説明

液体を濾過するためのモノリス隔膜モジュール

モノリス体内に配置されて上流側の入口端から下流側の出口端まで延びる複数本のフローチャンネルを画成する多チャンネルモノリス基体すなわちクロスフロー濾過モジュールである。多孔質のチャンネル壁が上記複数本のフローチャンネルを取り囲んでいる。これらの複数本のフローチャンネルは、1.1mm以下のチャンネル水力直径を有する。上記多孔質体は、曲がりくねった液体通路すなわち導管を形成する、相互連結された気孔からなる網状気孔組織をさらに備えている。上記多孔質体によって形成された曲がりくねった通路は、処理液流から分離された濾液をモノリス体の外表面に案内するための流路を提供する。

【発明の詳細な説明】
【関連出願の説明】
【0001】
本願は、「液体濾過のためのモノリス隔膜モジュール」と題して2008年4月28日付けで提出された米国仮特許出願第61/125,707号の優先権を主張した出願である。
【技術分野】
【0002】
本発明は、液体を濾過するためのクロスフロー濾過デバイスに関し、特に供給原料液を濾液と残留液とに分離するための改良されたクロスフロー濾過デバイスに関するものである。
【背景技術】
【0003】
従来から、液体を濾過するため、微粒子汚染物を除去するため、水溶液から油性汚染物を分離するため、そして工場排液流を分離、濾過するために、セラミック製の多チャンネル・モノリス基体が用いられて来た(例えば特許文献1〜5参照)。これらの基体は、供給原料液を濾液と残留液とに分離するクロスフロー濾過デバイスである。供給端から残留液排出端まで延びる複数本の通路を有するモノリスを通過する供給原料液は、上記通路を通過し、あるいは上記基体を通過して濾液収集ゾーンに入り、濾液として上記基体を出る。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第4,983,423号明細書
【特許文献2】米国特許第5,009,781号明細書
【特許文献3】米国特許第5,106,502号明細書
【特許文献4】米国特許第5,114,581号明細書
【特許文献5】米国特許第5,108,601号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記濾過基体の受容能力および効率を向上させることによって、あるいは上記基体を通過する液体の流量を増大させることによって、セラミック製多チャンネル・モノリス基体の性能を改良する必要性が存在する。
【課題を解決するための手段】
【0006】
本発明の実施の形態においては、驚くべきことに、クロスフロー・デバイス内の通路のチャンネル・サイズを縮小することによって、流量が増加し、デバイスの性能が向上する。
【0007】
本発明の実施の形態は、液体を濾過するために、モノリス体内に配置されて上流側の入口端すなわち供給端1101から下流側の出口端すなわち排出端1102まで縦方向に延びる複数本のフローチャンネル110を画成する多孔質のモノリス体すなわちモジュール150を有する多チャンネル・モノリス基体10を提供する。多孔質のチャンネル壁114が複数のフローチャンネル110のそれぞれを取り囲んでいる。この多孔質体150はさらに、曲がりくねった流路すなわち導管152を形成する相互連結された網状気孔組織を備えている。多孔質のモノリス体150によって形成されたこれらの曲がりくねった流路152は、濾液を濾液コレクタ内に集めるために、供給原料液から分離された濾液が、多孔質材料の相互連結された気孔によって形成された流路すなわち導管を通って上記基体の外表面まで流れるのを可能にする。上記多孔質の基体を通り抜けて流れる濾液は、上流側の端面から上記フローチャンネルを通って下流側の残留液端まで流れて濾液コレクタとは別個の残留液コレクタ内に集められる残留液流から分離される。
【0008】
使用時には、上記複数本のフローチャンネルが、不純物を含んだ処理液すなわち供給液流を受容し、かつ上記多孔質のチャンネル壁が、受容された処理液流の少なくとも一部を濾液と残留液とに分離させ、これによって、分離された濾液は網状気孔組織を通って、上記基体の外表面まで導かれる。下記の説明に例示されている実験用の多チャンネル・モノリス基体は、処理液流から一種類または複数種類の要素を抽出するための、実験室規模のまたは工業規模の液相分離に用いることができる。
【0009】
複数の実施の形態において、上記実験用クロスフロー濾過デバイスは、多孔質チャンネル壁によって境界を定められかつ上流側の入口端から下流側の出口端まで縦方向に延びて上記処理液流の一部が貫流する複数本のフローチャンネルを画成する多孔質モノリス基体を備えており、上記複数本のフローチャンネルは、D=4{(CSA)/(CSP)}で表わされる、断面積(CSA)、断面の周囲長さ(CSP)および1.10mm以下の水力直径Dを有する。1枚の隔膜が上記複数の多孔質のフローチャンネル壁の少なくとも一部分に堆積されることが可能である。上記隔膜は多孔質である。いくつかの実施の形態によれば、上記多孔質モノリス基体は、1.0よりも大きいアスペクトレシオを有し、このアスペクトレシオは、モジュール長さ104対直径102の比と定義される。さらに別の複数の実施の形態においては、上記多孔質モノリス基体が、パージ流を受容するための別個の導管を画成してはいない。
【0010】
別の複数の実施の形態において、上記クロスフロー濾過デバイスは、多孔質チャンネル壁によって境界を定められかつ上流側の入口端から下流側の出口端まで縦方向に延びて上記処理液流の一部が貫流する複数本のフローチャンネルを画成する多孔質のモノリス基体を備え、上記複数本のフローチャンネルが、D=4{(CSA)/(CSP)}で表わされる断面積(CSA)、断面の周囲長さ(CSP)および1.1mm以下の水力直径Dを有する。上記と同様に、上記複数本の多孔質のフローチャンネル壁の少なくとも一部分に多孔質の隔膜が堆積されることが可能である。これらの実施の形態によれば、上記多孔質モノリス基体は、1.0よりも大きいアスペクトレシオを有する。一つの実施の形態においては、上記多孔質のモノリス基体が、この構造体から透過液を取り除くための1本または複数本の濾液導管190を備えている。この実施の形態においては、上記多孔質のモノリス基体が、パージ流を受容するための別個の導管を画成してはいない。
【0011】
