説明

機器の除染方法及び機器の除染装置

【課題】排水量を少なくすることが可能な機器の除染方法及び除染装置を提供する。
【解決手段】乾燥ガス供給工程(ステップS101)の後に機器内を真空引きするので(ステップS103)、真空引きされた機器内の圧力に基づいて、機器内に液体状態の重水が残存しているか否かを容易に判断でき、ステップS105において重水が残存していないことを確実に把握した上で機器内に水蒸気の供給を行う旨の決定ができる。そして、機器内に液体状態の重水が残存しない状態で、機器内に水蒸気を導入して同位体交換反応を行なう(ステップS107)ので、同位体交換に要する時間が低減される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トリチウムを含む重水を取り扱う機器の除染方法及び当該機器の除染装置に関する。
【背景技術】
【0002】
原子力施設において重水(DO)を中性子の減速材として用いると、放射性物質であるトリチウム(T、三重水素)が生成し重水中に蓄積する。このようなトリチウムは主にトリチウム水(TO、TDO)の形態で重水中に存在している。そして、このような重水を内部で取り扱う機器の定期点検、補修、解体時等には、作業環境を向上すべくこのような機器の内部からトリチウムを十分除去する、いわゆる、トリチウムの除染作業が必要となる。
【0003】
このような除染作業として、従来は、まず、機器の内部から重水を抜いた後、機器内に乾燥空気を供給し機器内に残存するトリチウムを含む液体状態の重水を蒸発させて機器内から除去する。そして、この乾燥空気を供給する過程で、機器内の空気中の放射線量が平衡に達したり所定の設定値よりも低くなったりした場合に液体状態の重水の蒸発が完了したと判断し、機器内に軽水(HO)の水蒸気を含む空気を供給し、機器の内面に吸着している重水中のトリチウムを軽水との同位体交換反応により空気中に回収し機器内からトリチウムを除染している(特許文献1参照)。
【特許文献1】特開平11−281792号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の方法では、同位体交換反応におけるトリチウムの除染に多大の時間を必要とする場合があり、この場合トリチウムを含む大量の排水が出てしまっていた。
【0005】
本発明は、上記課題に鑑みてなされたものであり、除染を効率よく行って排水量を少なくすることが可能な機器の除染方法及び除染装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
原子炉施設内等における内部で重水を取り扱う機器は複雑な形状や構造を有していて、液体状態の重水が溜まりやすい溜まり部が多く存在すると共に、この溜まり部からの重水の蒸発速度は遅くこの溜まり部の重水を乾燥空気によって乾燥するのにはかなりの時間がかかる。そして、従来の方法では、機器内の空気の放射線量に基づいて、乾燥空気の供給による乾燥工程から水蒸気の供給による同位体交換工程への移行のタイミングを判断しているが、溜まり部からの重水の蒸発速度は遅く空気の放射線量が上昇しにくいため、重水が残っているにもかかわらず機器内の液体状態の重水の蒸発が完了したとして同位体交換工程に移行する場合があった。そして、このように機器内に液体状態の重水が残ったまま同位体交換工程を行うことにより、同位体交換反応によるトリチウムの除染に多大の時間を要し、トリチウムを含む大量の水の排出を招いていた。
【0007】
そこで、本発明に係る機器の除染方法は、トリチウムを含む重水を内部で取り扱う機器の除染方法において、機器の内部に乾燥ガスを供給する乾燥ガス供給工程と、乾燥ガス供給工程の後に機器の内部を真空引きする真空引き工程と、真空引きされた機器の内部の圧力を取得し、この圧力に基づいて機器の内部に軽水の水蒸気を含むガスを供給するか否かを決定する水蒸気供給決定工程と、水蒸気供給決定工程において機器の内部に軽水の水蒸気を含むガスを供給することが決定された後に、機器の内部に軽水の水蒸気を含むガスを供給する水蒸気供給工程と、を含むことを特徴とする。
【0008】
