説明

流れている溶融ガラスリボンの厚さを制御する方法および装置

【課題】幅の短い波状変動と認識される一般的な種類の厚さ変動を排除または大幅に減少させる。
【解決手段】溶融ガラスの連続したリボンを成形する装置が、底部で合流する合流成形面を備えている成形本体と、成形本体の周囲に配置されるエンクロージャと、エンクロージャに連結される冷却ユニット38とを含み、この冷却ユニットが、固定具42と、固定具内に配置された旋回部材46と、旋回部材に連結された冷却管40とを含む。旋回部材は、この旋回部材を貫通する少なくとも1つの軸52に関して回転するように構成され、冷却管は、成形本体上を流れる溶融ガラスに向かって冷却ガス流を向けるように構成される。軸52に関して旋回部材を回転させると、冷却管の先端の、成形本体に対する横方向の位置が変化する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶融ガラスの流れの厚さを制御する方法および装置に関し、より具体的には、ダウンドローガラスシート成形プロセスにおける、溶融ガラスの連続流の厚さ制御に関する。
【背景技術】
【0002】
溶融ガラスがシートの形に延伸されるとき、ガラスは送出された際の最初の厚さから伸ばされ、すなわち薄くされて、最終的なシート厚となる。オーバーフローダウンドロープロセスにおいては、溶融ガラスは成形部材の対向する合流面に沿って下方へと流れ、そしてその底部、すなわち下端エッジから、単一のガラスリボンとして引き出されるが、このガラスリボンの最初の厚さは、この処理の延伸ラインを表す、成形部材の下端エッジ近傍で測定される。その後、延伸されたリボンの自由端から、単一のガラスのシートが分割される。
【0003】
アップドロープロセスおよびダウンドロープロセスの両方において、均一なリボン厚を得ることはこれまでずっと課題となっているが、最終的なシートの厚さ特性は、最初の厚さの均一性とガラス粘度の均一性の両方により、弱化プロセス中に決定される。すなわち、最終的なシートに与えられる厚さの変動は、不正確な計測、成形部材のガラス接触面の不備、または、延伸ラインに向かって流れているガラスの粘度プロファイルを不完全なものとするガラスの温度環境の不安定さ、の結果である可能性がある。
【0004】
ガラスシートの厚さ変動の問題は、当業界ではシート延伸プロセスに内在しているものであると考えられており、そしてこの厚さ変動は、例えば楔状、長周期の波状変動、および短周期の波状変動など、いくつかの一般的な種類の欠陥として現れ得る。楔状とは、リボンすなわちシートの一方のエッジが他方よりも厚くなっているような、はなはだしく厚さが変動しているものである。長い波状変動とは、例えば数インチを上回るような、かなりの大きさの振幅および広がりを有する波状変動であり、延伸方向を横切る方向の経路に沿ってリボンを測定することにより評価することができる。短い波状変動とは、約3インチ(約7.62cm)以下のような小さい振幅および縦揺れのものであり、一般に長い波状変動に重なっている。
【0005】
歪みのないガラスシートを製造するためには、リボン成形ゾーンにおいて、ガラス内およびガラス周辺の局所的な温度変動や温度揺らぎを、最小化または補償することが必要であることが分かっている。延伸ライン付近におけるこういった局所的温度変動は、鉛直に延伸されているリボンに、波を生じさせたり、あるいは縦に走る厚い部分や薄い部分を生じさせたりする。縦方向の波や厚さ変動はさらに、光学的観点から非常に好ましくない収差を、特に波に対し鋭角でガラスを通して物体を見たときに生じさせる。
【0006】
このような厚さ変動を制御する従来技術の方法は、成形本体の長さに沿って配列された冷却管から、溶融ガラスに対して空気を流す工程を含むものであった。真っ直ぐな冷却管が成形本体の長さに沿って同じ間隔で配列され、そして底部を通過する鉛直平面に対して各管の中心縦軸が垂直となるように位置付けられた。さらに、冷却管は環状の外側遮蔽体によって被覆された。すなわち、これらの管は、成形本体およびガラス流と関連付けて固定的に設置された。
【発明の概要】
【発明が解決しようとする課題】
【0007】
残念なことに、ガラスリボンの厚さ欠陥は長時間に亘って位置が安定しているものではない可能性があり、またリボンの横方向の位置自体、一定ではない可能性もある。すなわち、あらかじめ位置付けられた可動でない冷却管は、最初の段階では適切に位置付けられているかもしれないが、欠陥またはリボンの動きによって、次の段階では効果的に厚さを制御するには適さない位置となっている可能性がある。
【0008】
本発明は、数インチ以下の、幅の短い波状変動と認識される一般的な種類の厚さ変動を排除または大幅に減少させる、溶融ガラス流を冷却する方法の改良、およびそのための装置に関する。
【課題を解決するための手段】
【0009】
一実施の形態によれば、ダウンドローガラス製造プロセスにより溶融ガラスの連続したリボンを成形する装置であって、この装置が、底部で合流する合流成形面を備えている成形本体と、成形本体の周囲に配置されるエンクロージャと、そしてエンクロージャに連結される冷却装置とを含み、この冷却装置が、固定具と、固定具内に配置された旋回部材であって、この旋回部材を貫通する少なくとも1つの軸に関して回転するように構成された、この旋回部材と、さらに、成形本体上を流れる溶融ガラスに向かって冷却ガス流を向けるように構成された、旋回部材に連結された冷却管であって、好適には耐火性材料から形成されたこの冷却管とを備え、少なくとも1つの軸に関する旋回部材の回転が、冷却管の先端の、成形本体に対する横方向の位置を変化させるものであることを特徴とする。旋回部材は実質的に球状でもよく、そしていくつかの実施形態では、円筒状でもよい。少なくとも1つの軸は、鉛直軸でもよい。