いくつかの効果の中で、1.8mm以下の、1.5mm以下の、1.25mm以下の、1.1mm以下の、または1.0mm以下のチャンネル水力直径を有する小型のフローチャンネル・デバイスを使用することは、上記モジュールの表面積および実装密度を高めることを容易にすることができる。これに加えて、下記の詳細な説明およびそれに続く複数の実施例において実証されているように、チャンネル・サイズを縮小すると、上記表面積および実装密度を高めるのみでなく、透過流量を実質的に増大させるという驚くべきかつ予期しないことが判明した。この透過流量の増大は、クロスフロー濾過デバイスの単位容積当たりの透過率によって表わされる処理能力の実質的な増大と言い換えることができ、かつクロスフロー濾過デバイスの効率の増大を表わす。
【0012】
本発明のさらなる実施の形態および効果は、後述の詳細な説明および請求項の何れかに説明されており、または本発明の実施によって感得されるであろう。上述の概略説明および後述の詳細説明は、例示および説明に過ぎず、限定ではない。
【0013】
添付図面は、本発明のいくつかの実施の形態を示す。
【図面の簡単な説明】
【0014】
【図1】本発明による代表的なクロスフロー濾過デバイス150の斜視図である。
【図2a】内部に形成された複数の濾液導管190をさらに有する、本発明による代表的なモノリス体の斜視図である。
【図2b】図2aに示されたモノリス体の図2aのb−b面に沿った断面図である。
【図3】実施例3の濾過試験に利用されたクロスフロー濾過工程の概略図である。
【図4】実施例2に従って調製され、かつ実施例3の濾過試験によって評価された、隔膜をコーティングされた3個のクロスフロー濾過デバイスに関する濾過性能および混濁度データを示すグラフである。
【図5】実施例1から調製されたクロスフロー濾過デバイスの濾過流量と実施例2から調製されたクロスフロー濾過デバイスの濾過流量との、一定の隔膜差圧(TMP)の下に測定された場合の比較を示すグラフである。
【図6a】清浄水の流量に対するチャンネル・サイズの効果を示すグラフである。
【図6b】本発明の複数の実施の形態による相対流量に対するチャンネル・サイズ縮小の影響を示すグラフである。
【図7】隔膜による分離工程中に濾過ケーキ層を形成する濾過された微粒子の蓄積を示す概略図である。
【発明を実施するための形態】
【0015】
従来、低い表面積実装密度および高い単位表面積当たりの価格は、隔膜による液体分離工程に無機クロスフロー濾過デバイスを広範に用いることを阻害する主要な障害となっていた。このため、特に円柱状の多孔質の固形物内に埋め込まれた、または多孔質の固形物からなる複数の平行な隔膜チャンネルからなるアレイを備えたモノリス形態のモジュールがこのような用途に用いられて来た。この一般的な構成は、同一直径の単一チャンネル・チューブよりも高い表面積および実装密度を効果的に提供する。しかしながら、隔膜によって留められた微粒子が長い間には濾過ケーキ層を形成し勝ちであることが知られている。この濾過ケーキ層は、透過処理液に流動抵抗を付加する可能性がある。表面積および実装密度に加えて、チャンネルのサイズおよび形状、したがって濾過ケーキ層の厚さおよび構造も実際の濾過処理に関する流体力学および質量移動に影響を与える。本明細書に開示された、丸い直径形状の小さいチャンネルを有する本発明の実施の形態は、これらの問題の解決法を提供するものである。
【0016】
本発明の種々の実施の形態が、図面を参照して説明されている。種々の実施の形態を参照することは本発明の範囲を限定することではない。さらに、本明細書中に説明されている何れの実施例も、限定ではなく、本発明の多くの可能性ある実施の形態のうちのいくつかを説明しているに過ぎない。
【0017】
本発明の複数の実施の形態が下記に説明されている。このため、本発明の実施の形態の有益な結果をなおも享受しながら、ここに説明されている本発明の種々の実施の形態に対して多くのの変更をなし得ることは、当業者であれば認識かつ理解するであろう。実施の形態の所望の効果のうちのいくつかは、実施の形態のいくつかの特徴を選択することによって、他の特徴は利用することなしに得られることも明らかである。したがって、多くの修正および脚色が可能であり、状況によってはそれが望ましく、それらも本発明の一部であることを当業者であれば認識するであろう。それ故に、下記の説明は、本発明の原理の説明として提供されるものであって、本発明を限定するものではない。
【0018】
本明細書およびそれに続く請求項において、多くの用語が参照されているが、それらは下記のような意味を持つものと定義される。
【0019】
ここで用いられている単数形の名詞は、単数に限ると明示されていない限り、複数のものも含む。それ故に、例えば「一つの要素」は、一つに限ると明示されていない限り、二つ以上の要素をも含む。
【0020】
「随意的な」または「随意的に」は、その後に記載されている事象または状況が起こり得ることも、起こり得ないこともあることを意味し、その事象または状況が起こる場合と、起こらない場合との双方を含む。例えば、「随意的な要素」は、その要素が存在しても存在しなくてもよいことを意味し、その要素を備えた実施の形態と、その要素を備えていない実施の形態との双方を含む。
【0021】
本明細書においては、範囲を、「約」特定値から「約」他の特定値まで、として表現することができる。このような範囲が表現されている場合には、特定値から、および/または、他の特定値まで、は別の実施の形態である。同様に、先行詞「約」を用いることによって、数値が近似値として表現されている場合には、その特定値は別の実施の形態を形成する。さらに、範囲の両端点は、他の端点との関係においても、他の端点とは無関係であっても意味があることが理解されるであろう。
【0022】
以下、添付図面を参照して、本発明の複数の実施の形態について詳細に説明する。しかしながら、図面は必ずしも一定の比率ではない。
【0023】