本発明の除染方法によれば、乾燥ガス供給工程の後に機器内が真空引きされる。このとき、機器内に液体状態の重水が残存している場合と残存していない場合とでは、真空引きにより到達する機器内の圧力が大きく異なる。このため、機器内の圧力に基づいて、機器内に液体状態の重水が残存しているか否かを容易に判断でき、重水が残存していないことを確実に把握した上で機器内に水蒸気を含むガスの供給を行う旨の決定ができる。そして、機器内に液体状態の重水が残存しない状態で、機器内に水蒸気が導入されて同位体交換反応が行なわれるので、同位体交換に要する時間が低減され、このときに排出される排水の量が低減される。
【0009】
ここで、水蒸気供給決定工程において、圧力が所定の基準値より低い場合に機器の内部への軽水の水蒸気の供給を決定することが好ましい。
【0010】
機器内に液体状態の重水が残存している場合は、この重水の蒸気圧以下まで機器内を減圧することが困難である。そこで、この機器内の圧力が重水の蒸気圧に対応する基準値を下回れば、機器内にトリチウムを含む液体状態の重水が残留していないと好適に判断でき、水蒸気を供給するか否かを容易に決定できる。
【0011】
また、水蒸気供給決定工程において機器の内部に軽水の水蒸気を供給しないことを決定した場合に、乾燥工程を再び行うことが好ましい。
【0012】
これによって、機器内に液体状態の重水が残存する場合に再び乾燥工程が行われ、機器内に残存する液体状態の重水を確実に除去した後に、水蒸気を供給して同位体交換を行わせることができる。
【0013】
ここで、乾燥ガス供給工程では、さらに、機器を加熱することが好ましい。
【0014】
機器の少なくとも一部、例えば、液体状態の重水が残留し易いと考えられる部位等を加熱することにより、液体状態の重水の蒸発が促進され、乾燥ガス供給工程に要する時間の短縮化が可能とされる。
【0015】
また、水蒸気供給工程において、機器の内部に供給する軽水の水蒸気を含むガスの露点を−5〜−15℃とすることが好ましい。
【0016】
これによれば、機器内での同位体交換反応が効率よく行われ、同位体交換に要する時間をより低下させることができる。
【0017】
ここで、軽水の水蒸気の導入によって発生する同位体交換反応は、ガス相におけるトリチウムと軽水素との比と、吸着相におけるトリチウムと軽水素との比と、の差によって推進されると考えられ、また、この同位体交換反応が平衡に達するのに比較的長時間を要すると考えられる。
【0018】
そこで、水蒸気供給工程は、機器の内部に軽水の水蒸気を所定量含むガスを供給する供給工程と、供給工程において供給された機器の内部のガス中のトリチウム濃度に関する情報を取得するトリチウム濃度取得工程と、ガス中のトリチウムの濃度が所定値よりも高くなった場合に、ガス中の水蒸気を凝縮させて液体として回収する凝縮工程と、を含むことが好ましい。
【0019】
これにより、水蒸気を所定量供給した後にガス中のトリチウムの濃度がモニターされ、この濃度が所定値より高い、すなわち、ガス中におけるトリチウム/軽水素の比が十分高くなって、同位体交換反応が推進しにくくなってから、ガス中の水蒸気が凝縮して回収される。このため、常時トリチウムを含む水蒸気を凝縮させて回収するのに比して、トリチウムを含む排水の量がより低減できる。
【0020】
本発明に係る機器の除染装置は、トリチウムを含む重水を内部で取り扱う機器の除染装置において、機器の内部に乾燥ガスを供給する乾燥ガス供給手段と、機器の内部を真空引きする真空引き手段と、真空引きされた機器の内部の圧力を取得する圧力取得手段と、機器の内部に軽水の水蒸気を含むガスを供給する水蒸気供給手段と、を備えることを特徴とする。
【0021】
本発明の機器の除染装置によれば、乾燥ガス供給工程の後に機器内を真空引きすることができる。このとき、機器内に液体状態の重水が残存している場合と残存していない場合とでは、真空引きにより到達する機器内の圧力が大きく異なる。このため、圧力取得手段によって取得される機器内の圧力に基づいて、機器内に液体状態の重水が残存しているか否かを判断でき、重水が残存していないことを確実に把握した上で機器内に水蒸気を含むガスの供給を行う旨の決定ができる。そして、機器内に液体状態の重水が残存しない状態で、機器内に水蒸気を導入して同位体交換反応を行なえるので、同位体交換に要する時間が低減され、このときに排出される排水の量が低減される。
【0022】
ここで、乾燥ガス供給手段は、内部に吸着材が充填されると共にその軸回りに回転される筒状体を備え、筒状体内の回転により回転運動する吸着材の内、固定された第一領域を通過する吸着材に対して機器から排出される重水の水蒸気を含むガスを供給し水蒸気を吸着させて乾燥ガスを得ると共に、吸着材の内第一領域と回転方向に離間され固定された第二領域を通過する吸着材に対し再生用ガスを供給して吸着材の再生を行なわせることが好ましい。