【0010】
いくつかの実施形態によれば、固定具は、旋回部材の合わせ面に相補的な合わせ面を備え、そしてその枠は旋回部材を収容するように構成されおり、そして合わせ面間に精密嵌合を形成することで、旋回部材と受け口との間のガスの流れを防ぐ。
【0011】
冷却管は、溶融ガラスの流れから最も離れている基端と、流れている溶融ガラスの極近くへと延びている先端とを含む。冷却管はその全長に沿って真っ直ぐなものでもよいし、あるいは冷却管は、その先端付近に屈曲部または屈折部を含んでいるものでもよく、すなわち冷却管を冷却管の縦軸に関して回転させることによって、冷却ガス流を円弧状に向けることができるものでもよい。
【0012】
この装置は、成形本体の長さの少なくとも一部に隣接して配列された、かつ好適には成形本体の各面に沿って配列された、複数の冷却管を備えていることが好ましい。冷却管は水平ラインに沿って構成してもよいし、あるいは厚さ変動を制御するために必要に応じて鉛直に互い違いにしてもよい。例えば、第1の冷却管を成形本体の底部に対してある鉛直位置に位置付け、一方、第2の冷却管を、第1の冷却管の鉛直位置とは異なる第2の鉛直位置に位置付けてもよい。
【0013】
別の実施形態においては、フュージョンダウンドロープロセスにおいて、溶融ガラスの連続したリボンの厚さを制御する方法が開示され、この方法は、溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップと、少なくとも1つの回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、底部付近の溶融ガラスに衝突するように冷却ガス流を向けるステップとを含み、さらに、少なくとも1つの冷却管の中心縦軸の少なくとも一部が、底部を通過する鉛直平面に垂直ではないことを特徴とする。
【0014】
前述の実施形態と同様に、冷却管は基端および先端を含み、このとき先端の方が基端よりも溶融ガラスの流れに近接している。冷却管は真っ直ぐなものでもよいし、あるいは冷却管は、その先端付近に屈曲部または屈折部を含んでいるものでもよく、すなわち冷却管を冷却管の縦軸に関して回転させることによって、冷却ガス流を円弧状に向けることができるものでもよい。冷却ガスは、単一の管から向けてもよいし、あるいは複数の冷却管を通して溶融ガラス流に向けてもよい。冷却管は、成形本体の両側の縦面の長さに沿って、水平に配列されることが好ましい。しかしながら、上述したように、冷却管を鉛直に互い違いにしてもよい。冷却ガス流は、成形本体の底部よりも上方で溶融ガラスに衝突させてもよいし、あるいは他の実施形態では、成形本体の底部より下方の位置に向けて(例えば、溶融ガラスが流れる方向の下流へと向けて)もよい。
【0015】
いくつかの実施形態において、少なくとも1つの冷却管の縦軸の一部は、底部が含まれる鉛直平面に垂直である。すなわち、中心縦軸を有する真っ直ぐな管を使用してもよく、そしてこの真っ直ぐな冷却管の縦軸は、成形本体の底部を通過する鉛直平面に垂直である。あるいは、冷却管は、先端付近に屈曲部を含んでいてもよく、そして屈曲部と基端との間の真っ直ぐな部分の中心縦軸は、成形本体の底部を通過する鉛直平面に垂直である。
【0016】
この方法は、旋回部材を回転軸に関して回転させることで、冷却管が少なくとも左右への動き(偏揺れ)を示すステップをさらに含んでもよい。旋回部材を、左右への偏揺れおよび上下への縦揺れなど、少なくとも2つの直交する回転軸に関して回転するように構成してもよい。
【0017】
さらに別の実施形態においては、フュージョンダウンドロープロセスにおいて、溶融ガラスの連続したリボンの厚さを制御する方法が開示され、この方法は、溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップと、複数の回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、底部付近の溶融ガラスに対して冷却ガス流を向けるステップとを含み、さらに、少なくとも1つの冷却管の中心縦軸の少なくとも一部が、底部を通過する鉛直平面に垂直ではないことを特徴とする。複数の軸は、鉛直軸および水平軸を含んでもよい。
【0018】
いくつかの実施形態において、冷却ガス流は、(例えば、溶融ガラスの流れの方向と同じ方向の方向成分を有して)底部の下方に向けてもよい。
【0019】
本発明のさらなる特徴および利点は以下の詳細な説明の中で明らかにされ、ある程度は、その説明から当業者には容易に明らかになるであろうし、あるいは本書で説明されたように本発明を実施することにより認識されるであろう。添付の図面は、本発明をさらに理解することができるように含まれているものであり、本明細書に組み込まれ、その一部を構成する。本明細書および図面で開示された本発明の種々の特徴は、任意の組合せで、および全て組み合わせて、用いることができることを理解されたい。
【図面の簡単な説明】
【0020】
【図1】本発明の実施形態による冷却ユニットを使用している、例示的なフュージョンダウンドローガラス製造装置の断面図
【図2】複数の冷却ユニットの略水平なアレイを示している、図1の装置の側面図
【図3】本発明の実施形態による例示的な冷却ユニットの断面図
【図4】取付用ブラケットを示している、図3の冷却ユニットの前面図
【図5】真っ直ぐな冷却管を備えている、例示的な旋回部材―冷却管ユニットを示す図
【図6】キー溝と、このキー溝に受け入れられるキーを示している、図5の旋回部材を示す図
【図7】図3の冷却ユニットを構成する回転式プラットフォームを示す側面図であって、キー溝と、旋回部材を連結するためのキーとを示している図
【図8】鉛直軸に関する単一の運動自由度を有する例示的な旋回部材を示している図であって、旋回部材で偏揺れすなわち左右への揺れを示している図