図1を参照すると、多チャンネル・クロスフロー・モノリス濾過基体10が示されており、この基体10は、この基体内に配置されて上流側の入口端すなわち供給端1101から下流側の出口端すなわち排出端1102まで基体の縦方向に延びる複数本のフローチャンネル110を画成するモノリス多孔質体すなわちモジュール150を有する。上記複数本のフローチャンネル110を多孔質のチャンネル壁114が取り囲んでいる。上記多孔質体150はさらに、曲がりくねった流路すなわち導管152を形成する相互連結された気孔からなるマトリクス気孔組織を備えている。上記多孔質体150によって形成された曲がりくねった流路152は、処理液流から分離された濾液を多孔質体の外表面へ導く流路を提供する。使用時には、上記複数本のフローチャンネルが処理液流を受容し、続いて上記多孔質のチャンネル壁が、上記受容された処理液流の少なくとも一部を濾液と残留液とに分離させ、これにより、分離された濾液が上記マトリクス気孔組織すなわち曲がりくねった流路152を通って多孔質体の外表面へ導かれる。上記供給原料液の一部は、上記チャンネルを上記基体の入口端から出口端まで貫流する残留液を形成し、かつ上記供給原料液の一部は、上記基体自体の相互連結された気孔を通って基体を横切って流れて濾液として集まるので、このデバイスはクロスフロー濾過デバイスと呼ばれている。このクロスフロー濾過デバイスの実施の形態は、下記の説明に例示されているように、処理液流から一つまたは複数の要素を抽出するための、実験室規模または工業規模の液相分離に用いることができる。
【0024】
上記モノリス体150は、いかなる所望のサイズおよび形状をも採ることができる。例えば、図1においては、多孔質体すなわちモジュール150が、ほぼ円形の断面形状を備えた円柱として例示されているが、上記モジュール150は、楕円形または多角形の断面形状を備えたものに整形することができることを理解すべきである。このため、典型的かつ非限定的なモノリスの断面形状、すなわちこのデバイスの断面の外周形状は、楕円形、長円形、円形、長方形、正方形、五角形、六角形、八角形等を含む。一貫性および単純性を保つために、以下の説明では、円柱状のモジュール150が主として用いられている。
【0025】
本明細書で用いられている、特定の幾何学的素子の水力直径(hydraulic diameter)(D)という用語は、下記の式D=4{幾何学的素子の断面積(CSA)/幾何学的素子の断面の周囲長さ(CSP)}によって定義される。したがって、二次元的形状に関しては、水力直径は、表面積の4倍割る周囲長さである。例えば、直径dの円に関しては、水力直径D=4{(πd/4)/(πd)}。しかしながら、長さLの二乗に関しては、水力直径D=4×L/(4L)。一般的に、水力直径は面積対容積比の逆数関係にある。
【0026】
複数の実施の形態において、上記モノリス体150は、約10〜200mmの範囲内の水力直径102を有する。複数の実施の形態において、上記多孔質体150は、約10cmよりも大きいモジュール水力直径を有する。本明細書で用いられているように、多孔質体すなわちモジュール150の水力直径102は、モジュール全体の前面面積の水力直径を意味する。このモジュール全体の前面面積は、多孔質材料の固体マトリクスと複数のフローチャンネル開口部とを含む。例えば、直径dの円柱体すなわちモジュールに関しては、モジュール全体の前面面積はπd/4である。
【0027】
上記モノリス体150においては、モジュールの長さ104対モジュールの水力直径102の比であるアスペクトレシオが1よりも大きい。いくつかの実施の形態においては、上記アスペクトレシオが3よりも大きい。さらに別の実施の形態においては、上記アスペクトレシオが5よりも大きい。例えばこのモジュールの長さが30mmで、水力直径が5mmのモジュールのアスペクトレシオは6である。いくつかの実施の形態において、モジュールの長さ104は10cmを超え、20cmを超え、30cmを超え、または40cmを超える。
【0028】
上記複数本のフローチャンネル110は、上記モジュールの断面積全体に亘って平行かつ対称的に分布している。これらのフローチャンネルはまた、モジュールの上流側の入口端1101からモジュールの下流側の出口端1102まで延びて、所望の処理液流が通過し得る通路を形成している。典型的な実施の形態においては、フローチャンネルの断面形状が円形または丸みを帯びている。しかしながら、フローチャンネルの断面形状は、連続的でかつ鋭利な角がなければ、楕円形でも多角形でもお望み次第である。代表的な断面形状は。楕円形、円形、長方形、正方形、五角形、六角形、八角形等を含む。
【0029】
複数の実施の形態において、複数本のフローチャンネルは、これらのチャンネルの水力直径が1.8mmを超えないようなサイズおよび形状を有する。上記モジュールすなわち多孔質体の水力直径の計算と同様に、チャンネルの水力直径は、式D=4{フローチャンネルの断面積(CSA)/フローチャンネルの断面の周囲長さ(CSP)}によって定義される。したがって、二次元的形状に関して、上記フローチャンネルの水力直径は、表面積の4倍割る周囲長さである。例えば、図1に例示された直径dを有するほぼ円柱状のフローチャンネルに関しては、チャンネルの水力直径D=4{(πd/4)/(πd)}。本発明の複数の実施の形態によれば、複数本のフローチャンネルが、0.6mm,0.7mm,0.8mm,0.9mm,1.0mm,1.1mm,1.2mm,1.3mmおよび1.4mmの代表的な値を含む、0.5mmから1.8mmまでの範囲内の水力直径を有し、または1.8mm以下、1.5以下、1.25mm以下、1.1mm以下、1.0以下、または0.9mm以下の水力直径を有することが好ましい。さらに別の複数の実施の形態においては、上記チャンネルの水力直径が、上述の代表的な水力直径の二つの値から導き出される範囲内にあることが可能である。例えば、さらに別の複数の実施の形態においては、水力直径が、例えば0.5mmから1.1mmまでの範囲内のように、1.1mm以下とすることができる。
【0030】
さらなる複数の実施の形態において、上記複数本のフローチャンネル110は、上記モジュールの前面開口面積比(OFA)が20%から70%までの範囲内にあるようなフローチャンネル密度を備えるようにサイズおよび形状が定められている。上記前面開口面積比は、上記モジュールの前面の総面積に対するチャンネルの総開口面積の比である。例えば、10cmの前面の総面積を有する代表的なモジュールに関して、もしチャンネルの総開口面積が5cmであれば、上記前面開口面積比は、5cm/10cmすなわち50%であり、ここで、チャンネルの総開口面積とは、全てのチャンネルの断面積の総和である。代表的な、かつ非限定的な実施の形態において、複数本のフローチャンネル110は、モジュールの前面面積において約500〜800チャンネル/平方インチ(7.8〜124チャンネル/cm)範囲内のチャンネル密度を画成する。
【0031】