【0023】
このように、内部に吸着材を保持する筒状体を有し、この筒状体を回転させることによりガスの吸着と吸着材の再生とを切替操作なしに連続的に行わせることが可能な乾燥ガス供給手段は、従来のように2つの吸着塔を有する加熱再生方式や圧力スイング再生方式等の乾燥ガス供給手段に比して小型化ができる。このため、除染機器の設置スペースを低減できると共に、設備コストを低減できる。なお、得られた乾燥ガスの一部を加熱して再生用ガスとして用いることができる。
【0024】
また、筒状体を密閉状態で内部に収容する密閉容器と、密閉容器内の水蒸気を回収する二次回収手段と、を備えることが好ましい。
【0025】
上述のような回転する筒状体を用いてガスの乾燥を行う場合、トリチウムを含むガスを完全にシールすることが困難であり、トリチウムを含むガスが筒状体から外部にリークする場合がある。そこで、筒状体を密閉容器内に収容すると共に、密閉容器内にリークしたトリチウムを含む水蒸気を二次回収手段によって回収することにより、トリチウムが外部に漏れ出すことが防止される。
【発明の効果】
【0026】
本発明においては、乾燥ガス供給工程の後に機器の内部を真空引きするので、真空引きされた機器の内部の圧力に基づいて、機器の内部に液体状態の重水が残存しているか否かを容易に判断でき、重水が残存していないことを確実に把握した上で機器の内部に水蒸気の供給を行う旨の決定ができる。そして、機器の内部に液体状態の重水が残存しない状態で、機器の内部に水蒸気を導入して同位体交換反応を行なうので、同位体交換に要する時間が低減され、このときに排出される排水の量が低減される。
【発明を実施するための最良の形態】
【0027】
以下、添付図面を参照しながら、本発明に係る機器の除染方法及び機器の除染装置の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。
【0028】
図1は、本実施形態に係るトリチウム除染対象の機器10と、この機器10を除染する除染装置100を示す概略構成図である。
【0029】
機器10は、詳細な図示は省略するが、重水炉において減速材として用いられる重水をその内部で取り扱うものであり、ポンプや配管等を含んで構成されている。
【0030】
除染装置100は、機器10から、トリチウム(T)を除去する装置であり、主として、機器10内を通過して排出された空気からトリチウムを含む重水の水蒸気を吸着しその空気を乾燥させる乾燥装置20と、乾燥装置20で乾燥された空気を機器10へ供給するファン30と、機器10内のガスを排気するための真空ポンプ(真空引き手段)40と、機器10内に軽水(HO)の水蒸気を含むガスを導入するための加湿装置(水蒸気供給手段)50と、乾燥装置20で吸着された水蒸気を凝縮させる凝縮器60と、を備えている。なお、トリチウムの大部分は、トリチウム水(TO、TDO)として存在している。
【0031】
乾燥装置20は、乾燥部20aと再生部20bとを有している。乾燥部20aはラインL1を介して機器10と接続されており、トリチウムを含む重水の水蒸気を含んで機器10から排出される空気を導入し、この空気を乾燥部20a内の吸着剤と接触させて空気中のトリチウムを含む重水の水蒸気を吸着し空気を乾燥させる。この吸着材として、例えば、シリカゲル、活性炭、モレキュラーシーブを使用できる。
【0032】
乾燥部20aは、さらに、ラインL2を介してファン30と接続され、ファン30はラインL3を介して機器10と接続されている。そして、ファン30は、乾燥装置20で乾燥された空気を機器10に供給し、機器10内に付着したり、機器10内に形成された酸化被膜に付着して残留しているトリチウム水を含む液体状態の重水を蒸発させて空気側に移行させ、機器10内を乾燥させる。ここで、ラインL1、ラインL2及びラインL3には、空気の流通/遮断を制御可能なバルブ51,52,53を各々備えている。なお、乾燥装置20とファン30とが乾燥ガス供給手段15を構成している。
【0033】
一方、再生部20bには、ラインL2でバルブ52よりも乾燥装置20側から分岐されるラインL4が接続されている。このラインL4には、ラインL2から導入される乾燥された空気を加熱するヒータ23と、加熱された乾燥空気を再生部20bに供給するファン24と、が接続されている。また再生部20bと凝縮器60とはラインL5で接続されている。