【図9】水平軸に関する単一の運動自由度を有する例示的な旋回部材を示している図であって、旋回部材で縦揺れすなわち上下運度を示している図
【図10】偏揺れを示している、例示的な円筒状の旋回部材を示す図
【図11】図3の冷却ユニットを構成する受け口部材の断面側面図であって、旋回部材を収容する中心領域を示している図
【図12】屈曲した冷却管を備えている、例示的な旋回部材―冷却管ユニットを示す図
【図13】屈曲した冷却管により放出される流れの角度範囲を示す図
【図14】屈曲した冷却管を使用している例示的なフュージョンダウンドロープロセスの断面図
【図15】冷却管の屈曲した端部すなわち先端が種々の角度位置にあるときの、連続して流れている溶融ガラスのリボン上の厚さを、単一の屈曲した冷却管と関連付けてモデル化し比較したグラフ
【図16】衝突角度を一定(270°)に維持したまま、管をガラスリボンから離れる方へと移動させて先端とガラスとの距離を増加させたときの、2つのケースの差を示すグラフ
【図17】最初に測定された厚さデータをベースとし、真っ直ぐな堅く取り付けられた冷却管と、様々な配向に角度をつけることが可能な先端を含む屈曲した冷却管とによって提供される、モデル化された厚さ制御を比較したグラフを示す図
【図18】図17のデータに対する25mmの移動窓に亘る、厚さ変動の幅をプロットした図
【図19】図17のリボンに対し、ある屈曲管の配向に対するモデル化された厚さデータを、実際の厚さデータと比較してプロットした図
【発明を実施するための形態】
【0021】
以下の詳細な説明において、限定ではなく説明のため、具体的詳細を開示する実施形態例を明記して本発明の種々の原理の完全な理解を提供する。しかしながら、本開示の利益を得たことのある通常の当業者には、本発明をここで開示される具体的詳細とは異なる他の実施形態において実施し得ることは明らかであろう。さらに、周知の装置、方法、および材料に関する説明は、本発明の説明を不明瞭にしないよう省略されることがある。最後に、適用できる限り、同じ参照番号は同様の要素を示す。
【0022】
図1に示されているのは、例示的なフュージョンダウンドロープロセスによりガラスリボンを延伸する装置10である。装置10は、上方チャネルすなわちトラフ14をその中に配置して備えている、成形本体12を含む。成形本体12は、下方エッジすなわち延伸ライン18で合流する合流成形面16a、16bを含み、溶融ガラスはこの延伸ラインの位置から成形本体より延伸される。下方エッジ18は、底部18と称されることもある。溶融ガラス20がトラフ14に供給され、この溶融ガラスはトラフの上方エッジを越えて流れるようにしてトラフから溢れ出て、溶融ガラスの2つの分離流として合流成形面16a、16bを下降する。溶融ガラスの分離流は、成形本体の底部で再結合すなわち融合し、そして底部から下方の方向21へと単一のガラスリボン22として続いていく。したがって、このプロセスは時に、フュージョンプロセスまたはフュージョンダウンドロープロセスと称される。成形本体12の成形面と接触している溶融ガラスの部分は、底部18から延伸されるリボンの内側に位置付けられ、リボンの外側表面は汚染されていない状態のままとなる。
【0023】
成形しているガラスを包囲する熱環境を制御するため、成形部材12は、構造上の支持部材26を備えた耐火性のエンクロージャすなわちマッフル24内に位置付けられる。マッフルドア28が、マッフル24の下方にガラスリボン22の対向面に沿って位置付けられ、そしてマッフルドア28は、支持レール30に沿って内側へまたは外側へと動くことができる。空気漏れすなわち通気を防ぐため、マッフル24とマッフルドア28との間の空間を、無機ウールの繊維などの適切な耐火性断熱材32で満たしてもよい。外側遮蔽部材34がマッフル24に添付され、かつスカート様にマッフルドア28の上部まで下方に延びる。遮蔽部材34はステンレス鋼などの金属から形成してもよい。遮蔽部材34は、マッフル内の雰囲気とマッフル外の雰囲気との間の空気の交換から生じる通気の可能性をさらに排除する働きをする。しかしながら、各マッフルドアはガラスリボンに対し内側へまたは外側へと動くように構成されているため、外側遮蔽部材34は恒久的にマッフルドア28に取り付けられているわけではない。
【0024】
複数の冷却ユニット38をマッフル24とマッフルドア28との間に位置付けることが好ましく、例えば、外側遮蔽部材34上に取り付けてもよい。各冷却ユニット38は冷却管40を含み、この冷却管は、隣接する冷却ユニットに含まれている隣接する冷却管と間隔を空けて配置され、好適には実質的に水平平面41(図2参照)内に配置される。各冷却ユニット38は、各冷却管の一部を包囲する固定具42(図3および4)をさらに含む。固定具42のブラケット44を用いて各冷却ユニットを外側遮蔽部材34に連結させることができ、そしてこのブラケットにより、冷却管は外側遮蔽部材34上で間隔を空けた関係で維持される。各冷却管は、マッフル24により包囲された内部容積36へと延びている。各冷却管40は、成形本体12に極近接して、特に底部18に極近接して終端する。
【0025】
各冷却管40は、マッフル24内の例えば1000℃を上回る高温で、そして場合によっては約1250℃を超える高温で、変形に耐え得る材料から形成される。例えば、冷却管は、ヘインズインターナショナル社(Haynes International Corporation)から入手可能な、Haynes(登録商標)アロイ214または230のような材料を含めた特定の高温合金など、高温耐性の金属から形成することができる。他の実施形態において、各冷却管は、アルミナ、石英、または特定の高溶融温度のガラスなどの、耐火性材料から形成してもよい。ここで、耐火性材料について、約538℃を超える環境に曝される構造物またはシステム用部品として、これを適用可能とするような、化学的および物理的特性を有する非金属材料と定義する。