上記複数のフローチャンネル110は、モジュールの断面に亘って対称的であることが好ましいが、均一に分布されていることは必ずしも必要ではない。図1にはチャンネル分布が均一に示されてはいるが、フローチャンネル110はモジュール内に不均一に分布されていてもよい。一つの実施の形態において、複数のフローチャンネルがほぼ平行である。しかしながら、モジュールの幾何学的形状によっては、複数のフローチャンネルが直線経路を辿らないこともあり、したがって平行にならないこともある。例えば、もし整列していない複数のチャンネルがオーバーラップしたり交差したりしないように、十分なウェブの厚さがある場合であれば、複数のチャンネル110が非平行的に捩じれていてもよい(捩じれ角は90°未満)。不均一のチャンネル分布に関しては、ウェブの厚さ130は異なる厚さの範囲内(例えば、約0.2mmから約2mmまで)にあるであろう。しかしながら、周縁部における適切な外皮の厚さ120(例えば、>1mm(0.04インチ))はウェブの厚さ130よりも厚いことが好ましい。外皮すなわち周縁部の厚さ120は、ウェブの厚さ130から独立したパラメータである。ウェブの厚さ130はチャンネル間の距離の寸法であるが、外皮すなわち周縁部の厚さ120は、外側のチャンネルからモジュールの外表面までの距離の寸法であり、モジュール全体の強度および透過度に影響を与える。
【0032】
複数の実施の形態において、モノリス体150は、無機または有機材料、あるいは有機・無機材料の組合せまたは複合体を含む如何なる適当な多孔質材料からも形成可能である。いくつかの実施の形態において、このモノリス体が、例えばポリマー材料からなるものであってもよい。いくつかの実施の形態において、上記ポリマー材料は、例えば、ポリスルホン、ポリアクリロニトリル、ポリ弗化ビニリデン、またはポリオレフィンである。別の複数の実施の形態においては、上記モノリスの多孔質体が金属またはセラミック材料からなるものであってもよい。一つの実施の形態において、上記モノリス体が多孔質セラミック材料からなる。例えば、そして限定ではなく、いくつかの実施の形態において、上記モノリスが、ムライト(3Al−2SiO)、アルミナ(Al)、シリカ(SiO)、コージェライト(2MgO−2Al−5SiO)、炭化珪素(SiC)、アルミナ・シリカ混合物、ガラス、無機耐火物材料および延性金属酸化物から選ばれたセラミック組成物から作製される。別の複数の実施の形態においては、上記モノリス体150が、その内容の全てが本明細書に引用される米国特許第6,238,618号明細書に開示されかつ説明されているムライト組成物等の多孔質セラミック・ムライトからなる。
【0033】
上述のように、上記モジュールすなわちモノリス体150を形成する多孔質材料は、複数の曲がりくねった液体通路すなわち導管152からなるネットワークを形成する多数の気孔の相互連結されたマトリクスすなわち網状組織からなる。上記液体導管152は、上記フローチャンネル壁を透過して分離された濾液を、続く収集および処理のためにモノリス体150の外表面まで導くことができる。本発明の複数の実施の形態によれば、上記セラミック・モノリス体の全気孔容積すなわち気孔率%Pは、代表的気孔率である25%、30%、35%、40%、45%、50%および55%さえをも含む20%から60%までの範囲内にある。さらに、上記モノリス体の全気孔率は、上述の気孔率値の何れか二つで与えられる範囲内とすることができる。
【0034】
複数の実施の形態において、上記モノリス体150の気孔容積は、代表的気孔径である3μm、5μm、7m、9μm、11μm、13μm、15μm、17μmおよび19μmさえをも含む2μmから20μmまでの範囲内にある気孔直径サイズを有する気孔を有する。さらに、上記モノリス体の全気孔径は、上述の気孔径値の何れか二つで与えられる範囲内とすることができる。
【0035】
上記気孔サイズおよび全気孔率%Pは、従来から知られている測定方法およびモデルを用いて数量化されることが可能な値である。例えば上記気孔サイズおよび気孔率は、水銀ポロシメータおよび窒素吸着等の標準的な技法によって測定可能である。
【0036】
上記モジュールすなわちモノリス体150は従来から知られている鋳込み成形または押出し成形によって調製可能である。例えば、上記モジュールすなわちモノリス体は、その初期相としてのムライトを含む焼結されたセラミック組成物から形成されることができる。この焼結されたセラミックは、セラミック形成用原材料、有機バインダ系、および随意的な液体ビヒクルからなる、押出し成形可能な可塑化されたバッチ組成物から調製されることができる。上記押出し成形可能な混合物は押し出されて、所望の構造を有する未焼成体を形成する。この未焼成体は、乾かされ、かつ焼結されたセラミック構造を形成するのに十分な時間および温度で焼成される。上記濾液導管は、例えば押出しによって、あるいは押出し後に他の手段によってモノリス体内に形成される。本発明のモノリス構造を調製するための代表的な可塑化されたバッチ組成および製造工程は、その内容の全てが本明細書に引用される米国特許第6,238,618号明細書に記載されている。
【0037】
粗細濾過、抽出、液体混合等の用途における液体流処理に関しては、付加される隔膜層なしにモノリス体150自体を用いることができる。しかしながら、別の液体流処理の用途に関しては、多孔質のフローチャンネル壁の少なくとも一部分上に、多孔質の隔膜を堆積させることができる。
【0038】
必要に応じて、上記モノリス・マトリクスの気孔よりも小さい気孔サイズを有する多孔質材料からなる随意的な中間層160を、基体すなわちマトリクス体150のチャンネル壁114上に堆積させることができ、かつ単独的にまたは薄膜フィルム140とともに用いることができる。複数の実施の形態において、これらの層160および140は、隔膜、コーティング、フィルム、コーティング層またはコーティングフィルムと呼ばれる。このコーティング160は、一つまたは複数の可能性のある機能を果たすことができる。いくつかの実施の形態において、上記コーティング層160は、気孔サイズ、表面平滑度等のパラメータを含む上記フローチャンネルの形状および壁組織を改良するために施される。別の実施の形態においては、上記コーティング層160を、モノリス体150の強化に用いることができる。さらに別の複数の実施の形態においては、上記コーティング層160を隔膜堆積効率および接着性の向上に用いることができる。
【0039】
