、それらのサイズの2乗に比例したので、相対的分子量幅は2で割ることにより、相対的オリゴマーサイズ幅に変換できる。この操作により、2つの種の分子立体配置の違いの原因が明らかにされた。
【0157】
プロトンNMR:
【0158】
分析すべき材料の2〜5mgサンプルをNMRチューブ内へ入れた。約0.7mlの重水素化クロロホルムを加えた。前記混合物を手で振とうし、前記材料を溶解した。次いでVarian 400MHz NMRを用いて前記サンプルを分析した。
【0159】
高速液体クロマトグラフィー(HPLC):
【0160】
Phenomenex luna Phenyl−Hexyl 250×4.6mm 5ミクロンカラムを有するHPLCを用いた。カラム温度は、40℃に設定した。ピーク分離を改善するため、溶出液として水およびアセトニトリルを用いた。
【0161】
【表7】

【0162】
以下の実験条件を用いた:
【0163】
【表8】

【0164】
サンプルは、以下のとおり調製した。固体サンプル1mg当たり1mlTHFを用いてサンプルをテトラヒドロフラン(THF)に溶解した。
【0165】
液体クロマトグラフィー−質量分析(LC−MS):
【0166】
本分析は、クロマトグラフィー注入口として、Hewlett−Packard Series 1050 HPLCシステムを用いて、常圧イオン化(API)インターフェースユニットを備えたFinnigan/MAT TSQ7000トリプルステージ四重極質量分析計上で実施した。両質量スペクトルイオン電流および可変単一波長UVデータは、時間強度クロマトグラムに関して捕捉された。
【0167】
クロマトグラフィーは、Phenomenex Luna 5−ミクロンフェニ−ヘキシルカラム(250x4.6mm)上で実施された。サンプルの自動注入は、テトラヒドロフラン中およびテトラヒドロフランなしの双方で、一般に濃縮溶液の5マイクロリットルから20マイクロリットルの間であった。分析用の濃縮サンプル溶液の意図された調製は、10マイクロリットル注入について、1ミリリットル当たり約5ミリグラムの固体生成物のテトラヒドロフラン中への溶解であった。カラムを通す移動相の流速は、アセトニトリル/水の1.0ミリリットル/分で、最初に70/30で1分間、次いでプログラム化された勾配で100%アセトニトリルまで10分で、そして40分まで保持した。
【0168】
常圧化学イオン化(APCI)質量スペクトルは、別々の実験において、陽性および陰性双方のイオン化において記録された。陽性APCIは、アセトニトリルマトリクスとの付加体を含むプロトン化シュード分子イオンを提供し、これら最終生成物に関する分子構造について、より多くの情報を与えるものであった。APCIのコロナ放電は、5マイクロアンプで、陽性イオン化に関しては約5kV、陰性イオン化に関しては約4kVであった。
【0169】
加熱キャピラリラインは、200℃に維持し、気化器は400℃に維持した。四重極質量分析後のイオン検出システムは、15kV変換ダイノードおよび1500V電子倍率電圧に設定された。質量スペクトルは典型的に、陰性イオン化に関しては約m/z50から2000 a.m.u.まで、陽性イオン化に関しては約m/z150からa.m.u.までの1.0秒/スキャンで記録した。別々の陽性イオン実験において、質量範囲は、低質量同調/較正様式で2000a.m.u.まで、高質量同調/較正様式で4000a.m.u.の双方まで走査された。
【0170】
示差走査熱分析(DSC):
【0171】
DSC測定は、コントローラおよび関連ソフトウェアと連結させたTA装置2920示差走査熱分析を用いて実施された。250℃から725℃までの温度範囲の標準DSCセル(不活性雰囲気:50ml/分の窒素)を、分析用に用いた。液体窒素を、冷却ガス源として用いた。少量のサンプル(10〜12mg)を、±0.0001グラムの精度でMettler Toledo分析用天秤を用いて、自動DSCアルミニウムサンプルパン(Part#990999−901)中に注意深く秤量した。ガス抜きさせるために中心に前もって穴をあけたふたによって前記パンを覆うことによりサンプルを封入した。サンプルを、窒素下、100℃/分の速度で0℃から450℃に加熱し(サイクル1)、次に100℃/分の速度で0℃に冷却した。第2のサイクルを、直ちに100℃/分の速度で0℃から450℃に操作した(サイクル1の繰り返し)。架橋温度は、第1のサイクルから決定された。
【0172】
比誘電率:
【0173】
比誘電率は、アルミニウムの薄膜を硬化層上にコーティングし、次いで1MHzにおいて容量電圧測定を行い、層の厚さに基づくk値を計算することにより決定した。
【0174】
ガラス転移温度(Tg):
【0175】
薄膜のガラス転移温度は、温度の関数として薄膜ストレスを測定することにより決定した。薄膜ストレス測定は、KLA 3220 Flexus上で実施された。ウェーハ自体におけるストレス緩和による誤差を避けため、膜測定前に、未コーティングウェーハを500℃で60分間アニールした。次いでウェーハに、試験される材料を沈着させ、全て必要な処理段階を通して処理された。次にウェーハを、温度の関数としてウェーハ反りを測定するストレスゲージ内に置いた。この装置により、ウェーハの厚さおよび膜の厚さが知られているという条件で、ストレス対温度グラフが算出できる。この結果は、グラフ形式で表示された。Tg値を決定するために、水平接線が引かれた(ストレス対温度グラフ上、ゼロの勾配値)。Tg値は、グラフと水平接線が交差する所であった。
【0176】
Tgが、第1の温度サイクル後に決定されるか、それとも最大温度が用いられる次のサイクル後に決定されたかを記録すべきである。測定処理自体が、Tgに影響を及ぼし得る。
【0177】
収縮率:
【0178】
膜収縮率は、処理の前後に膜厚さを決定することにより測定された。収縮率は、元の膜厚さのパーセントで表された。膜厚さが減少する場合、収縮率は陽性であった。実際の厚さ測定は、J.A.Woollam M−88分光エリプソメータを用いて光学的に実施された。Cauchyモデルは、PsiおよびDeltaに関して最良の適合性を算出するために用いられた(エリプソメトリに対する詳細は、例えば、H.G.ThompkinsおよびWilliam A.McGahanによる「Spectroscopic Ellipsometry and Reflectometry」、John Wiley and Sons社、1999年に見ることができる)。
【0179】
屈折率:
【0180】
屈折率測定は、J.A.Woollam M−88分光エリプソメータを用いて厚さ測定と共に実施された。Cauchyモデルは、PsiおよびDeltaに関して最良の適合性を算出するために用いられた。他に特記しない限り、屈折率は、633nmの波長で報告された(エリプソメトリに対する詳細は、例えば、H.G.ThompkinsおよびWilliam A.McGahanによる「Spectroscopic Ellipsometry and Reflectometry」、John Wiley and Sons社、1999年に見ることができる)。
【0181】
FTIR分析:
【0182】
FTIRスペクトルは、透過率方式でNicolet Magna 550 FTIR分光計を用いて得られた。基体バックグランドスペクトルは、未コーティング基体上で得られた。膜スペクトルは、バックグランドとして基体を用いて得られた。次に膜スペクトルは、ピーク位置および強度における変化について分析された。
【0183】
溶媒との混和性:
【0184】
溶媒との混和性は、溶媒処理前後の膜厚さ、屈折率、FTIRスペクトル、および比誘電率を測定することにより決定された。混和性溶媒に関しては、有意な変化は見られないはずである。
【0185】
溶解度改善:
【0186】
第1の容器において、追加の生成物が、シクロヘキサノン中に溶解されないことが、視覚検査により明らかになるまで、生成物をシクロヘキサノンに加えた。加えられた固体量を記録した。
【0187】
(比較実施例1)
【0188】
図1および図2は、下記に考察した異性体の調製を示しており、本実施例の文章中のローマ数字は、図1および図2のローマ数字と対応する。背景技術の節で簡単に述べたようにReichertの目標は、一定の構造の1,3,5,7−テトラキス[(4’−フェニルエチニル)フェニル)]アダマンタン、すなわち、この化合物の単一のp−異性体−1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタン(8)を調製することであった。このこと、および一定の構造(分析法により特性化できる)を有するこの化合物だけが、Reichertの研究標的であった。
【0189】
Reichertの計画は、以下の順序を実現することであった:
1,3,5,7−テトラブロモアダマンタン(1)→1,3,5,7−テトラキス(4’−ブロモフェニル)アダマンタン(2)(p−異性体)→1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタン(8)(p−異性体)。
【0190】