【0026】
各冷却管40は旋回部材46に連結され、各旋回部材は、冷却管が中を通って延在する通路48を含む。冷却管を、例えば高温セメントを用いるなどして旋回部材の通路48内部に堅く接着してもよいし、あるいは圧縮装着や締付けなどの他の方法で冷却管を保持してもよい。冷却管をアルミナや石英などの脆弱材料で形成する場合には、様々な締付け方法は管を破砕することになり得るため、セメントによる方法が好ましい。
【0027】
図5および6に最もよく示されているように、各旋回部材46は実質的に球状のものでもよく、例えば、前述の通路48を画成している鋼球でもよい。実質的に球状とは、旋回部材の外側表面の大部分が球状であること、あるいは、本書において以下でより十分に説明する受け口部材の合わせ面と接触する、少なくともその接触部分が、球状であることを意味する。旋回部材46は、例えば、高精度回転ステージ51を備えているプラットフォーム50に連結され、この回転ステージ51により、旋回部材をプラットフォームの回転軸52周りに正確に動かすことができる。旋回部材とプラットフォームとの間の、鉛直軸52に関する相対的な回転運動を防ぐよう、旋回部材46をプラットフォーム50にキーで固定してもよい。従って、キー54を、旋回部材46とプラットフォーム50との間に、プラットフォームおよび旋回部材の夫々に設けられた、夫々対応するスロットすなわちキー溝56、58を用いて位置付けてもよい(明瞭にするためキーを取り除いた状態で図6および7に図示している)。キー54は、プラットフォームのキー溝または旋回部材のキー溝のいずれか(または両方)の中にしっかりと固定してもよい。あるいは、キー54を、プラットフォームのキー溝または旋回部材のキー溝のうちの一方にしっかりと固定し、そして他方では単に滑動可能に適合させた状態としてもよい。例えば、キー54を、球状旋回部材のキー溝58内でしっかりと固定し、そしてプラットフォーム50上の対応する相補的なキー溝56内では滑動可能に適合させ、それにより、球状旋回部材を鉛直の回転軸52に関して回転可能とするだけでなく、水平の回転軸53に関しても回転可能とし、旋回部材、および冷却管に、2つの回転自由度を与えてもよい。図8および9は、これらの2つの自由度に関する動き、すなわち、図8では水平の揺れすなわち偏揺れ、そして図9では鉛直の縦揺れを示している。しかしながら、マッフルドアとマッフルとの間の空間は一般に非常に狭いため、水平回転軸周りの回転、すなわち縦揺れは、一般に制限される。以下においてさらに説明するように、キーを排除して締付け力に頼ることで、旋回部材46を様々な方向に動かすことができ、そして単に縦揺れや偏揺れに限定されないことは容易に分かるであろう。
【0028】
旋回部材46と冷却管40とを一体化し、プラットフォーム50に恒久的には連結させない単一のユニットとすると、旋回部材と冷却管の組合せを容易に交換する助けとなる。例えば、破損した冷却管は、破損した旋回部材―冷却管の組合せを取り除き、そして新たな旋回部材―冷却管ユニットを単に挿入することにより、容易に交換することができる。プラットフォームと新たな旋回部材―冷却管との間にキー―キー溝接続を用いる場合には、新たな旋回部材および冷却管を、最初の旋回部材と同じ正確な角度配向で配置することができる。すなわち、プラットフォーム50およびキー54の位置を乱すことなく旋回部材―冷却管ユニットを取り除くことができるし、そして新たな旋回部材―冷却管ユニットを、破損したユニットと同じ水平角度位置に再び設置することができる。
【0029】
鉛直の回転軸に関する回転のみが望ましい場合には(偏揺れ)、旋回部材46は円筒状でもよく、このとき円筒状旋回部材の中心縦軸はプラットフォームの回転軸52と一致する(図10)。この場合、本書において以下でより詳細に説明する受け口部材の合わせ面は、円筒状の旋回部材に相補的となるよう円筒状であるべきである。
【0030】
冷却管40は、冷却管40の第1部分60が旋回部材から溶融ガラス流に向かう方向へと延び、そして冷却管の第2部分62がガラスリボンを離れる方向へと旋回部材46から延びているような状態で、通路48を経由し旋回部材46を貫通して延在している。冷却管40は2つの端部、すなわち、溶融ガラスの流れから最も離れて配置される基端64と、溶融ガラスの流れに最も近い先端66とを含む。基端64は、連結器68を経由し適切なホースすなわちパイプ70を通って空気などの加圧ガス源に連結され(図示なし)、このようにしてガスを、冷却管を通して溶融ガラスの流れに向かう方向に流すことができる。ガスの流れは、流量制御装置72(図1参照)により約0.085m3/時未満となるように制御され、約0.06m3/時よりも少ないことが好ましい。ガス流は、浮子式流量計や電子式質量流量制御装置によるものなど、従来の既知の方法で制御することができる。電子式質量流量制御装置を使用するとガス流の遠隔制御を有利に可能にするが、いずれかの方法を、あるいは上述した量にガス流を制御する任意の他の方法を、冷却管に供給されるガス流の計測用に適切に置き換えることができる。所望であれば、冷却された水とともに提供される熱交換器に冷却ガスを通して流すことなどにより、冷却ガスを冷却してもよい(図示なし)。
【0031】