【0034】
そして、再生部20bにおいては、乾燥部20aで水蒸気を吸着した吸着剤がラインL4を介して導入される再生用ガスとしての高温の乾燥空気と接触し、吸着剤に吸着されていたトリチウム水を含む重水が水蒸気として吸着剤から放出され、吸着材の再生がなされる。再生された吸着材は、再び、乾燥部20aで空気の乾燥を行うこととなる。
【0035】
凝縮器60は、吸着材から放出されたトリチウムを含む重水の水蒸気をラインL5を介して導入し、この水蒸気を水冷等により冷却して凝縮して液体に戻し、ラインL6を介して外部に回収すると共に、水分の除去された空気をラインL7を介してラインL1でバルブ51よりも乾燥装置20側の部分に戻す。
【0036】
真空ポンプ40は、バルブ55を有するラインL10を介して機器10と接続されている。また、このラインL10には、機器10内の圧力を測定する圧力計(圧力取得手段)42が接続されている。
【0037】
加湿装置50は、バルブ57を備えるラインL9によってラインL3に接続されており、ファン30によって機器10に送られるガスに、軽水(HO)の水蒸気を所定量供給可能とする。
【0038】
また、ラインL3には、ラインL3を流れる空気中のトリチウムの濃度等を測定すべく、ラインL3を流れるガスをサンプリングするためのサンプリングバルブ58を備えたラインL10が接続されている。
【0039】
さらに、この除染装置100は、ラインL1でバルブ51よりも機器10側から分岐すると共に、ラインL2でバルブ52よりもファン30側に合流し、途中にバルブ59が接続されたラインL12を備えている。このラインL12は、機器10からの排ガスを、乾燥装置20を通さずにファン30によって機器10に再び循環することを可能とする。
【0040】
また、機器10には、液体状態の重水が残存しやすい部位に、当該部位の温度を上昇可能な加熱ヒータ12が設置されている。
【0041】
つぎに、図1及び図2を参照して本実施形態に係る除染システムにおける除染方法について説明する。
【0042】
あらかじめ、バルブ55、バルブ57、バルブ58、バルブ59を閉とし、バルブ51、バルブ52、バルブ53を開としておく。また、図示しないドレンバルブ等を介して、機器10で取り扱っていた重水の大部分は抜き出されているものとする。
【0043】
まず、機器10内に液体状態で残留している、トリチウムを含む重水を蒸発させて除去すべく、ステップS101において、機器10内に乾燥空気を供給する。具体的には、乾燥装置20と凝縮器60とを運転しつつファン30を駆動し、乾燥装置20からの乾燥空気を機器10に供給してトリチウムを含む重水を蒸発させて空気側に回収し、機器10から排出された空気中に含まれる水蒸気を乾燥装置20の乾燥部20aで吸収し、この空気を再び乾燥空気として機器10に送る。また、乾燥部20aで吸収した水蒸気を再生部20bで放出させ、放出された水蒸気を凝縮器60で覆水してトリチウム水を含む重水を液体として回収する。
【0044】
この工程においては、乾燥用の空気が循環する、いわゆる、閉サイクル操作なので、乾燥操作におけるトリチウムのリークが低減されている。
【0045】
このような、乾燥空気供給工程を所定の時間行った後、この乾燥空気の供給を一旦終了し、ステップS105において真空引き工程を行う。この真空引き工程では、バルブ51、バルブ52、バルブ53を閉とした後、バルブ55を開として真空ポンプ40を運転し、機器10内の空気等のガスを排出して機器10内を減圧し真空引きする。
【0046】
そして、所定時間真空引き操作を行った後、ステップS105において、圧力計42の指示値を参照し、この圧力に基づいて水蒸気供給工程を開始するか否かを決定する。ここで、機器10内に液体状態の重水が残存していると、この重水の蒸気圧より低い圧力まで機器10内を減圧することは困難であり、減圧時の機器10内の圧力に基づいて機器内に液体状態の重水が残存しているかを好適に判断できる。そして、重水が残存していないと判断された場合に水蒸気供給工程を行うことを決定する。
【0047】
具体的には、機器10内の圧力が、水の飽和蒸気圧と同等程度として設定される基準値を、超えれば、機器10内には、まだ、液体状態の重水が機器10内に存在していると判断し、さらなる乾燥ガス供給工程を行うべくステップS108に進む。
【0048】