Reichertは、彼女が考えたステップ(1)→(2)に不成功であったが、彼女は、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(8)−アダマンタンコアに付加したp−およびm−ブロモフェニル基の組み合わせを含有する1,3,5,7−テトラキス(ブロモフェニル)アダマンタンの異性体混合物を得たと考え(下記を参照)、彼女の研究目標は果たされていないと考えた。これを支持することとして、彼女は、「アリル化時の位置選択性欠如のため、本発明者らはアダマンタンに対するFriedel−Crafts反応をさらに試みることを思いとどまり、容易に形成された1,3,5,7−テトラフェニルアダマンタン(6)の誘導体化をさらに研究することにした」と記載している。単一p−異性体−1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタン(7)を調製するために、彼女は、以下の「迂回方法」をデザインした。
【0191】
1,3,5,7−テトラフェニルアダマンタン(6)→1,3,5,7−テトラキス[4’−ヨードフェニル)アダマンタン(7)→1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタン(8)。
【0192】
Reichertは、引き続いてこの順序を実行し、単一p−異性体(8)を単離したが、この化合物の溶解度は、この化合物の13C NMRスペクトルを得ることができないほど低いことが判明した。Reichertの観察によると、「化合物3[(8)]は、H NMRスペクトルが得ることのできるほどクロロホルムに十分に溶解性であること」が判った。しかしながら、溶液13C NMRスペクトルを得るための獲得時間は、実行不可能であることが判った。生成物を同定するために、固相NMRが用いられた」。Reichert、学位論文(上記)。また、これらの結果を確認するために;Reichertの化合物は、数種の標準的有機溶媒により試験されたが、試験された有機溶媒のいずれのものにも本質的に不溶性であることが判った。
【0193】
したがって、言い換えると、Reichertが調製したものは、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)であったが、この生成物は、一定の構造の単一異性体でなかったことから、この方向性を継続しなかった。実際、彼女は、1,3,5,7−テトラキス[4’−ヨードフェニル)アダマンタン(7)の単一異性体を調製し、それを1,3,5,7−テトラキス[4’−(フェニルエチニル)フェニル]アダマンタン(8)の単一異性体に変換したが、これは不溶性であり、そのため有用性ではないことが判明した。
【0194】
2001年10月17日に出願された本発明者らの同一に出願人による係属中の特許出願PCT/US01/22204:
【0195】
本発明者らは、1,3,5,7−テトラブロモアダマンタンとブロモベンゼンとのReichert反応を多数回繰り返し、1,3,5,7−テトラブロモアダマンタンとブロモベンゼンとの反応生成物の本発明者らの分析により、それは1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)(Reichertが示唆した)ではなくて、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)とほぼ等しい量の1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)との混合物であったことが示された。この結論は、LC−MS試験と元素分析とにより確認された。
【0196】
本発明者らは、このような反応経過の原因を見つけることができた。ブロモベンゼンは、Friedel−Crafts反応の条件下で本質的に不均化することが知られている(G.A.Olah、W.S.Tolgyesi、R.E.A.Dear、J.Org.Chem.、27、3441〜3449頁(1962)):
2PhBr→PhH+BrΦ
反応混合物中にベンゼン濃度が増すと、これは、(1)中の臭素[または(3)中のブロモフェニル]に置換し始め;ベンゼン不均化が非常に高いため高速で確立した平衡により、ほぼ等しい量の(3)および(4)に至る。
【0197】
したがって、Reichertは、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)を得てなかった(彼女が考えたように);その代わりに、彼女は、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)と1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)とのほぼ1:1混合物を有したのである。
【0198】
1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)側に向かう平衡をシフトさせるために、本発明者らは、1,3,5,7−テトラブロモアダマンタンとブロモベンゼンとの固体反応生成物[1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)と1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)との1:1混合物]を、臭化アルミニウム存在下でブロモベンゼンの新たな部分により処理した。純粋なブロモベンゼンは、1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)中のフェニル基に直ちに置き換わることが判明し、したがって30秒間で溶液中の生成物は、ほぼ90〜95%の1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)を含有した。この状況は、室温でほぼ5〜10分で観察され、その後、ベンゼン濃度が徐々に増加すると、1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)濃度の増加に至り、数時間での平衡で、ほぼ等しい濃度の1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)および1−フェニル−3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(4)の平衡が再確立された。
【0199】
したがって、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)(Reichertが合成したと考えた)は、臭化アルミニウムの存在下、1,3,5,7−テトラブロモアダマンタンとブロモベンゼンとの固体反応生成物の第2の処理により調製できる。
【0200】
フェニルアセチレンとのHeck反応に供された1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(3)は、95〜97重量パーセントの1,3,5,7−テトラ[3’/4’−(フェニルエチニル)フェニル]アダマンタン(5)(p−およびm−異性体混合物が形成し、5種の異性体は、(1)パラ、パラ、パラ、パラ−;(2)パラ、パラ、パラ、メタ−;(3)パラ、パラ、メタ、メタ−;(4)パラ、メタ、メタ、メタ−;および(5)メタ、メタ、メタ、メタ−を含む。微量のo−異性体もまた存在し得る)および3〜5重量パーセントの1,3/4−ビス{1’、3’、5’、−トリス[(3’’/4’’−フェニルエチニル)フェニル]アダマンチル−7’−イル}ベンゼン(14種の異性体が形成)の新規な混合物を得、これは、LC−MS、GPC、NMR、およびHPLCにより確認された。この混合物は、トルエン、キシレン類、シクロヘキサノン、アニソール、プロピレングリコールメチルエーテルアセテート、メシチレン、シクロヘキシルアセテートなどに極めて可溶性であった。例えば、シクロヘキサノン中のその溶解度は、ほぼ20%であった。この性質により、スピンコーティングすることができ、特に意図された実施形態において、層化材料および半導体の分野でこの材料の実用的使用が保証される。
【0201】
本明細書に用いられる命名法は、厳密なIUPAC基準を必ずしも遵守していないかもしれないが、これは幅広く用いられ、当業者によって理解されている。
【0202】
(発明の実施例1):1,3,5,7−テトラブロモアダマンタン(TBA)の合成
【0203】
1,3,5,7−テトラブロモアダマンタン合成は、商品として入手できるアダマンタンから出発し、G.P.SollotおよびE.E.Gilbert、J.Org.Chem.、45、5405〜5408頁(1980)、B.Schartel、V.Stumpflin、J.Wendling、J.H.Wendorff、W.Heitz、およびR.Neuhause、Colloid Polym.Sci.274、911〜919頁(1996)、またはA.P.Khardin、I.A.Novakof、およびS.S.Radchenko、Zh.Org.Chem.、9、435頁(1972)に記載された合成法に従った。1バッチ当たり150gまでの量が、ルーチン的に合成された。
【0204】
【化38】