固定具42は、前すなわち第1受け口部材74および後すなわち第2受け口部材76をさらに備えており、これらは図11において最もよく見られ、そして明瞭にするため旋回部材46を示さずに図示されている。第1受け口部材74は内部表面78を含み、この内部表面の少なくとも一部は旋回部材の一部に対して相補的である。旋回部材46が受け口内部表面78の相補的部分と接触するときに、冷却管40が通って延在するような開口80が、第1受け口部材の厚さを通って延在している。開口80は、旋回部材および冷却管の動きを、意図された動作範囲を超えて妨害することなく可能とするようなサイズである。すなわち、開口80のサイズは、旋回部材が少なくとも軸52に関して回転することができ、そしてその結果として冷却管40が開口内で揺れ動くすなわち偏揺れすることが可能となるようなサイズである。冷却管40は少なくとも約40度の角度に亘り自由に揺れ動くことができることが好ましい。同様に、第2受け口部材76は、少なくとも一部が旋回部材46に対して相補的な内部表面82を含み、さらに、冷却管40が通って延在しかつ旋回部材46を回転させたときに冷却管40の第2部分が揺れ動くのを可能とするような、第2開口84を含む。
【0032】
後受け口部材76は、前受け口部材と後受け口部材との間に配置された旋回部材46が固定されて保持されるように、前受け口部材74に連結される。例えば、旋回部材46を受け口部材間に固定するために、前受け口部材および後受け口部材を、ボルト、ねじ、クリップ、または他の適切な取付け方法を用いて互いに連結してもよい。例えば、図11において、受け口部材74および76はボルトで連結されて図示されている。冷却管40が冷却ガスを適切な方向に向けるように旋回部材46を最初に位置付け、締付け部材(ボルトなど)を堅く締めて、旋回部材および冷却管を所望の配向でロックしてもよい。
【0033】
従来技術の方法では、真っ直ぐな冷却管は、この真っ直ぐな冷却管の縦軸がその管の端部に隣接している溶融ガラス流に垂直となるような配向で、そして各冷却管から溶融ガラスに向けて送出されるガスジェットが冷却管先端の真正面の領域に限定される(かつジェットのいくらかの通常の発散を考慮した)配向で、堅く取り付けられていた。すなわち、従来の冷却配置では、冷却管から放出されるガスジェットの接触エリアが隣接する管の衝突エリアとすぐ隣接するように、あるいは重複さえするように、冷却管同士の間隔を小さくする必要があった。
【0034】
軸52に関して回転する本実施形態による旋回部材の能力、およびその結果として水平の弧を通って「揺れ動く」冷却管40の能力は、溶融ガラスの幅に達するために必要な冷却ユニット38の数を従来の方法に比べて減少させる助けとなる。例えば、冷却管40は、少なくとも約10°、20°、30°、または40°をも超えた角度に亘って回転させることができる。
【0035】
従来の冷却方法とは対照的に、本実施形態によれば、冷却管40をさらに間隔を空けて配置することができる。厚さの乱れのために溶融ガラス流の特定の範囲を冷却することが必要な場合には、その欠陥に最も近い位置の冷却管を、プラットフォーム50を回転させることにより、すなわちそれにより冷却管40を回転させることにより、所定位置へと横に揺れ動かすことができ、その結果、冷却管により放出されるガスジェットを欠陥領域に衝突させることができる。結果として、必要な冷却ユニットの数が少なくなり、そしてさらに重要なことには、外側遮蔽内の開口の数が減少する。外側遮蔽34内において必要とされる開口の数が減少すると、漏れによりマッフル24が包囲する容積36へと入る(または容積36から出る)無制御の通気の危険性が減少する。
【0036】
いくつかの実施形態において、冷却管40は真っ直ぐであり、中心縦軸88を有している(図5参照)。しかしながら、他の実施形態において、各冷却管は先端66付近にエルボすなわち屈曲部86を備えている。冷却管40を旋回部材46の通路48内において恒久的に堅く接着するのではなく、例えば、旋回部材と冷却管とを解除可能に連結する方法(例えば、締付け方法、または締まり嵌め)を用いるなどして連結することにより、冷却管はその縦軸88(少なくとも縦軸88の屈曲部と基端との間の真っ直ぐな部分)に関し回転可能となる。冷却管40を通路48内で回転させると、冷却管の先端66は縦軸88の周りで弧を表現することになる。この「表現する」とは、運動している物体(またはガス流のような材料の流れ)上の点、または一連の点が、空間において(または表面上で)幾何学的形状を描くことを意味する。例えば、冷却管40を360°に亘って回転させると、冷却管により放出されるガスジェットは、冷却管の水平縦軸88に対するガス流の角度方向を矢印91で示す図13に示されているように、ガスジェットが溶融ガラスの表面と交わる溶融ガラス上の位置で完全円を表現する、すなわち描く。円の半径は、当然のことながら、冷却管の屈曲部の角度と、さらに、屈曲部から先に延在している冷却管の長さ(すなわち、冷却管の屈曲部と先端との間の、冷却管の真っ直ぐな部分の長さ。好適には、溶融ガラス流に向かい屈曲部を越えて延びている部分の冷却管の長さは、約5cm未満である。)に依存する。
【0037】
あるいは、一連の旋回部材―冷却管ユニットは、屈曲した冷却管の、その旋回部材のキー固定位置に対する配向を、種々の配向として製造することができる。様々な角度配向の冷却管が望ましいときには、配置済みの旋回部材―冷却管ユニットを、所望の配向を有するものと交換することができる。
【0038】
さらに別の実施形態において、キー固定された旋回部材を使用しない場合には、第1および第2受け口部材を連結している締付け部材を単に緩めることで、旋回部材全体を回転させることができ、それにより屈曲した冷却管の先端の向きを回転させることができる。屈曲した冷却管を使用している装置10を図14に示す。
【0039】