複数の実施の形態において、上記多孔質コーティング層160は、層の厚さが約5μmから150μmまでの範囲内の膜厚を示すように堆積させることができる。さらに、上記随意的なコーティング層160の気孔容積は、2nmから約500nmの範囲内の気孔サイズを含む。複数の実施の形態において、上記多孔質コーティング層は200nm未満の平均気孔サイズ径を有する気孔を有する全気孔容積%Pを有する。したがって、1層または複数層の中間的多孔質コーティング層160は、複数本の供給用フローチャンネル110の壁114の内表面上に随意的に堆積されて、ナノ多孔質層またはメソ多孔質層を形成する。
【0040】
複数の実施の形態において、随意的な層160は、アルミナ、シリカ、ムライト、ガラス、ジルコニア、チタニアを含む群から選ばれた一つの材料、またはそれらのうちの何れか二つまたはそれ以上の組合せを含む。上記中間的コーティング層160は、常套的なゾル・ゲル法等の従来から知られている湿式化学的方法によって施されてもよい。
【0041】
随意的に、付加的な隔膜フィルム140は、上記随意的な中間的コーティング層160上に、または上記モノリス体150の複数本の供給用フローチャンネル110の内表面すなわち壁114上に直接施されることができる。このため、層160は、他の層を伴うことなく単独で用いられることができ、ここで用いられている「隔膜」という用語は、層160のみの使用、層140のみの使用、または双方の層140および160の使用を含む実施の形態を意味する。多層の隔膜が存在していてもよい。隔膜140は無機材料からなるものでも、有機材料からなるもでもよい。例えばいくつかの実施の形態においては、隔膜フィルム140が厚いフィルムであっても、あるいはSiCまたはガラス等のような、混合物中の或る分子の透過を許容する厚い非金属性フィルムであってもよい。さらに別の複数の実施の形態においては、隔膜フィルム140が、例えばゼオライト、ジルコニア、アルミナ、シリカ、チタニア、またはガラスからなるマイクロ多孔質層であってもよい。さらに別の複数の実施の形態においては、隔膜層140がポリマー隔膜フィルムであってもよい。もし存在する場合、上記多孔質隔膜層140は約1μmから20μmまでの範囲内の層厚を示すように堆積されるのが好ましい。さらに、随意的な付加的隔膜層140の気孔容積は、約200nm未満の気孔サイズを備えたものからなることが好ましい。
【0042】
複数の実施の形態において、上記基体は、隔膜を備えた部分1521および隔膜を備えていない部分1522を有する多孔質体150のマトリクスを通る複数の曲がりくねった通路152を通じて種々の液相混合物を分離し、精製し、濾過し、またはその他の処理機能に関して用いることができる。一般に、曲がりくねり度合いという概念は、チャンネルの方向変化および/またはチャンネルの断面積の変化の結果このチャンネルによって形成された通路を液体または複数の液体の混合物の特定部分が通過する流路の長さと、方向変化または断面積の変化を伴わない同じ全長のチャンネル、換言すれば断面積が変化しない直線的チャンネル内の上記混合物の同様の部分が流れる流路の長さとの間の差として定義される。真っ直ぐすなわち直線的な通路からの逸脱は、勿論、より長いまたは曲がりくねりがより大きい通路において生じ、直線的通路からの逸脱度合いが大きい程、通路は長くなるであろう。
【0043】
複数の実施の形態において、隔膜モジュール10は、図1に示されているように垂直に置かれても、または図3に示されているように水平に横たえられても、傾斜して置かれても、あるいはその他の如何なる姿勢に置かれた状態においても使用可能な構造を有する。液体が供給されるフローチャンネル110は、上流側の入口端すなわち供給端1101と、下流側の出口端1102とを有する。上記隔膜フィルム160および140は、複数本のフローチャンネル110の供給端1101に供給された不純物を含んだ供給液流180を正の圧力勾配170の下に受容するために支持されかつ適応している。上記正の圧力勾配170は、上記隔膜140および随意的な中間コーティング層160を横切る第1の圧力低下171と、多孔質のモノリス基体150を通じた第2の圧力低下172とによって形成される。上記隔膜フィルム160および140は、不純物を含んだ供給流180を処理して、上記隔膜フィルム140の外表面を通通する上記不純物を含んだ供給流180の一部から形成された純化された濾液すなわち透過液1852にするのに適しており、上記濾液は、モノリス150のマトリクスの曲がりくねった複数の通路152内に流入し、隔膜を備えた基体断面1521内に入り、かつ隔膜を備えていない多孔質の基体断面1522を通って流出する。副産物すなわち残留液流1802は、隔膜フィルム160および(または)140(もし存在するならば)を通り抜けず、複数本フローチャンネル110の出口端1102を通って外に出る。
【0044】
図2aおよび図2bを参照すると、さらなる複数の実施の形態において、モノリス150は、図2aに示されかつ図2bに一部が描かれているようなフローチャンネル110と、図2aおよび図2bに示されているように、上記モノリス150内に形成された1本または複数本の濾液導管190とを備えている。これらの濾液導管190は、濾液物質が、残留液物質とは別の流れをなして上記モノリスの内部を流れる通路を提供するように構成されかつ配置されている。
【0045】
いくつかの実施の形態において、上記濾液導管190は、この構造体の上流側の入口端すなわち供給端から下流側の出口端すなわち排出端まで縦方向に延びている。あるいは、上記濾液導管の少なくとも一部が、1本または複数本のフローチャンネルとともに、その長さの少なくとも一部分に沿って縦方向に延びることも可能である。さらに濾液をモノリス150の外表面まで、または濾液収集ゾーン(図3の300参照)へ導くために、図2に示されているように、上記濾液導管が、縦方向部分から横方向に延びるチャンネルまたはスロット192を備えることも可能である。この濾液導管は、さらに上記チャンネルに結合された複数の縦方向の室を備えていてもよい。上記スロット192は、濾液導管の縦方向部分を濾液収集ゾーン(図3の300参照)に連結するために上記モノリスの一端に形成された開口部、スロットまたはチャンネル、あるいは上記モノリスに形成された孔であってもよい。複数の実施の形態においては、少なくとも1個のスロットが上記濾液導管に形成され、またはスロット192がこのデバイスの供給端および排出端の双方に形成されていてもよい。あるいはスロット192が、上記モノリスの長さ方向に沿った何れかの点において、モノリス体の外表面を抜けて導かれる複数の孔であってもよい。これらの濾液導管190は、上記供給端および上記排出端において障壁194によって閉塞されていてもよい。これらの障壁194は、処理液の通路が上記モノリスの供給端または排出端において濾液導管に出入するのを阻止する。この障壁194は、濾液導管190に挿入または導入された栓材料であってもよい。この障壁194は、上記構造体と同一の材料から形成されていても、あるいは他の適当な材料で形成されていてもよく、上記栓が上記構造体の材料の気孔率と同一またはより低い気孔率を有するものであってもよい。