【0205】
(発明の実施例2):1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(TBPA);1,3,5−トリス(3’/4’−ブロモフェニル)−7−フェニルアダマンタン(TBPPA);1,3−ビス(3’/4’−ブロモフェニル)−5,7−ジフェニルアダマンタン(BBPDPA);および少なくとも1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’’−イル]ベンゼン(BTBPAB)の混合物の合成
【0206】
第1のステップにおいて、本発明の実施例1のTBAを、ブロモベンゼンと反応させて、Macromolecules、27、7015〜7023頁(1994)(上記)に記載された1,3,5,7−テトラキス(3/4−ブロモフェニル)アダマンタン(TBPA)が生成されたと思われる。HPLC−MS分析により、全反応生成物のうち、所望のTBPAが存在するパーセンテージは、ほぼ50%であり、40%のトリ臭素化テトラフェニルアダマンタン、約10%のジ臭素化テトラフェニルアダマンタンにより達成されたことを示した。
【0207】
【化39】

【0208】
具体的には、上記ステップ2に関する実験方法は以下のとおりである:
30%KOH溶液に対して水コンデンサ、磁気撹拌バー、加熱マントル、熱電対、熱コントローラユニット、およびN導入口−出口を備えた乾燥5Lの3頚丸底フラスコを組立てた。フラスコを、Nで10分間掃流し:2L(全容量の62%v/v)のブロモベンゼンをフラスコに注ぎ、撹拌バーを作動させた。TBA(160.00±0.30g)を加え、ロートを1L(全容量の31%v/v)のブロモベンゼンで濯いだ。出発物質のHPLCサンプルをとり、標準的HPLCクロマトグラムと比較した。臭化アルミニウム(32.25±0.30g)を溶液に加え、ロートを220mL(全容量の7%v/v)のブロモベンゼンで濯いだ。この時点の溶液は、認識できるような沈殿のない暗紫色であった。反応混合物を室温で1時間撹拌した。1時間後、反応混合物の温度を40℃に上げた。温度が40℃に到達したら、反応混合物を3時間撹拌した。HPLCサンプルを、40℃でそれぞれ1時間+3.0時間目にとった。反応は、HPLCクロマトグラム上で微量のTBAが見られなかった時点で終了した。反応が終了したら、暗反応混合物を7L(ブロモベンゼンの全容量に対して217%v/v)の脱イオン水、2L(ブロモベンゼンの全容量に対して62%v/v)の氷、および300mL(37%)HCl(ブロモベンゼンの全容量に対して9%v/v)を含有する20L反応器に注いだ。反応混合物は、オーバーヘッド撹拌機を用いて1時間±10分間激しく撹拌した。
【0209】
有機層を分離チャンバに移し、700mL(ブロモベンゼンの全容量に対して22%v/v)部の脱イオン水で2回洗浄した。洗浄された有機層を、4L分液ロートに入れ、16L(ブロモベンゼンの全容量に対して5倍)メタノールに緩徐に流して加え、オーバーヘッド撹拌機のもとで30L反応器に入れて、25分±5分間固体を沈殿させた。添加が完了したら、メタノール懸濁液を1時間±10分間激しく撹拌した。メタノール懸濁液を、Buchnerロート(185mm)を通して吸引ろ過した。固体を、3部分の600mL(ブロモベンゼンの全容量に対して19%v/v)メタノールによりフィルタケーク上で洗浄した。この固体を30分間減圧乾燥した。
【0210】
生じたピンクがかった粉末を、スパーテルを用いて結晶器皿に取り出し、真空オーブンに入れて一晩乾燥してから、乾燥後の重量を量った。粉末は、重量変化が、<1%になるまでさらに2時間真空オーブン中で再度乾燥し、再度重量を量った。固体を乾燥後、最終重量を記録し、収率を計算した。生成物は、上記のとおりほぼ50%TBPA、40%のトリ臭素化テトラフェニルアダマンタン、10%のジ臭素化テトラフェニルアダマンタンであった。収量は176.75グラムであった。3〜5重量パーセントのBTBPABが形成された。
【0211】
(発明の実施例3)1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(TBPA)および1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’’−イル]ベンゼン(BTBPAB)の混合物の合成
【0212】
【化40】