ガス流の配向を利用して、ガスの流れが溶融ガラス流に衝突する地点で溶融ガラスの厚さを増加させたりあるいは減少させたりし得ることが分かっている。すなわち、ガスの流れが溶融ガラスの流れとは反対方向に動いている(すなわち、ガスの流れを表すベクトルが溶融ガラスの流れベクトルと反対のベクトルを有する)場合、その流れの厚さへの影響は、ガスの流れベクトルが溶融ガラスの流れベクトルと同じ向きのベクトルを有している場合とは異なる。より簡単に言うと、ガス流が(ガラスの流れに対し)概して逆らった流れであるときの溶融ガラスの厚さへの影響は、ガスの流れがガラスとともに概して下流へと動いている場合とは異なる。前者の状況は、屈曲した冷却管の先端が概して90°の方向に向けられたときに生じる(参照のため図13を使用する)。後者の状況は、屈曲した冷却管の先端が概して270°の向きに向けられたときに生じる。これらの様々な影響について図15にグラフで示すが、ここで、4つの異なる配向、すなわち、屈曲した冷却管の先端が0°の向き、90°の向き、180°の向き、および270°の向きに向けられているときに対する、溶融ガラス流の厚さ変化(例えば、底部でのリボン厚)をモデル化する。管の先端は、溶融ガラス流の表面から約4インチ(10.16cm)離れて維持されるものと仮定した。
【0040】
90°の向き(曲線92)のときにガス流は、これらの実験の中で、溶融ガラス流の最も高い鉛直位置で衝突する。厚さの変化を鉛直軸上にμm単位でプロットし、一方リボン幅に対する水平位置を水平軸上に示す。曲線92の特性幅(水平軸上の最も内側のゼロ交差点間の距離)は、名目上は約9.7cmである。周りの外側領域は内側領域の範囲のおおよそ4倍に広がり、そしてこの外側領域は、質量保存により負の厚さ変化(溶融ガラスの薄化)に相当する。
【0041】
270°の向き(曲線94)のときに空気流は、その最も低い鉛直位置で衝突し、そして著しく異なる厚さ変化を与える。この特徴は、厚くする効果、または薄くする効果の、いずれと見なすこともできる。厚くする効果と見なすと、負および正の厚さ変化(夫々、薄化および厚化)の領域からなる例外的に幅広の周りの外側エリアを除いて、特性幅は名目上約2.8cmである。主に薄くする効果と見なすと、特性幅は名目上約22.4cmであり、例外的に狭い正の厚さ変化の内側領域を除いて、正の厚さ変化の外側領域は内側領域の範囲のおおよそ3倍にまで広がる。
【0042】
0°および180°のケース(夫々、曲線96および98)は、管の角度がリボンのいずれかのエッジにより強く向いたときに、衝突位置がどのように変化するかを示している。ピークは約15.2cm離れており、簡単な三角法から計算されたものと近い。これらはさらに、管の出口に最も近い、衝突位置の側で、厚さ変化の程度が最も高いことも示している。ここに示した4つの中間の角度も当然可能性があり、その厚さへの影響もまた、その最も近い隣接する角度間の中間となるであろう。これらと同じ効果は、真っ直ぐな管で、2度以上の運動の自由度を有するなど十分な配向の柔軟性が得られた場合にも達成される可能性がある。
【0043】
冷却管が旋回部材に圧縮装着または締付け機構により連結されているときなど、冷却管が旋回部材に堅く固定されていない実施形態においては、各冷却管をその夫々の旋回部材内で移動させてもよい。すなわち、冷却管を(圧縮装着または締付けを緩めることにより)旋回部材から緩め、そして冷却管を通路48内で滑動させて、溶融ガラスに近づく方へと、あるいは溶融ガラスから離れる方へと、動かすことができる。冷却管40の旋回部材46に対する移動を、冷却管40の縦揺れおよび偏揺れ、または旋回部材46に対する回転と、組み合わせることができる。
【0044】
管の先端から衝突点までの距離の影響によってもまた、その結果の厚さの応答を変化させることができる。図16は、衝突角度を一定のままとし、一方で先端からガラスまでの距離を、管をガラスリボンから離れる方へと移動させることによって増加させた、2つのケース間の相違についてグラフで示したものである。ここで、270°に配置された管を、約10.2cm(曲線100)から約14.0cm(曲線102)まで、リボンの平面から離れる方へ引き戻した。簡単な三角法により、衝突距離は約11.7cmから約16.3cmに増加したと予測される。管がリボンから引き戻されると、中心のピークがはるかに小さくなり、全体的に見て、厚さ効果は純粋な薄くする効果にさらによく似たものとなる。
【0045】
衝突角度が可変となり、かつ管出口から衝突点までの距離(衝突距離)が可変となることにより提供される、付加的な性能を活用することで、例えば、自然に生じた厚さの偏りが非対称であるときや、また補償作用として薄くする効果の方が厚くする効果よりも適当である状況下において、いくつかの著しい利点を実感することができる。図17および18は、衝突角度を調節することによって、より効果的な厚さの補正がどの程度のものとなるかを、単なる垂直の衝突角度と比較して示したものである。図17において曲線104は、連続したガラスリボンの一部のその幅を横切る厚さを、動作中のフュージョンドローの底部で測定した、測定値を表している。曲線106は、動いているガラスリボンのエッジから約118.4cmの位置に、真っ直ぐな冷却管40から放出される冷却ガス流を単なる垂直配置で向けることにより加えられる、モデル化された厚さ補正効果を表したものである。すなわち、このとき冷却管の中心縦軸は、成形本体の底部を通過する鉛直平面に垂直である。曲線108は、この同じ位置に、屈曲した管を180°の向き(図13参照)で向けることにより加えられる、モデル化された厚さ補正効果を表している。図18は、図17の厚さデータの各点を中心とした、25mm区間に亘る厚さの変動幅を示したものである。すなわち、曲線110は、曲線104の測定データにおける厚さの値の各点を中心とした25mm区間の中での厚さの範囲を示している。例えば、図17の曲線104の厚さデータ点に対し、図17のある基本データ点から右へ12.5mmまでと、曲線104のその基本データ点から左へ12.5mmまでの、両方の厚さデータを解析し、その窓の範囲内におけるそのデータ間の最大差の絶対値を、図18に曲線110としてプロットする。