ステップS108では、再びバルブ55を閉とし、バルブ51〜53を開とすると共に、ファン30、乾燥装置20、凝縮器60を稼働し、乾燥空気を機器10内に供給し機器10内に残る液体状態である重水をさらに蒸発させて回収する。このとき、機器10の加熱ヒータ12を稼働させて、機器10内で重水が残りやすい部位の温度を上げ重水の温度を上昇させて蒸発を促進させる。そして、この操作を所定時間行ったのち、再びステップS103に戻って真空引きを行い、ステップS105で水蒸気供給工程を行うかか否かの判断を行う。
【0049】
一方、ステップS105において、機器10内の圧力が、上述の基準値以下の場合には、機器10内に液体状態の重水は存在せず、機器10内に水蒸気を供給する同位体交換反応工程へ移行すると決定して、ステップS107に進む。
【0050】
ステップS107では、バルブ55を閉とすると共にバルブ53、バルブ59を開として、機器10、ラインL1、ラインL12、ラインL2及びラインL3による閉ループを形成する。さらに、バルブ57を開放して加湿装置50から所定量の軽水(HO)の水蒸気を含む空気をこの閉ループ内に供給し、その後バルブ57を閉める。ここで、後述する同位体交換反応を短時間で行わせるべく、閉ループ内の空気の露点が−5〜−15℃となるように、軽水の水蒸気量を設定することが好ましい。
【0051】
そして、さらに、ステップS109に進んで、ファン30を駆動して、軽水の水蒸気を含む空気を機器10の閉ループ内を所定時間循環させる。これにより、機器10の内面に吸着している重水中のトリチウムと、循環される空気中の軽水と、が同位体交換を行い、吸着しているトリチウムが空気中に回収される。
【0052】
なお、同位体交換反応は、機器10の内表面に吸着している吸着水中のトリチウムと軽水との比と、空気中の水蒸気におけるトリチウムと軽水との比の差によって、推進力が生じると考えられる。そして、空気中の水蒸気におけるトリチウムの比率が高くなると、同位体交換反応がほとんど進まなくなる。
【0053】
そこで、加湿空気の循環を開始してから所定時間経過後に、ステップS111において、循環する空気中のトリチウム濃度を測定し、このトリチウム濃度が所定の基準濃度よりも高いか否かを判定する。
【0054】
そして、空気側のトリチウムの濃度が所定の基準値より高い場合は、同位体交換反応がほとんど進まなくなったと考えられ、新たな水蒸気の添加による再度の同位体交換が必要であると判断できる。ここで、所定の基準値としては、例えば、空気中の軽水素とトリチウムとの比が1:5×10−5となる場合に対応するトリチウム濃度とすることが好ましい。
【0055】
ステップS111において、再度の水蒸気の添加が必要と判断された場合には、ステップS115に進んで、バルブ59を閉めると共にバルブ51、バルブ52を開とし、乾燥装置20及び凝縮器60を稼働して、循環空気中のトリチウムを含む軽水の水蒸気を凝縮させて外部に排出させる。そして、ステップS107に戻って、閉ループ内に軽水の水蒸気を含む空気を再投入すると共に、ステップS109で軽水の水蒸気を含む空気を循環させて、機器10に吸着されたトリチウムの同位体交換反応を再び行う。
【0056】
一方、ステップS111において、空気中のトリチウムの濃度が所定の基準値以下の場合は、ステップS113に進んで、循環空気中のトリチウムの濃度が定常に達したかどうかを判定する。具体的には、異なる時刻でトリチウム濃度を各々測定し、この間の濃度変化が所定値以下であれば定常状態に達したと判定することができる。
【0057】
ここで、トリチウムの濃度が定常に達していないと判断された場合には、ステップS109に戻って、再びこの空気の循環を続けてさらなる同位体交換反応を続ける。
【0058】
これに対して、トリチウムの濃度が定常に達したと判断された場合には、機器10に吸着していたトリチウムが十分に除去されたと判断できるので、ステップS117に進んで、バルブ59を閉めると共にバルブ51、バルブ52を開とし、乾燥装置20及び凝縮器60を稼働して、循環空気中の水蒸気を凝縮させて外部に排出させる。これによって、機器10内から、トリチウムを含む軽水の水蒸気が除去され、機器10の除染が完了する。
【0059】
ここで、露点−15℃の空気を使用して機器の除染を行った結果に基づいて、上述のような除染方法の有用性を検証する。
【0060】