【0213】
しかしながら予想外にも、発明の実施例2の前述の生成混合物を、新たな試剤および触媒(ブロモベンゼンおよびAlCl、20℃で1分)に供すると、テトラ臭素化、トリ臭素化およびジ臭素化モノマー類のうちTBPA比率が、約50%からほぼ90〜95%に増加した。3〜5重量パーセントのBTBPABは残った。本発明者らは、これを確かめるために数回繰り返し、これは、下記および上記のとおり、前述の混合物を熱硬化性成分(a)に変換する新規な工程で生じた結果から大変驚かされた。
【0214】
具体的に、上記発明の実施例3の実験方法は次のとおりである。用いられた装置は、上記発明の実施例2と同じであった。
【0215】
必要とされるブロモベンゼンと臭化アルミニウムの対応する量は、上記/従来合成にて合成されたTBPAの収率に基づいて計算された。適量(全容量の80%v/v)のブロモベンゼンをフラスコに注ぎ、撹拌バーを作動させた。上記のステップ2の合成のTBAの全量を加え、ロートを適量(全容量の10%v/v)のブロモベンゼンで濯いだ。出発物質のHPLCサンプルをとり、標準的HPLCクロマトグラムと比較した。臭化アルミニウムの全量を溶液に加え、ロートを残りの(全容量の10%)のブロモベンゼンで濯いだ。この時点の溶液は、認識できるような沈殿のない暗紫色であった。反応混合物を室温で17分間撹拌した。HPLCサンプルを、5分後と17分後にとった。反応は、HPLCクロマトグラム上でTBAPに相当するピーク群が支配的になった時点で終了した。反応が終了したら、暗反応混合物を7L(ブロモベンゼンの全容量に対して217%v/v)の脱イオン水、2L(ブロモベンゼンの全容量に対して62%v/v)の氷、および300mL(37%)HCl(ブロモベンゼンの全容量に対して9%v/v)を含有する20L反応器に注ぎ、オーバーヘッド撹拌機を用いて1時間±10分間激しく撹拌した。
【0216】
有機層を分液ロートに移し、700mL(ブロモベンゼンの全容量に対して22%v/v)部の脱イオン水で2回洗浄し、700mL(ブロモベンゼンの全容量に対して22%v/v)部の飽和NaCl溶液で3回洗浄した。洗浄された有機層を、4L分液ロートに入れ、16L(ブロモベンゼンの全容量に対して5倍)メタノールに緩徐に流して加え、オーバーヘッド撹拌機のもとで30L反応器に入れて、25分±5分間固体を沈殿させた。添加が完了したら、メタノール懸濁液を1時間±10分間激しく撹拌した。メタノール懸濁液を、Buchnerロート(185mm)を通して吸引ろ過した。固体を、3部分の600mL(ブロモベンゼンの全容量に対して19%v/v)メタノールによりフィルタケーク上で洗浄した。この固体を30分間減圧乾燥した。
【0217】
生じたピンクがかった粉末を、スパーテルを用いて結晶器皿に取り出し、真空オーブンに入れて一晩乾燥してから、乾燥後の重量を量った。粉末は、重量変化が、<1%になるまでさらに2時間真空オーブン中で再度乾燥し、再度重量を量った。固体を乾燥後、最終重量を記録し、収率を計算した。この収率は85%であった。
【0218】
(発明の実施例4)1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(TBPA);1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’’−イル]ベンゼン(BTBPAB);および少なくとも1,3−ビス(3’/4’−ブロモフェニル)−5,7−ビス{3’’/4’’−[1’’’,3’’’,5’’’−トリス(3’’’’/4’’’’−ブロモフェニル)アダマンタ−7’’−イル]フェニル}アダマンタンの混合物の合成
【0219】
第1の反応器を、アダマンタン(200グラム)、ブロモベンゼン(1550ミリリットル)、三塩化アルミニウム(50グラム)で充填した。臭化t−ブチル(1206グラム)を、前記反応混合物に4〜6時間かけてゆっくりと加えた。反応混合物を40℃で一晩撹拌した。
【0220】
第1の反応器を、1000ミリリットルの水性塩化水素(5%w/w)で充填した。第1の反応器の内容物は、外側氷浴により25〜35℃で反応混合物を維持しながら、第2の反応器に徐々に流出させた。有機相(暗褐色の低相)を分離し、水洗(1000ミリリットル)した。約1700ミリリットルの有機相が残った。
【0221】
第3の反応器を、20.4リットルの石油エーテル(80℃〜110℃の沸点範囲を有する主としてイソオクタン)で充填した。第2の反応器の内容物を、第3の反応器に1時間かけて徐々に加えた。生じた混合物を少なくとも1時間撹拌した。沈殿物をろ取し、フィルタケークを、前述の石油エーテルの1回の洗浄につき300ミリリットルで2回洗浄した。洗浄されたフィルタケークを40mbarで45℃で一晩乾燥した。生成物の収量は、407グラムの乾燥重量であった。
【0222】
GPC、HPLC、およびNMRなどの分析技法は、生成物を同定するために使用された。GPC分析は、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタンが、430のピーク分子量を有し;1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’−イル]ベンゼンが、820のピーク分子量を有し;1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−ブロモフェニル)アダマンタ−7’’−イル]フェニル}−5,7−ビス(3’’’’/4’’’’−ブロモフェニル)アダマンタンが、約1150(肩)のピーク分子量を有した。
【0223】
(発明の実施例5)1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタン(TBPA);1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’’−イル]ベンゼン(BTBAB);および少なくとも1,3−ビス(3’/4’−ブロモフェニル)−5,7−ビス{3’’/4’’−[1’’’,3’’’,5’’’−トリス(3’’’’/4’’’’−ブロモフェニル)アダマンタ−7’’’−イル]フェニル}アダマンタンの混合物の合成
【0224】
第1の反応器を、1,4−ジブロモベンゼン(587.4グラム)および三塩化アルミニウム(27.7グラム)で充填した。この反応混合物を、サーモスタットを備えた水浴により90℃に加熱し、撹拌なしで1時間、撹拌しながらさらに1時間この温度で維持した。反応混合物を50℃まで冷却した。アダマンタン(113.1g)をこの冷却反応混合物に加えた。4時間かけて、t−ブチル−ブロモベンゼン(796.3グラム)を反応混合物に加えた。この反応混合物を、さらに12時間撹拌した。
【0225】
第2の反応器を、HCl(566ミリリットル、10%水性w/w)で充填した。50℃の第1の反応器の内容物は、外側氷浴により25〜35℃で混合物を維持しながら、第2の反応器に流出させた。反応本体は、淡褐色懸濁液であった。有機相は暗褐色の低相であり、反応混合物から分離した。分離有機相を水洗(380ミリリットル)した。この洗浄後。約800ミリリットルの有機相が残った。
【0226】
第3の反応器を、ヘプタン(5600ミリリットル)で充填した。1時間かけて徐々に第2の反応器の内容物を、第3の反応器に加えた。この懸濁液を少なくとも4時間撹拌し、沈殿物をろ取した。フィルタケークを、ヘプタンの1回の洗浄につき300ミリリットルで2回洗浄した。IE2ステップ(a)生成物の収量は、526.9グラム(湿潤状態)および470.1グラム(乾燥状態)であった。
【0227】
GPC、HPLC、およびNMRなどの分析技法は、生成物を同定するために使用された。GPC分析は、1,3,5,7−テトラキス(3’/4’−ブロモフェニル)アダマンタンが、430のピーク分子量を有し;1,3/4−ビス[1’,3’,5’−トリス(3’’/4’’−ブロモフェニル)アダマンタ−7’’−イル]ベンゼンが、820のピーク分子量を有し;1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−ブロモフェニル)アダマンタ−7’’−イル]フェニル}−5,7−ビス(3’’’’/4’’’’−ブロモフェニル)アダマンタンが、約1150(肩)のピーク分子量を有した。
【0228】