同様に、曲線112は、曲線106の厚さの値の各点を中心とした25mmの移動区間の中での厚さの値の範囲を表し、そして曲線114は、曲線108の厚さの値の各点を中心とした25mmの移動区間の中での厚さの値の範囲を表す。この局所的な厚さ変動の値をガラスリボンの幅全体に亘って最小にすることが、厚さ補正における重要な目的である。これらの曲線が示すように、この範囲データの最小値および最大値は、屈曲した管の配向を変化させることによって得られる。特に、図18は、118.4cmの位置の付近における最大の変動幅の値が、〜0.0028mm(基本ケース)から、〜0.0019mm(真っ直ぐな管)、〜0.0014mm(屈曲した管)まで減少したことを示している。さらに、133.8cmの位置の付近における最大変動値は、〜0.0021mm(基本ケース)から、〜0.0019mm(真っ直ぐな管)、〜0.0016mm(屈曲した管)まで減少した。図19は、180°の向きに配向された屈曲した管を用いて得られた、実際に測定した厚さの結果(曲線116)を、モデル化された結果(図17の曲線108)と比べて比較したものであり、この図はモデル化された結果と実際の結果が十分に一致していることを示している。
【0046】
冷却管の先端の角度配向と、溶融ガラス流から冷却管までの距離との、いずれかまたは両方を変更する能力によれば、狭過ぎるおよび/または非対称過ぎるために従来の方法では処理することができなかったガラスシートの領域を厚くさせて、リボンの有効幅(品質部分の幅)を増加させることもまた可能である。
【0047】
同じ衝突位置(あるいは、x座標は同じであるがz座標が異なる位置)に向けられた複数の管の組合せを採用することにより、厚さ制御性能をより一層拡張させることも可能である。
【0048】
例示的な、限定するものではない本発明の実施形態として、以下のものが挙げられる。
【0049】
C1.ダウンドローガラス製造プロセスにより溶融ガラスの連続したリボンを成形する装置において、
底部で合流する合流成形面を備えている成形本体と、
前記成形本体の周囲に配置されるエンクロージャと、
前記エンクロージャに連結される冷却装置であって、該冷却装置が、
固定具、
前記固定具内に配置された旋回部材であり、該旋回部材を貫通する少なくとも1つの軸に関して回転するように構成された旋回部材、および、
前記成形本体上を流れる溶融ガラスに向かって冷却ガス流を向けるように構成された、前記旋回部材に連結された冷却管、を備え、前記旋回部材の前記少なくとも1つの軸に関する回転が、前記冷却管の端部の横方向の位置を前記成形本体に対して変化させるものである冷却装置、
を備えたことを特徴とする装置。
【0050】
C2.前記旋回部材が、実質的に球状であることを特徴とするC1記載の装置。
【0051】
C3.前記旋回部材が、円筒状であることを特徴とするC1またはC2記載の装置。
【0052】
C4.前記少なくとも1つの軸が鉛直軸であることを特徴とするC1からC3いずれか1項記載の装置。
【0053】
C5.前記冷却管が耐火性材料を含むことを特徴とするC1からC4いずれか1項記載の装置。
【0054】
C6.前記固定具が、前記旋回部材の合わせ面に相補的な合わせ面を備え、該固定具が、前記旋回部材を収容しかつ前記旋回部材と該固定具との間のガスの流れを防ぐように構成されていることを特徴とするC1からC5いずれか1項記載の装置。
【0055】
C7.前記冷却管が基端および先端を含み、該先端の方が前記基端よりも前記溶融ガラスのリボンに近接しており、かつ前記冷却管が、該先端付近に屈曲部をさらに備えていることを特徴とするC1からC6いずれか1項記載の装置。
【0056】
C8.前記成形本体の長さの少なくとも一部に隣接して配列された、複数の冷却管を備えていることを特徴とするC1からC7いずれか1項記載の装置。
【0057】
C9.前記冷却管が基端および先端を含み、該先端が前記基端よりも前記溶融ガラスのリボンに近接しており、かつ前記冷却管が、前記基端と前記先端との間で真っ直ぐな状態の、前記基端と前記先端との間に延在する中心縦軸を有することを特徴とするC1からC8いずれか1項記載の装置。
【0058】
C10.フュージョンダウンドロープロセスにおいて溶融ガラスの連続したリボンの厚さを制御する方法であって、
溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップ、および
少なくとも1つの回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、前記底部付近の前記溶融ガラスに衝突するように冷却ガス流を向けるステップ、
を含み、
前記少なくとも1つの冷却管の中心縦軸の少なくとも一部が、前記底部を通過する鉛直平面に垂直ではないことを特徴とする方法。
【0059】
C11.前記冷却管が基端および先端を含み、該先端の方が前記基端よりも前記溶融ガラスの流れに近接しており、かつ前記冷却管が、該先端付近に屈曲部を備えていることを特徴とするC10項記載の方法。
【0060】
C12.前記冷却ガス流を向けるステップが、複数の冷却管から冷却ガス流を向けるステップを含むことを特徴とするC10またはC11記載の方法。
【0061】
C13.前記冷却ガス流が、前記底部より上方の前記溶融ガラスに衝突することを特徴とするC10からC12いずれか1項記載の方法。
【0062】
C14.前記冷却ガスの流れが、前記溶融ガラスが流れる方向の下流へと向けられることを特徴とするC10からC13いずれか1項記載の方法。
【0063】
C15.前記少なくとも1つの冷却管の前記縦軸の一部が、前記底部が含まれる鉛直平面に垂直であることを特徴とするC10からC14いずれか1項記載の方法。