この機器の内面の酸化皮膜に含まれていたトリチウムは2×10Bq/cmであり、酸化皮膜に吸着されていたトリチウムは約200Bq/cmであった。上述の構成の除染装置によって露点−15℃の空気を機器内に通気することにより、酸化被膜に含まれたトリチウムは約2時間で乾燥した。そして、真空引きにより、機器内が乾燥されたことを把握した上で機器内の同位体交換をおこなった。酸化被膜に吸着されていたトリチウムを同位体交換反応で200Bq/cmから20Bq/cmまで除染するためには100時間を要した。
【0061】
機器内面を200Bq/cm以下に除染するためには、空気中の水分子と接触させ同位体交換反応を推進させることが必要であるが、トリチウムの絶対量は少ない。従来のように加湿した空気を循環して脱湿剤に通気すると、その脱湿剤の再生時には低濃度のトリチウムを含む排水が大量に発生することになる。これに対して、本実施形態に係る方法で除染を行うと、トリチウム濃度を監視しながら必要な水分を供給できるため、余分な排水の発生を防止できる。また、本実施形態に係る方法では、真空引きにより機器内の乾燥が確認されたのちに、同位体交換に移行するので効率がよい。
【0062】
以上説明したように、本実施形態においては、乾燥ガス供給工程の後に機器10内を真空引きしている。このとき、機器10内に液体状態の重水が残存している場合と残存していない場合とでは、真空引きにより到達する機器10内の圧力が大きく異なる。このため、機器10内の圧力に基づいて、機器10内に液体状態の重水が残存しているか否かを容易に判断でき、重水が残存していないことを確実に把握した上で機器10内に水蒸気の供給を行う旨の決定ができる。そして、機器10内に液体状態の重水が残存しない状態で、水蒸気が導入されて機器10内で同位体交換反応が行なわれるので、同位体交換に要する時間が低減され、このときに排出される排水の量が低減されている。
【0063】
また、水蒸気供給工程では、水蒸気を所定量供給した後にガス中のトリチウムの濃度をモニターし、この濃度が所定値より高い、すなわち、ガス中におけるトリチウム/軽水素の比が十分高くなって、同位体交換反応が推進しにくくなってから、ガス中の水蒸気を凝縮して回収している。このため、常時トリチウムを含む水蒸気を凝縮させて回収するのに比して、トリチウムを含む排水の量がより低減できている。
【0064】
次に、第二実施形態に係る除染装置200について図3により説明する。本実施形態の除染装置200が、第一実施形態の除染装置100と異なる点は、乾燥装置20に代えて、乾燥ロータ(筒状体)82を有する乾燥装置80を備えている点である。乾燥装置80とファン30とが乾燥ガス供給手段15を構成している。
【0065】
この乾燥装置80は、密閉グローブボックス(密閉容器)89内に気密状態で格納された主乾燥装置81と、密閉グローブボックス89と接続された副乾燥装置(二次回収装置)90と、を備えている。
【0066】
主乾燥装置81は、機器10に乾燥空気を送ると共に機器10からの水蒸気を含む空気を乾燥させるものであり、円筒形状をなすと共にシリカゲル等の吸着材82aが内部に充填され当該円筒の中心軸83回りに回転可能とされる乾燥ロータ82を備えている。乾燥ロータ82は、その円筒の外周に掛け渡された回転ベルト92を介してモータ91によって回転される。また、乾燥ロータ82内には、軸83の方向に延在する図示しないハニカム壁を有しており、このハニカム壁によって吸着材82aが保持されると共に、軸方向への空気の流通が可能となっている。
【0067】
除染装置200のラインL1は、乾燥ロータ82の回転により回転運動する吸着材82aの内、図示上側の固定された第一領域82bを通過する吸着材に対して機器10から排出された水蒸気を含むガスを供給するように乾燥ロータ82に対して接続されている。また、ラインL2は、ラインL1から導入され乾燥ロータ82の第一領域82bの吸着材82aと接触して乾燥された空気を回収してファン30に向かわせるように乾燥ロータ82に接続されている。
【0068】
また、主乾燥装置81は、第一実施形態と同様にラインL2から分岐し、途中に第一実施形態と同様のヒータ23が接続されたラインL4を備えている。ラインL4の端部は、乾燥ロータ82の回転により回転運動する吸着材82aの内、図示下側の固定された第二領域82cを通過する吸着材に対して高温の乾燥空気を供給するように乾燥ロータ82に接続され、これによって当該吸着材の再生がなされる。なお、吸着材の再生を効率よく行うべく、ライン1によって乾燥ロータ82の吸着材82aに供給される空気の向きと、ラインL4によって乾燥ロータ82の吸着材82aに供給される空気の向きは逆方向とされ、向流再生が可能とされている。ここで、第二領域82cに導入される再生用ガスとしての高温の乾燥空気の温度は、ヒータ23によって上述の第一領域82bに導入される水蒸気を含む空気よりも高温とされている。