(発明の実施例6)1,3−ビス{3’/4’−[1’’−フェニル−3’’,5’’−ビス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;および少なくとも1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5,7−ビス{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5],3[5],5[5]−トリス(3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの混合物の合成
【0229】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥500mLの3頚丸底フラスコに、20.00g(26.45mmol)の発明の実施例2のTBPA、1.4850g(2.1158mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、1.1099g(4.2316mmol)のトリフェニルホスフィン、0.4029g(2.1158mmol)のヨウ化銅(I)、および119mLのトリエチルアミンを加えた。この混合物に、添加用ロートにより5mLトリエチルアミン中の0.8341g(6.6118mmol)のm−ジエチニルベンゼンを滴下しながら加えた。この反応混合物を、80℃で2時間加熱し、次いで添加用ロートにより5mLトリエチルアミン中の21.6106g(211.579mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物を室温に冷却して、コンデンサ、機械的撹拌機およびN導入口−出口を備えた1Lの3頚フラスコに移し、100mlのトルエンを加えた。次にこの溶液を6N HClで中和した。生じた水を除去した。次いでこのトルエン溶液を、100mLの6N HClと共に60℃で30分間撹拌した。混合物をセライト(celite(登録商標))を通してろ過した。次いで水性溶液を除去した。HCl抽出を2回以上繰り返した。次にトルエン溶液を100mLの脱イオン水で2回洗浄した。この溶液を、100mLのアンモニア溶液中0.1MのN−アセチル−システインと共に60℃で30分間撹拌した。次いで水性溶液を除去した。アンモニア抽出を5回以上繰り返した。次にトルエンをロータリーエバポレータにより除去し、生じた固体を一晩減圧乾燥して18.70g(84%)の赤色固体を得た。
【0230】
(発明の実施例7)1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;および少なくとも1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5,7−ビス{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5],3[5],5[5]−トリス(3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの混合物の合成
【0231】
この生成物の合成は、発明の実施例3のTBPAが、発明の実施例2のTBPAの代わりに用いられたことを除いて発明の実施例6と同様である。
【0232】
(発明の実施例8)1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5,7−ビス{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5],3[5],5[5]−トリス(3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタン;および少なくとも1,3−ビス(3[1]/4[1]−(フェニルエチニル)フェニル)−5−{3[2]/4[2]−[1[3],3[3],5[3]−トリス(3[4]/4[4]−(フェニルエチニル)フェニル)アダマンタ−7[3]−イル]フェニル}−7−{3[5]/4[5]−[3[6]−(3[7]/4[7]−(1[8],3[8],5[8]−トリス(3[9]/4[9]−(フェニルエチニル)フェニル)アダマンタ−7[8]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの混合物の合成
【0233】
この生成物の合成は、発明の実施例4のTBPAが、発明の実施例2のTBPAの代わりに用いられたことを除いて発明の実施例6と同様である。
【0234】
(発明の実施例9)発明の実施例8と比較して減少した量のオリゴマーによる1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5,7−ビス{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5],3[5],5[5]−トリス(3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタン;および少なくとも1,3−ビス(3[1]/4[1]−(フェニルエチニル)フェニル)−5−{3[2]/4[2]−[1[3],3[3],5[3]−トリス(3[4]/4[4]−(フェニルエチニル)フェニル)アダマンタ−7[3]−イル]フェニル}−7−{3[5]/4[5]−[3[6]−(3[7]/4[7]−(1[8],3[8],5[8]−トリス(3[9]/4[9]−(フェニルエチニル)フェニル)アダマンタ−7[8]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの合成
【0235】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥250mLの3頚丸底フラスコに、10.00g(11.29mmol)の発明の実施例4のTBPA、0.6335g(0.9026mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、0.4735g(1.8053mmol)のトリフェニルホスフィン、0.1719g(0.9026mmol)のヨウ化銅(I)、および50mLのトリエチルアミンを加えた。この混合物を室温で5分間撹拌してから、80℃に加熱した。この混合物に、添加用ロートにより2mLトリエチルアミン中の2.30496g(22.566mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃で4時間加熱した。次にこの混合物に、添加用ロートにより滴下しながら2mLトリエチルアミン中の0.7117g(5.6415mmol)のm−ジエチニルベンゼンを加えた。この反応混合物を、80℃で2時間加熱してから、添加用ロートにより6mLトリエチルアミン中の6.9146g(67.6975mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物の精製は、発明の実施例7と同様である。
【0236】
(発明の実施例10)発明の実施例8および9と比較してさらに減少した量のオリゴマーによる1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5,7−ビス{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5],3[5],5[5]−トリス(3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタン;および少なくとも1,3−ビス(3[1]/4[1]−(フェニルエチニル)フェニル)−5−{3[2]/4[2]−[1[3],3[3],5[3]−トリス(3[4]/4[4]−(フェニルエチニル)フェニル)アダマンタ−7[3]−イル]フェニル}−7−{3[5]/4[5]−[3[6]−(3[7]/4[7]−(1[8],3[8],5[8]−トリス(3[9]/4[9]−(フェニルエチニル)フェニル)アダマンタ−7[8]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの合成
【0237】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥250mLの3頚丸底フラスコに、10.00g(11.29mmol)の発明の実施例4のTBPA、0.6335g(0.9026mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、0.4735g(1.8053mmol)のトリフェニルホスフィン、0.1719g(0.9026mmol)のヨウ化銅(I)、および48mLのトリエチルアミンを加えた。この混合物を室温で5分間撹拌してから、80℃に加熱した。この混合物に、添加用ロートにより2mLトリエチルアミン中の4.0335g(39.490mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃で4時間加熱した。次にこの混合物に、添加用ロートにより滴下しながら2mLトリエチルアミン中の0.7117g(5.6415mmol)のm−ジエチニルベンゼンを加えた。この反応混合物を、80℃で2時間加熱してから、添加用ロートにより6mLトリエチルアミン中の4.6098g(45.1317mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物の精製は、発明の実施例7と同様である。