【0046】
供給端1101および出口端1102が障壁194で閉塞されている濾液導管190を備えた本発明の複数の実施の形態においては、受容された処理液流が上記モノリスの入口端1101においてこのモノリス内に流入する。受容された処理液流の一部である残留液は、図2aおよび図2bに矢印225によって示されているように、複数本のフローチャンネル110を通って出口端1102までモノリス150を貫流する。受容された処理液流の一部である濾液は、フローチャンネル110を通ってモノリス内に流入し、モノリス150の網状気孔組織を貫流して、モノリス構造体内に埋め込まれた濾液導管190に至る。これらの濾液導管190は、障壁194によって両端を閉塞されたフローチャンネルであり、かつ濾液導管190は、スロットすなわち出口通路192を通じてモノリスの側面に開口して、濾液がモノリスの多孔質構造体をモノリス外部まで貫流するのを可能にするするフローチャンネルである。これらの濾液導管190は、両端が閉塞されているために、モノリス構造体内部における低圧通路を形成する。上記モノリス構造体の気孔内に流入した処理液流の一部は、材料の気孔を通ってこの低圧通路に流れ、次いで、上記スロットすなわち出口通路192を通って、残留液がそこから集められるモノリスの出口端から隔離された濾液収集ゾーン300(図3参照)内に流入する。この方法で、上記処理液流が、入口端から出口端までモノリス内を貫流する残留液と、モノリス内に流入し、多孔質材料の気孔組織に入り、濾液導管190内に流入し、かつモノリス150の側面におけるスロット192を通ってモノリスを出る(図2bにおける矢印226によって示されているように)濾液とに分離される。上記濾液導管190は、上記フローチャンネルに比較して低い流動抵抗を有する通路を提供し、濾液がモノリス網状気孔組織を濾液導管190まで貫流するのを可能にする圧力低下を創生させる。濾液導管は、モノリス体の外表面に対して障壁194によって閉塞されている。
【0047】
上記濾液導管190は、多孔質材料を貫通するフローチャンネルの流動抵抗よりも低い流動抵抗を有する流路を提供し、その構造は、これらの濾液導管が、多くの通路中に分布されて、濾液導管の近隣の多孔質材料を通る通路よりも圧力低下の低い通路を提供する。複数の濾液導管は、構造体内部から濾液をモノリス体すなわちモジュール150の外表面の周囲に配置された濾液収集ゾーン300(図3参照)に向かって運ぶことができる。代表的な別個の濾液導管190は、例えば米国特許第4,781,831号明細書に開示されかつ説明されている。
【0048】
複数の実施の形態において、濾液導管190は存在しなくても(図1に示されているように)、存在していても(図2aおよび図2bに示されているように)よい。一般的に、より小型の(例えば約50mm未満の)モジュール水力直径を有するモノリス基体は、濾液導管190を備えていなくても適切な濾過を行なう。より大型の基体は、より大型の基体の内部分からの濾液の排出を容易にするために濾液導管を必要とするであろう。
【0049】
いくつかの実施の形態において、本発明の多孔質モノリス構造体は、処理液流から分離された第2の液流、例えばパージ流を受容するための別個の導管を本質的に画成していないことも考慮されている。パージ流を受容するためのこのような代表的な導管は、米国特許第7,169,213号明細書に開示されかつ説明されている。例えば本発明の複数の実施の形態が、別個のパージ流導管を通じてモノリスに導入されてモノリス体を通ってパージ流すなわちスイープ流として作用して濾液流を濾液導管190内へ流入させかつスロット192を通じてモノリスの外部へ出るように付勢する第2の液流を必要とすることなしに好ましく動作することは驚くべきことである。別個の液流がモノリス体を通じて濾液をスイープするというこの特徴は、スロット192なしに動作させるためには、例えば、5cm、10cm、15cmまたは20cmよりも大きい直径の、より大径の部分を必要とするという特徴の一つの例である。
【0050】
使用時には、このクロスフロー濾過デバイスは、混合供給液流180が、例えばより大きい別の要素を含有する水溶液等の液体を主成分とする液体である場合の濾過工程に使用することができる。より大きい要素は、より大きい分子および/または微粒子であり得る。それ故に、混合水は、工場排水流からの細かく分散された油滴を含むことがあり得る。混合水は、飲料ジュース等の微粒子を含んでいることがあり得る。混合水は、蛋白質等の大型分子を含んでいることがあり得る。上記クロスフロー濾過デバイスの実施の形態は、混合液中の最小の分子としての水が他の要素よりも大きい基体マトリクスを通る透過度を有しているために、透過液としての水を分離させるのに適している。さらに、上記クロスフロー濾過デバイスはまた、有機液が透過液である場合に有機溶媒を含む混合液の分離処理に特に好ましい。液相流は、他のより大きい要素を含む有機溶媒を主成分とする溶液であり得る。
【0051】
所定のモノリス水力直径および開口前面面積比を有するモノリス体150に関しては、このモジュールの表面積および実装密度がチャンネル・サイズの縮小に伴って増大する。それ故に、1.1mm以下のチャンネル水力直径を有する小さいサイズのフローチャンネルを用いることは、上記モジュールの表面積および実装密度の増大を容易にする。しかしながら、チャンネル・サイズの縮小は、下記の実施例に例示されているように、表面積および実装密度を増大させるのみでなく、透過流量をも実質的に増大させ、これは隔膜モジュールの単位容積当たりの透過度によって表わされる濾過処理能力の実質的な増大に変換することができる。
【0052】
上述の実施の形態に対して、本発明の精神および範囲から離れることなしに、センサ等の適用を含む種々の変形、変更を行なうことが可能なことは、当業者には明らかであろう。それ故に、本発明は、説明された実施の形態の変形、変更を含むものも対象にするものである。
【実施例】
【0053】