【0069】
また、主乾燥装置81は、ラインL4から導入され、再生操作によって乾燥ロータ82の第二領域82cの吸着材82aから放出された水蒸気を含むこととなった空気を受け入れるラインL7を備えている。このラインL7はラインL1に合流すると共に、途中に、第一実施形態と同様のファン24及び第一実施形態と同様に凝縮水回収ラインL6を備えた凝縮器60を有している。このような主乾燥装置81は、−20℃程度の露点まで空気の乾燥が可能とされている。
【0070】
また、副乾燥装置90は、主乾燥装置81から密閉グローブボックス89内に若干量リークされるトリチウムを含む水蒸気を凝縮させて回収する物である。副乾燥装置90と主乾燥装置81とは、密閉グローブボックス89からの空気を導入するラインL15と、副乾燥装置90で乾燥された空気を密閉グローブボックス89内に戻すラインL16によって接続されている。このような副乾燥装置90としては、吸着材が充填された2つの塔を有し、一方側で乾燥を行い、他方側で再生を行う熱再生(サーマルスイング)型の乾燥装置や、圧力再生(圧力スイング)方式の乾燥装置が利用できる。この副乾燥装置90は、−60℃程度の露点にまで空気の乾燥が可能なことが好ましい。
【0071】
本実施形態の除染装置200においても、第一実施形態と同様の手順で主乾燥装置81によって機器10の除染を好適に行える。
【0072】
これに加えて、本実施形態のような主乾燥装置81は、乾燥ロータ82を回転させることにより、切替操作なしに吸着と再生とを連続的に行うことができ、従来のような2つの吸着塔を有し、各塔での吸着と再生とを交互に切り替えて行う加熱再生方式や圧力スイング再生方式の乾燥装置に比して、操作が容易であると共に、小型化が可能であり設備コストが低くなる。これは、機器10が大型で、乾燥空気の流量が大きくなる場合に特に顕著となる。
【0073】
詳しくは、吸着塔を2つ有するサーマルスイング式の乾燥装置では、二つの塔を再生用と乾燥用とで交互に切り替えて使用するため、装置が大型化してしまうと共に操作が煩雑となる。また、塔が大型化するとガスを流通させる際の圧力損失が大きくなり、ブロワ揚程が高くなってさらに装置が大型化する。一方、吸着塔を2塔有する圧力スイング再生方式の乾燥装置では、二つの塔を交互に切り替えることは同じであるが、圧力スイングにより再生を行うので、サーマルスイング式に比べて再生時間を小型化でき塔自体は小型化される。しかしながら、高圧の空気を必要とするために圧縮機を必要とし、シール性の高い圧縮機は装置が大型となると共に設備費が高くなる。
【0074】
また、乾燥ロータ82のような回転部を有する主乾燥装置81では、乾燥ロータ82内を流れる空気、すなわち、トリチウムを含む重水の水蒸気等を完全にシールすることが困難であり、特に、軸シール部等から、トリチウムを含む重水の水蒸気が密閉グローブボックス89内に若干リークする。ところが、本実施形態の除染装置200では、主乾燥装置81が密閉グローブボックス89内に密閉されていると共に、密閉グローブボックス89には副乾燥装置90が接続されており、密閉グローブボックス内にリークしたトリチウムは副乾燥装置90によって回収され、外部に漏れ出すことはない。ここで、主乾燥装置81からリークするトリチウム等の水蒸気の量は僅かであり、副乾燥装置90の容量は、主乾燥装置81が回収する量の1/10以下程度と、極めて小さい物とすることができ、副乾燥装置90としても十分小型で低コストの乾燥装置を採用でき、除染装置200全体の小型化及び低コスト化を図ることが可能とされている。
【0075】
なお、重水を取り扱う原子力施設においては、小型の2塔式の乾燥装置を予め備えていることが多く、このような乾燥装置を副乾燥装置90として用いることにより、本実施形態をより、低コストかつ省スペースに実施することができる。
【0076】
なお、本発明は、上記実施形態に限定されるものではなく、種々の変形態様をとることが可能である。
【0077】
例えば、上記実施形態では、加熱ヒータ12による加熱を、第2回目の乾燥工程(ステップS108)ではじめて行っているが、第1回目の乾燥工程(ステップS101)で行ってもよい。