【0238】
(発明の実施例11)1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,4−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;および少なくとも1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5−{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5]、3[5]、5[5]−トリス[3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}−7−{3[7]/4[7]−[4[8]−(3[9]/4[9]−(1[10]、3[10]、5[10]−トリス[3[11]/4[11]−(フェニルエチニル)フェニル)アダマンタ−7[10]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの合成
【0239】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥250mLの3頚丸底フラスコに、8.2040g(9.2565mmol)の上記発明の実施例4のTBPA、0.5198g(0.7405mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、0.3885g(1.4810mmol)のトリフェニルホスフィン、0.1410g(0.7405mmol)のヨウ化銅(I)、および41mLのトリエチルアミンを加えた。この混合物を室温で5分間撹拌してから、80℃に加熱した。この混合物に、添加用ロートにより4mLトリエチルアミン中の0.2919g(2.3141mmol)のm−ジエチニルベンゼンおよび0.2919g(2.3141mmol)のp−ジエチニルベンゼンを滴下しながら加えた。この反応混合物を、80℃で8時間加熱してから、添加用ロートにより5mLトリエチルアミン中の7.5637g(74.0521mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物の精製は、発明の実施例7と同様である。
【0240】
(発明の実施例12)発明の実施例11と比較して減少した量のオリゴマーによる1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,4−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;および少なくとも1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5−{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5]、3[5]、5[5]−トリス[3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}−7−{3[7]/4[7]−[4[8]−(3[9]/4[9]−(1[10]、3[10]、5[10]−トリス[3[11]/4[11]−(フェニルエチニル)フェニル)アダマンタ−7[10]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの合成
【0241】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥250mLの3頚丸底フラスコに、11.72g(13.22mmol)の上記発明の実施例4のTBPA、0.7425g(1.0579mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、0.5549g(2.1158mmol)のトリフェニルホスフィン、0.2015g(1.0579mmol)のヨウ化銅(I)、および58mLのトリエチルアミンを加えた。この混合物を室温で5分間撹拌してから、80℃に加熱した。次いでこの混合物に、添加用ロートにより3mLトリエチルアミン中の2.7013g(26.4472mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃で4時間加熱した。この混合物に、添加用ロートにより6mLトリエチルアミン中の0.4170g(3.3059mmol)のm−ジエチニルベンゼンおよび0.4170g(3.3059mmol)のp−ジエチニルベンゼンを滴下しながら加えた。この反応混合物を、80℃で8時間加熱してから、添加用ロートにより7mLトリエチルアミン中の8.1039g(79.3415mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物の精製は、発明の実施例7と同様である。
【0242】
(発明の実施例13)発明の実施例11および12と比較してさらに減少した量のオリゴマーによる1,3−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;1,4−ビス{3’/4’−[1’’,3’’,5’’−トリス(3’’’/4’’’−(フェニルエチニル)フェニル)アダマンタ−7’’−イル]フェニルエチニル}ベンゼン;および少なくとも1,3−ビス[3[1]/4[1]−(フェニルエチニル)フェニル]−5−{3[2]/4[2]−[3[3]−(3[4]/4[4]−(1[5]、3[5]、5[5]−トリス[3[6]/4[6]−(フェニルエチニル)フェニル)アダマンタ−7[5]−イル)フェニルエチニル)フェニルエチニル]フェニル}−7−{3[7]/4[7]−[4[8]−(3[9]/4[9]−(1[10]、3[10]、5[10]−トリス[3[11]/4[11]−(フェニルエチニル)フェニル)アダマンタ−7[10]−イル)フェニルエチニル)フェニルエチニル]フェニル}アダマンタンの合成
【0243】
水コンデンサ、オーバーヘッド撹拌機、熱電対、窒素導入口−出口および加熱マントルを備えた乾燥500mLの3頚丸底フラスコに、35.16g(39.67mmol)の上記発明の実施例4のTBPA、2.2276g(3.1737mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、1.6648g(6.3473mmol)のトリフェニルホスフィン、0.6044g(3.1737mmol)のヨウ化銅(I)、および170mLのトリエチルアミンを加えた。この混合物を室温で5分間撹拌してから、80℃に加熱した。この混合物に、添加用ロートにより9mLトリエチルアミン中の14.1819g(138.848mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃で4時間加熱した。この混合物に、添加用ロートにより17mLトリエチルアミン中の1.2511g(9.9177mmol)のm−ジエチニルベンゼンおよび1.2511g(9.9177mmol)のp−ジエチニルベンゼンを滴下しながら加えた。この反応混合物を、80℃で8時間加熱してから、添加用ロートにより21mLトリエチルアミン中の16.2079g(158.6831mmol)のフェニルアセチレンを滴下しながら加えた。反応混合物を80℃でさらに4時間加熱した。反応混合物の精製は、発明の実施例7と同様である。
【0244】
(発明の実施例14)
【0245】
水コンデンサ、窒素導入口−出口、磁気撹拌装置、油浴を備えた乾燥500mLの3頚丸底フラスコに、10gの発明の実施例6、100gのキシレン類および0.67gのポリカーボシランを加えた。反応混合物を145℃で15.5時間加熱した。次に大部分のキシレン類を、粘稠性液体が得られるまでロータリーエバポレータにより除去した。次いでこのフラスコに100gのシクロヘキサノンを加えた。次に大部分の溶媒を、再度粘稠性液体が得られるまでロータリーエバポレータにより除去した。この工程を2回以上繰り返して、全てのキシレン類がシクロヘキサノンに交換されることを確認した。次いで溶液をシクロヘキサノンで希釈し、23%の固体濃度溶液を作製した。
【0246】
【表9】