さらに複数の実施の形態を示すために、クロスフロー濾過デバイスの実施の形態が如何にして作製されかつ評価されたかの説明を当業者に提供するための下記の実施の形態が提案された。これらは単に本発明の例示であって、発明者等が彼らの発明に関する範囲を限定すべく意図されたものではない。そうではないと指示されない限り、部は重量部であり、温度は℃または周囲温度であり、圧力は大気圧またはその近傍である。
【0054】
実施例1:比較用モノリス体
比較用の円柱状モノリス支持体が、円形押出しダイを利用した常套的な押出し成形工程により調製された。この比較用の円柱状モノリスは、約1.08インチ(2.7cm)の水力直径および12インチ(30.5cm)の長さを有していた。このモジュールは、1.85mmのチャンネル幅を有する60本の正方形のフローチャンネルを備えていた。これらのフローチャンネルは、このモジュールの断面全体に亘って一様に分布されていた。得られたモジュールは、1.46平方フィート(0.135m)の表面積と205.4mmの前面開口面積を有していた。この比較用のモノリスは、スロットも濾液導管も備えていなかった。
【0055】
上記モノリス支持体は、約4.5μmの平均気孔サイズと約40%の全気孔率とを有する多孔質ムライト材料から形成されていた。フローチャンネルの壁は、ジルコンとαアルミナとからなる混合物で先ず被覆され、次いでαアルミナとジルコニアの混合物からなる層によって中間的多孔質コーティングが施された。得られた中間的多孔質コーティングは、約50nmから200nmまでの範囲内の平均気孔開口部を備えていた。最後にチタニアからなる最上層のコーティングが施されて、約10nmの平均気孔開口部を有する外側隔膜層が施された。
【0056】
実施例2:実験用モノリス体
実験用の円柱状モノリス支持体(本発明の実施の形態によるクロスフロー濾過デバイス)が円形押出しダイを利用して調製された。この実験用の円柱状モノリスは、約9.7mmの水力直径および133mmのモジュール長さを有していた。このモジュールは、それぞれが0.88mmのチャンネル径を有する19本の丸められたフローチャンネルを備えていた。これらのフローチャンネルは、モジュールの断面積全体に亘って分布されていた。得られたモジュールは、0.0070mの表面積および11.61mmの前面開口面積を有していた。この実施の形態においては、実験用モノリスがスロットも濾液導管も有していなかった。
【0057】
上記実験用モノリス支持体は、約4.5μmの平均気孔サイズと約40%の全気孔率とを有する多孔質ムライト材料から形成されていた。フローチャンネルの壁の表面は、ジルコンとαアルミナとからなる混合物で先ず被覆され、次いでαアルミナとジルコニアの混合物からなる層によって中間的多孔質コーティングが施された。得られた中間的多孔質コーティングは、約50nmから200nmまでの範囲内の平均気孔開口部を備えていた。最後にチタニアからなる最上層のコーティングが施された。この態様で、約200nm、50nm、および10nmの気孔開口部を備えた最上層隔膜コーティングを有する3種類の隔膜をコーティングされたモノリス体が調製された。
【0058】
実施例3:濾過試験
上記実施例1および2に従って調製された比較用および実験用モノリス体を利用して、図3に概略的に示されているクロスフロー濾過装置200において濾過試験が行なわれた。塗料と水との混合物が処理液流として用いられた。これらの塗料は、約20.5重量%の固形分からなる固形物濃度において約20nmから約3nmまでの範囲内の塗料粒子を含んでいた。市販の塗料は、ペンシルヴェニア州ピッツバーグ所在のPPGインダストリー社から購入した。
【0059】
比較用および実験用モノリスの双方のための各濾過試験に関して、図3に示されているように、流入エンドキャップ330および流出エンドキャップ331からなるエンドキャップを有する槽210内に、隔膜を備えたモノリス体150が収容された。塗料・水混合物がタンク220内に格納され、このタンクから上記混合物がポンプ230によって連続的に上記容器210内に圧入され、かつ上記モノリス体150の隔膜を備えたチャンネルに通された。残留液、すなわち濾過されないでチャンネルおよびモノリス体を通過した液体は、流出エンドキャップ331を通って図3に示された装置から流出した。残留液は再度循環されかつ再度濾過される。隔膜を備えたチャンネルの内部の圧力は、隔膜を備えたモノリス体の外側を取り囲む環状空間240内の圧力よりも高い値に保たれた。その結果、短い矢印で示されているように、水が隔膜および多孔質モノリス体を透過し、モノリス体150の外側を取り囲む環状空間、すなわち濾液収集ゾーン300内に集められ、大きい矢印によって示された透過液(F)として装置の外へ流出した。供給された液流中の微粒子は、隔膜をコーティングされた層によって、モノリス体の多孔質構造内を流通するのを阻止された。各濾過試験に関する透過流量が測定されかつ記録された。比濁分析計を用いて透過液のNTU(比濁分析単位数)も測定された。
【0060】
流量値は下記の等式に従って計算された。すなわち、
【数1】

【0061】
ここで、Fは透過流量、SAは隔膜の表面積である。
【0062】
透過度は下記の等式によって計算された。すなわち、
【数2】

【0063】
ここで、TMPavg は下記の等式によって計算される平均隔膜浸透圧である。すなわち、
【数3】

【0064】
ここで、PF,in は入口圧力、PF,out は出口圧力、Pは透過側の圧力である。
【0065】
クロスフロー直線速度は下記の等式によって計算された。すなわち、
【数4】

【0066】
ここで、Rin はクロスフロー・レート、SAopen は開口チャンネルの全断面積である。
【0067】
上述の濾過試験手順に基づいて、図4は濾過特性を示す。X軸上のクロスフロー直線速度(cm/秒)に対して、Y軸上には透過度(1/m・時・バール)がプロットされている。上述の実施例2に従って調製された、3種類の隔膜をコーティングされた実験用のモノリス体に関する特性および濁度を示す。三種類の隔膜の全てに関する透過度値は類似しており、クロスフロー直線速度の増大に伴って透過度値が増大していることを見ることができた。しかしながら、より小さい気孔サイズの開口部を有する隔膜から齎される透過水は、より低いNTU値によって反映されているように、透過水混濁度における大きな低下を提供した。特に、図4に菱形で示されているように、約200nm(0.2μm)の気孔開口部を有する隔膜は、図4に菱形で示されているように、49〜22.3の範囲内のNTUを示していたのに対し、約50nm(0.05μm)の気孔開口部を有する隔膜(図4に正方形で示されている)、および10nm(0.01μm)の気孔開口部を有する隔膜(図4に三角形で示されている)は、それぞれ2.49〜0.51および0.48〜0.21のNTU値を示していた。それに引き換え、処理されていない供給された塗料・水混合物のNTU値は1000を超えていた(データ不図示)。