【0078】
また、本実施形態では、乾燥用のガスとして乾燥空気を使用しているが、乾燥窒素等の他の乾燥ガスでもよい。
【図面の簡単な説明】
【0079】
【図1】第一実施形態に係る除染装置を示す図である。
【図2】図1の除染システムを用いた除染のフローを示す図である。
【図3】第二実施形態に係る除染装置を示す図である。
【符号の説明】
【0080】
10…機器、15…乾燥ガス供給手段、40…真空ポンプ(真空引き手段)、42…圧力計(圧力取得手段)、50…加湿装置(水蒸気供給手段)、82…乾燥ロータ(筒状体)、82a…吸着材、82b…第一領域、82c…第二領域、89…密閉グローブボックス(密閉容器)、90…副乾燥装置(二次回収手段)、100,200…除染装置。

【特許請求の範囲】
【請求項1】
トリチウムを含む重水を内部で取り扱う機器の除染方法において、
前記機器の内部に乾燥ガスを供給する乾燥ガス供給工程と、
前記乾燥ガス供給工程の後に前記機器の内部を真空引きする真空引き工程と、
前記真空引きされた機器の内部の圧力を取得し、前記圧力に基づいて前記機器の内部に軽水の水蒸気を含むガスを供給するか否かを決定する水蒸気供給決定工程と、
前記水蒸気供給決定工程において前記機器の内部に軽水の水蒸気を含むガスを供給することが決定された後に、前記機器の内部に軽水の水蒸気を含むガスを供給する水蒸気供給工程と、
を含むことを特徴とする機器の除染方法。
【請求項2】
前記水蒸気供給決定工程において、前記圧力が所定の基準値より低い場合に前記機器の内部への軽水の水蒸気の供給を決定することを特徴とする、請求項1に記載の機器の除染方法。
【請求項3】
前記水蒸気供給決定工程において前記機器の内部に軽水の水蒸気を供給しないと決定した場合に、前記乾燥ガス供給工程を再び行うことを特徴とする、請求項1又は2に記載の機器の除染方法。
【請求項4】
前記乾燥ガス供給工程では、さらに、前記機器を加熱することを特徴とする、請求項1〜3の何れか一項に記載の機器の除染方法。
【請求項5】
前記水蒸気供給工程で、前記機器の内部に供給する軽水の水蒸気を含むガスの露点を−5〜−15℃とすることを特徴とする請求項1〜4の何れか一項に記載の機器の除染方法。
【請求項6】
前記水蒸気供給工程は、前記機器の内部に軽水の水蒸気を所定量含むガスを供給する供給工程と、
前記供給工程において供給された前記機器の内部の前記ガス中のトリチウム濃度に関する情報を取得するトリチウム濃度取得工程と、
前記ガス中のトリチウムの濃度が所定値よりも高くなった場合に、前記ガス中の水蒸気を凝縮させて液体として回収する凝縮工程と、
を含むことを特徴とする、請求項1〜5の何れか一項に記載の機器の除染方法。
【請求項7】
トリチウムを含む重水を内部で取り扱う機器の除染装置において、
前記機器の内部に乾燥ガスを供給する乾燥ガス供給手段と、
前記機器の内部を真空引きする真空引き手段と、
前記真空引きされた機器の内部の圧力を取得する圧力取得手段と、
前記機器の内部に軽水の水蒸気を含むガスを供給する水蒸気供給手段と、
を備えることを特徴とする機器の除染装置。
【請求項8】
前記乾燥ガス供給手段は、内部に吸着材が充填されると共にその軸回りに回転される筒状体を備え、前記筒状体内の回転により回転運動する前記吸着材の内、固定された第一領域を通過する吸着材に対して前記機器から排出される前記重水の水蒸気を含むガスを供給し前記水蒸気を吸着させて前記乾燥ガスを得ると共に、前記吸着材の内前記第一領域と前記回転方向に離間され固定された第二領域を通過する吸着材に対して再生用ガスを供給して前記吸着材の再生を行わせることを特徴とする、請求項7に記載の機器の除染装置。
【請求項9】
前記筒状体を密閉状態で内部に収容する密閉容器と、前記密閉容器内の水蒸気を回収する二次回収手段と、を備えることを特徴とする、請求項8に記載の機器の除染装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2007−93536(P2007−93536A)
【公開日】平成19年4月12日(2007.4.12)
【国際特許分類】
【出願番号】特願2005−286616(P2005−286616)
【出願日】平成17年9月30日(2005.9.30)
【出願人】(000002107)住友重機械工業株式会社 (2,241)
【出願人】(000224754)核燃料サイクル開発機構 (51)