【0247】
(発明の実施例15)
【0248】
磁気撹拌バーを備えたプラスチックボトルに、10.30gのポリアセナフチレン、0.30gのポリカーボシランおよび138.38gのキシレン類を加えた。この溶液を室温で24時間撹拌した。次いで溶液を500mLの三頚フラスコに移し、10.00gの発明の実施例6および追加の19.8gのキシレンを加えた。溶液を窒素で5分間流し、145℃で15.5時間加熱した。次に大部分のキシレン類を、粘稠性液体が得られるまでロータリーエバポレータにより除去した。次いでこのフラスコに150gのシクロヘキサノンを加えた。次に大部分の溶媒を、再度粘稠性液体が得られるまでロータリーエバポレータにより除去した。この工程を2回以上繰り返して、全てのキシレン類がシクロヘキサノンに交換されることを確認した。次いで溶液をシクロヘキサノンで希釈し、23%の固体濃度溶液を作製した。溶液を、0.1μmテフロンフィルタを通して1平方インチ当たり20ポンド未満で徐々にろ過した。前述のステップを繰り返した。最終組成物は、3重量パーセントのポリカーボシランを有する23%固体、50重量パーセントのポリアセナフチレンであり、残りは、熱硬化性成分であった。
【0249】
【表10】

【0250】
(発明の実施例16)
【0251】
アセチレン官能基化ポロゲンの合成
【0252】
コンデンサ、磁気撹拌装置および窒素導入口−出口、油浴を備えた乾燥500mLの3頚フラスコに、0.262g(6.54mmolに相当する鉱油中60%懸濁液)の水素化ナトリウム、および60mlのヘキサンを加えた。この混合物を室温で5分間撹拌し、上層のヘキサンをデカントした。上記混合物に0.695g(5.93mmol)の4−エチニルアニリンおよび144gのTHFを加えた。この溶液を室温で1時間撹拌し、15.0gのエポキシ官能基化ポリノルボルネンを加えた。反応混合物を60℃で12時間加熱した。次にTHFをロータリーエバポレータにより除去し、生じた混合物を50mlのトルエンに溶解した(溶液A)。
【0253】
Heck反応
【0254】
コンデンサ、機械的撹拌機および窒素導入口−出口を備えた乾燥500mLの3頚フラスコに、25.75g(26.00mmol)のS−TBPA、1.461g(2.081mmol)のジクロロビス(トリフェニルホスフィン)パラジウム(II)、1.092g(4.162mmol)のトリフェニルホスフィン、0.3963g(2.081mmol)のヨウ化銅(I)、160mLのトリエチルアミンおよび80mlのトルエンを加えた。この混合物を80℃に加熱し、0.82g(6.5mmol)のm−ジエチニルベンゼンを反応混合物に滴下しながら加えた。この反応混合物を、80℃で4時間加熱してから、上記溶液Aを反応混合物に滴下しながら加えた。反応混合物を80℃で12時間加熱してから、21.3g(208.1mmol)のフェニルアセチレンおよび30mlのトルエンを反応混合物に滴下しながら加えた。この溶液を、80℃で4時間加熱した。
【0255】
処理
【0256】
反応混合物を室温まで冷却し、コンデンサ、機械的撹拌機および窒素導入口−出口を備えた1Lの3頚フラスコに移し、100mlのトルエンを加えた。次にこの溶液を6N HClで中和した。生じた水を除去した。次いでこのトルエン溶液を、100mLの6N HClと共に60℃で30分間撹拌した。混合物をセライト(celite(登録商標))を通してろ過した。次いで水性溶液を除去した。HCl抽出を2回以上繰り返した。次にトルエン溶液を100mLの脱イオン水で2回洗浄した。この溶液を、100mLのアンモニア溶液中0.1MのN−アセチル−システインと共に60℃で30分間撹拌した。次いで水性溶液を除去した。アンモニア抽出を5回以上繰り返した。次にトルエンをロータリーエバポレータにより除去し、生じた固体を一晩減圧乾燥した。
【0257】
製剤化
【0258】
125mLのプラスチックボトルに、4.48gの上記固体、0.047gのオルト−クレゾールノボラックおよび40.74gのキシレン類を加えた。この溶液を室温で1時間撹拌した。次いで溶液を、0.1μmテフロンフィルタを通してろ過した。
【図面の簡単な説明】
【0259】
【図1】2001年10月17日に出願された本発明者らの係属中特許出願PCT/US01/22204に開示されているモノマー調製法を示す図である。
【図2】Reichertの先行技術のモノマー調製法を示す図である。