【0064】
C16.前記旋回部材を前記回転軸に関して回転させるステップをさらに含むことを特徴とするC10からC15いずれか1項記載の方法。
【0065】
C17.前記旋回部材が、2つの直交する回転軸に関して回転するように構成されることを特徴とするC10からC16いずれか1項記載の方法。
【0066】
C18.フュージョンダウンドロープロセスにおいて溶融ガラスの連続したリボンの厚さを制御する方法であって、
溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップ、および
複数の回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、前記底部付近の前記溶融ガラスに対して冷却ガス流を向けるステップ、
を含み、
前記少なくとも1つの冷却管の中心縦軸の少なくとも一部が、前記底部を通過する鉛直平面に垂直ではないことを特徴とする方法。
【0067】
C19.前記複数の軸が、鉛直軸および水平軸を含むことを特徴とするC18記載の方法。
【0068】
C20.前記冷却ガス流が、前記底部の下方に向けられることを特徴とするC18またはC19記載の方法。
【0069】
上述した本発明の実施形態、特に任意の「好ましい」実施形態は、単に実施可能な例であって、本発明の原理を明確に理解するための単なる説明であることを強調したい。本発明の精神および原理から実質的に逸脱することなく、上述の本発明の実施形態に対して多くの変形および改変を作製することができる。全てのこのような改変および変形は、本書において本開示および本発明の範囲内に含まれ、そして以下の請求項によって保護されると意図されている。
【符号の説明】
【0070】
12 成形本体
18 底部
22 ガラスリボン
38 冷却ユニット
40 冷却管
42 固定具
46 旋回部材
48 通路
52 回転軸
64 基端
66 先端
74 第1受け口部材
76 第2受け口部材
86 屈曲部
88 中心縦軸

【特許請求の範囲】
【請求項1】
ダウンドローガラス製造プロセスにより溶融ガラスの連続したリボンを成形する装置において、
底部で合流する合流成形面を備えている成形本体と、
前記成形本体の周囲に配置されるエンクロージャと、
前記エンクロージャに連結される冷却装置であって、該冷却装置が、
固定具、
前記固定具内に配置された旋回部材であり、該旋回部材を貫通する少なくとも1つの軸に関して回転するように構成された旋回部材、および、
前記成形本体上を流れる溶融ガラスに向かって冷却ガス流を向けるように構成された、前記旋回部材に連結された冷却管、を備え、前記旋回部材の前記少なくとも1つの軸に関する回転が、前記冷却管の端部の横方向の位置を前記成形本体に対して変化させるものである冷却装置と、
を備えたことを特徴とする装置。
【請求項2】
前記固定具が、前記旋回部材の合わせ面に相補的な合わせ面を備え、該固定具が、前記旋回部材を収容しかつ前記旋回部材と該固定具との間のガスの流れを防ぐように構成されていることを特徴とする請求項1記載の装置。
【請求項3】
前記冷却管が基端および先端を含み、該先端の方が前記基端よりも前記溶融ガラスのリボンに近接しており、かつ前記冷却管が、該先端付近に屈曲部をさらに備えていることを特徴とする請求項1または2記載の装置。
【請求項4】
前記成形本体の長さの少なくとも一部に隣接して配列された、複数の冷却管を備えていることを特徴とする請求項1から3いずれか1項記載の装置。
【請求項5】
フュージョンダウンドロープロセスにおいて溶融ガラスの連続したリボンの厚さを制御する方法であって、
溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップ、および
少なくとも1つの回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、前記底部付近の前記溶融ガラスに衝突するように冷却ガス流を向けるステップ、
を含み、
前記少なくとも1つの冷却管の中心縦軸の少なくとも一部が、前記底部を通過する鉛直平面に垂直ではないことを特徴とする方法。
【請求項6】
前記冷却管が基端および先端を含み、該先端の方が前記基端よりも前記溶融ガラスの流れに近接しており、かつ前記冷却管が、該先端付近に屈曲部を備えていることを特徴とする請求項5記載の方法。
【請求項7】
前記冷却ガス流が、前記底部より上方の前記溶融ガラスに衝突することを特徴とする請求項5または6記載の方法。
【請求項8】
前記冷却ガスの流れが、前記溶融ガラスが流れる方向の下流へと向けられることを特徴とする請求項5から7いずれか1項記載の方法。
【請求項9】
フュージョンダウンドロープロセスにおいて溶融ガラスの連続したリボンの厚さを制御する方法であって、
溶融ガラスを、成形本体の、底部で交わる合流成形面上に流れさせるステップ、および
複数の回転軸に関して回転するよう構成された旋回部材に連結された、少なくとも1つの冷却管から、前記底部付近の前記溶融ガラスに対して冷却ガス流を向けるステップ、
を含み、
前記少なくとも1つの冷却管の中心縦軸の少なくとも一部が、前記底部を通過する鉛直平面に垂直ではないことを特徴とする方法。
【請求項10】
前記冷却ガス流が、前記底部の下方に向けられることを特徴とする請求項9記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2011−246345(P2011−246345A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−117797(P2011−117797)
【出願日】平成23年5月26日(2011.5.26)
【出願人】(397068274)コーニング インコーポレイテッド (1,222)