【0068】
図5は、X軸上でフィート/秒で測定された、チャンネル内のクロスフロー速度に対するY軸上の25psi(172パスカル)におけるガロン/平方フィート・日で測定された流量を示す。一定の隔膜差圧(TMP)(25psi)の下に測定された場合の、実施例1(図5に正方形で示された、1.8mm平方のチャンネルを有する比較例)から調製された比較用隔膜の流量と、実施例2(図5に円で示された、0.88mmの丸いチャンネルを有する実験的モジュールの実施例)から調製された隔膜の流量とが示されている。0.88mmのチャンネルに関する流量は、クロスフロー直線速度に比例して増大しているのに対し、1.8mmのチャンネルに関する流量は、クロスフロー直線速度にとともに僅かしか増大していない。同一のクロスフロー直線速度においては、より小さいチャンネルに関する流量は、より大きいチャンネルに関する流量の約2倍から3倍である。
【0069】
さらに、塗料テストにおける処理流量(隔膜の表面積で標準化された流量)は隔膜チャンネル・サイズに依存しておらず、したがって、処理能力流量は隔膜の表面積に完全に比例する。図6aは、X軸上のチャンネル・サイズに対するY軸上の25psi(172パスカル)における清浄水流量(GFD)を示す。25psi(172パスカル)において0.01μm(図6aの菱形)および0.2μm(図6aの正方形)の気孔サイズを備えた隔膜を有する、実施例2の実験用モノリスを通る清浄水の流量は、チャンネル・サイズ(直径)の変化によって影響されない。しかしながら、この期待に反して、標準的な1.8mm平方のチャンネル部分の流量レベルで標準化された流量レベルおけるチャンネル直径の影響を評価した場合に、驚くべき結果が見られた。特に、図6bに示されているように、チャンネル・サイズが直径1.3mm未満に減少すると、流量(標準に対する流量の比で示されている)における指数関数的な増大が観察され、最大の流量増大は直径約1.1mm未満で見られた。この結果は、図6bにおいて破線で示されている、流量がチャンネル・サイズに無関係に流量が一定に保たれている予想された特性に照らして驚異的である。
【0070】
理論によって縛られまたは限定されるつもりはないが、二つのサイズの異なる隔膜チャンネル間の濾過特性の差は、濾過ケーキ層における差によって説明される。図7に概略的に示されているように、液体701は、大きな矢印760で示されているように、本発明のモノリスの実施の形態のチャンネルを通って流れる。濾液は多孔質の隔膜720を横断して多孔質モノリス体730内に流入し、濾液収集ゾーン300内に流出し、残された微粒子は、隔膜チャンネルの表面上に蓄積されて濾過ケーキ層710を形成する。この濾過ケーキ層710は、透過液に対して大きな流動抵抗を付加する可能性があり、図6に示されたデータによって証明されているように、隔膜コーティング層自体の流動抵抗を支配する可能性がある。上記濾過ケーキ層710の厚さおよび密度は、上記フローチャンネル内部の流体力学および質量移動によって影響され得る。このため、チャンネル・サイズの縮小は、生成した濾過ケーキ層の厚さを減少させ、したがって流動特性を淀みではなくよりダイナミックにして、より小径のチャンネルが、優れた流動特性を備えたモジュールを作り出すという驚くべき成果を生んだのである。
【符号の説明】
【0071】
10 基体
110 フローチャンネル
114 チャンネル壁
150 多孔質モノリス体
152 曲がりくねった流路
180 処理液流
190 濾液導管
192 スロット
194 障壁
140 隔膜フィルム
160 コーティング層
710 濾過ケーキ層
1802 残留液流
1852 濾液

【特許請求の範囲】
【請求項1】
処理液流を受容し、かつ該処理液流を濾液と残留液とに分離させるためのクロスフロー濾過デバイスにおいて、
多孔質チャンネル壁によって境界を定められかつ上流側の入口端から下流側の出口端まで延びて前記処理液流の一部がそこを通って貫流する複数本のフローチャンネルを画成する多孔質モノリスの基体であって、前記複数本のフローチャンネルが、
=4{(CSA)/(CSP)}
で表わされる断面積(CSA)および断面の周囲長さ(CSP)を有するものである多孔質モノリスの基体、
前記複数の多孔質のフローチャンネル壁の少なくとも一部分に堆積された多孔質の隔膜、および
分離された濾液を濾液収集ゾーンに導く少なくとも1本の濾液導管、
を備え、
前記チャンネルの水力直径Dが1.10mm以下であり、かつ
前記多孔質モノリスの基体が、パージ流を受容するための別個の導管を有しないことを特徴とするクロスフロー濾過デバイス。
【請求項2】
前記多孔質モノリスの基体が、10cmよりも大きいモジュール水力直径を有することを特徴とする請求項1記載のクロスフロー濾過デバイス。
【請求項3】
前記多孔質の隔膜が1層の無機層であることを特徴とする請求項1記載のクロスフロー濾過デバイス。
【請求項4】
前記多孔質の隔膜が1層のポリマー層であることを特徴とする請求項1記載のクロスフロー濾過デバイス。
【請求項5】
前記多孔質モノリスの基体が、20%から60%までの範囲内の全気孔容積を有することを特徴とする請求項1記載のクロスフロー濾過デバイス。

【図1】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6a】
image rotate

【図6b】
image rotate

【図7】
image rotate


【公表番号】特表2011−519310(P2011−519310A)
【公表日】平成23年7月7日(2011.7.7)
【国際特許分類】
【出願番号】特願2011−507429(P2011−507429)
【出願日】平成21年4月28日(2009.4.28)
【国際出願番号】PCT/US2009/002587
【国際公開番号】WO2009/134359
【国際公開日】平成21年11月5日(2009.11.5)
【出願人】(397068274)コーニング インコーポレイテッド (1,222)
【Fターム(参考)】