【特許請求の範囲】
【請求項1】
式I
【化1】

[式中、Eは、かご型化合物であり;Qは、同じであるか、または異なっていて、アリール、分枝状アリール、および置換アリールから選択され(置換基としては、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルが挙げられる。);Aは、置換または非置換アリールアルキニル基を有する置換または非置換アリールであり(置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられ、アリールは、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられる。);hは、0から10であり;iは、0から10であり;jは、0から10であり;wは、0または1である。]
の少なくとも1種のオリゴマーまたはポリマーを含む組成物。
【請求項2】
前記オリゴマーまたはポリマーが、式II
【化2】

のアダマンタンであり、または
前記オリゴマーまたはポリマーが、式III
【化3】

のジアマンタンモノマーであり、
式中、前記hは、0から10であり;前記iは、0から10であり;前記jは、0から10であり;前記各Rは、同じであるか、または異なっており、水素、ハロゲン、アルキル、アリール、置換アリール、ヘテロアリール、アリールエーテル、アルケニル、アルキニル、アルコキシル、ヒドロキシアルキル、ヒドロキシアリール、ヒドロキシアルケニル、ヒドロキシアルキニル、ヒドロキシルまたはカルボキシルから選択され、前記各Yは、同じであるか、または異なっており、水素、アルキル、アリール、置換アリールまたはハロゲンから選択され;前記各Aは、置換または非置換アリールアルキニル基を有する置換または非置換アリールである(置換基としては、水素、ハロゲン、アルキル、フェニルまたは置換アリールが挙げられ;アリールとしては、フェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールが挙げられる。)、請求項1に記載の組成物。
【請求項3】
前記Rがフェニルである請求項2に記載の組成物。
【請求項4】
前記Yが水素である請求項2に記載の組成物。
【請求項5】
前記アダマンタンオリゴマーまたはポリマーが、式V
【化4】

[hは0または1である。]
を有するか、または
前記アダマンタンオリゴマーまたはポリマーが、式VI
【化5】

[hが0または1である。]
を有する、請求項2に記載の組成物。
【請求項6】
前記アダマンタンオリゴマーまたはポリマーが、式VII
【化6】

を有するか、または
前記アダマンタンオリゴマーまたはポリマーが、式VIII
【化7】

を有する、請求項5に記載の組成物。
【請求項7】
前記アダマンタンオリゴマーまたはポリマーが、式IX
【化8】

を有するか、または
前記アダマンタンオリゴマーまたはポリマーが、式X
【化9】

を有する、請求項5に記載の組成物。
【請求項8】
前記アダマンタンオリゴマーまたはポリマーが、式XI
【化10】

を有し、
前記アダマンタンオリゴマーまたはポリマーが、式XII
【化11】

を有するか、または
前記アダマンタンオリゴマーまたはポリマーが、式XIII
【化12】

を有し、
前記アダマンタンオリゴマーまたはポリマーが、式XIV
【化13】

を有する、請求項2に記載の組成物。
【請求項9】
前記オリゴマーまたはポリマーが、アダマンタンに基づく請求項1に記載の組成物。
【請求項10】
前記オリゴマーまたはポリマーが、アダマンタンに基づく請求項2に記載の組成物。
【請求項11】
前記Aが、式IV
【化14】

[式中、Bは(R−(Ar)−(C≡C)であり(mは0、1、2または3であり;nは0、1、2、3またはそれ以上であり;xは2、3、4または5であり、Rは水素、ハロゲン、アルキル、t−ブチル、フェニルまたは置換アリールであり、Arはフェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールである。)、Yは前記と同じYであり、Zは水素、フェニルエチニルであるか、または前記Bと同じである。]である、請求項2に記載の組成物。
【請求項12】
前記Bが、(R−(Ar)−(C≡C)(mは0、1、2または3であり、nは0、1、2、3またはそれ以上であり、xは2、3、4または5であり、Rは水素、ハロゲン、アルキル、t−ブチル、フェニルまたは置換アリールであり、Arはフェニル、ビフェニル、ナフチル、テルフェニル、アントラセニル、ポリフェニレン、ポリフェニレンエーテルまたは置換アリールである。)である、請求項11に記載の組成物。
【請求項13】
前記Bが、m−ジエチニルベンゼン、p−ジエチニルベンゼン、ジエチニルナフタレン、ジエチニルビフェニルおよびジエチニルフェニレンオキシドからなる群から選択される、請求項12に記載の組成物。
【請求項14】
接着増進剤をさらに含む請求項11に記載の組成物。
【請求項15】
ポロゲンをさらに含む請求項11に記載の組成物。
【請求項16】
請求項2に記載の組成物を含むスピンオン組成物。
【請求項17】
少なくとも1種の溶媒をさらに含む請求項16に記載のスピンオン組成物。
【請求項18】
請求項16に記載のスピンオン組成物を含む層。
【請求項19】
前記組成物が硬化されている請求項18に記載の層。
【請求項20】
請求項18に記載の層をその上に有する基体。
【請求項21】
請求項20に記載の基体を含むマイクロチップ。
【請求項22】
約25,000オングストロームまでの厚さを有する不規則有機材料を含む誘電体膜。
【請求項23】
前記厚みが、約16,000オングストロームまでである請求項22に記載の誘電体膜。
【請求項24】
前記厚みが、約10,000オングストロームまでである請求項23に記載の誘電体膜。
【請求項25】
前記厚みが、約5,000オングストロームまでである請求項24に記載の誘電体膜。
【請求項26】
前記厚みが、約1,000オングストロームまでである請求項25に記載の誘電体膜。
【請求項27】
請求項1または2の組成物のうちの少なくとも1種を提供すること;
少なくとも1種の溶媒を提供すること;および
コーティング溶液を形成するために少なくとも1種の組成物および少なくとも1種の溶媒を組み合わせること
を含むコーティング溶液を形成する方法。
【請求項28】
少なくとも1種の接着増進剤を提供すること、および前記少なくとも1種の接着増進剤を、前記少なくとも1種の組成物および前記少なくとも1種の溶媒と組み合わせることをさらに含む請求項27に記載の方法。
【請求項29】
少なくとも1種のポロゲンを提供すること、および前記少なくとも1種のポロゲンを、前記少なくとも1種の組成物および前記少なくとも1種の溶媒と組み合わせることをさらに含む請求項27に記載の方法。
【請求項30】
少なくとも1種のポロゲンを提供すること、および前記少なくとも1種のポロゲンを、前記少なくとも1種の組成物、前記少なくとも1種の接着増進剤および前記少なくとも1種の溶媒と組み合わせることをさらに含む請求項28に記載の方法。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2006−526035(P2006−526035A)
【公表日】平成18年11月16日(2006.11.16)
【国際特許分類】
【出願番号】特願2005−504658(P2005−504658)
【出願日】平成15年12月30日(2003.12.30)
【国際出願番号】PCT/US2003/041533
【国際公開番号】WO2005/010071
【国際公開日】平成17年2月3日(2005.2.3)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
テフロン
【出願人】(501228624)ハネウエル・インターナシヨナル・インコーポレーテツド (24)
【Fターム(参考)】