説明

混合器オフセットを較正するための装置及び方法

差動信号を有する部分回路と、部分回路に接続されるフィードバック回路とを備える、回路。フィードバック回路は、差動信号間のオフセットを測定すると共に、測定に応答して較正信号を生成すると共に、較正信号に応答してオフセットを低減するように構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は包括的には電子回路に関し、詳細には、周波数混合のための回路に関する。
【0002】
[関連出願の相互参照]
本出願は、米国特許法第119条(e)項に基づいて、2005年9月26日に出願の米国仮特許出願第60/720,857号からの優先権を主張し、その仮特許出願の内容は、参照によりその全体が本明細書に援用される。
【背景技術】
【0003】
移動通信及びコンピューティングデバイスがユビキタスになるにつれて、ワイヤレスデバイスの普及が益々進んでいる。ワイヤレスデバイスの中には、無線周波数通信を用いて動作するものがある。そのようなワイヤレスデバイスでは、無線周波数アップコンバータ又は無線周波数混合器が重要な構成要素である。
【0004】
従来のアップコンバータ又は混合器の回路は、ベースバンド信号を搬送波信号と混合することによって、ベースバンド信号を送信帯域信号に変換するために用いられる。従来のアップコンバータ/混合器回路では、混合器を駆動する回路のDCオフセット、及び混合器の入力段のDCオフセットが、搬送波漏れを引き起こす一因になる。この漏れは、変調を劣化させることがあるか、又はそれ以外にも、ワイヤレス網及びセル式電話のような標準化されたシステムのための仕様に準拠しなくなる原因となる恐れがある。
【0005】
そのようなオフセットを低減するために、回路内のデバイスを大きくして、整合を改善する。このようにサイズを大きくする結果として、ダイ面積が大きくなり、コストが増加し、消費電力が増加する。さらに、数多くのRF混合器では、出力においてDCオフセットを検知するのは実用的ではない。これは、そのような回路網は回路に過度に負荷をかけるためである。
結果として、改善された混合器回路が必要とされている。
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、上記した従来技術の問題に鑑みなされたもので、改善された混合器回路及び混合器を構成する方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
請求項1記載の混合器は、
混合器であって、
第1のノードに接続される第1の差動トランジスタ対と、
前記第1の差動トランジスタ対に交差接続され、且つ第2のノードに接続される第2の差動トランジスタ対と、
前記第1のノード及び前記第2のノードに接続される第3の差動トランジスタ対と、
前記第1のノード及び前記第2のノードに接続され、且つ該第1のノードと該第2のノードとの間で測定された信号オフセットに基づいて、較正信号を生成するように構成されるフィードバック回路と、
前記第3の差動トランジスタ対に接続され、且つ前記較正信号に応答する変調入力回路と
を備える。
【0008】
請求項7記載の回路は、
回路であって、
差動信号を有する部分回路と、
前記部分回路に接続され、且つ前記差動信号間のオフセットを測定すると共に、該測定に応答して較正信号を生成すると共に、該較正信号に応答して前記オフセットを低減するように構成されるフィードバック回路と
を備える。
【0009】
請求項16記載の方法は、
混合器を構成する方法であって、
前記混合器内部のオフセットを測定すること、
前記測定に応答して、較正信号を生成すること、及び
前記較正信号で前記混合器を制御して、前記オフセットを低減すること
を含む。
【発明の効果】
【0010】
本発明によれば、改善された混合器回路及び混合器を構成する方法を提供することが可能となる。
【発明を実施するための最良の形態】
【0011】
一実施の形態は、回路であって、差動信号を有する部分回路と、部分回路に接続されるフィードバック回路とを備える、回路を含む。フィードバック回路は、差動信号間のオフセットを測定すると共に、測定に応答して較正信号を生成すると共に、較正信号に応答してオフセットを低減するように構成される。
【0012】
図1は、一実施形態による、オフセット較正回路を有する混合器を示す図である。その混合器は、第1の差動対60と、第2の差動対62とを備える。第1の差動対60は、トランジスタQ9及びQ10を含み、ノードN7に接続される。第2の差動対62は、トランジスタQ11及びQ12を含み、ノードN8に接続される。差動対60及び62は、互いに交差接続される。したがって、Q9のコレクタは、ノード11を通して、Q11のコレクタに接続される。同様に、Q10のコレクタは、ノード12を通して、Q12のコレクタに接続される。混合器のための差動局部発振器入力(differential local oscillator input)VLOが、トランジスタQ9〜Q12に接続される。抵抗器R5が、ノードN11に接続される。抵抗器R6が、ノードN12に接続される。ノードN11及びN12が、混合器のための差動RF出力VRFを形成する。
【0013】
入力段12が、ノードN7及びN8に接続され、較正信号61及び入力信号65を受信するように構成される。入力段12では、トランジスタQ13及びQ14がそれぞれ、ノードN7及びノードN8に接続され、電流源66に接続される。変調入力回路64が、トランジスタQ13及びQ14に接続される。変調入力回路64は、入力信号65及び較正信号61を合成し、第1の出力OUT1及び第2の出力OUT2を生成するように構成される。第1の出力OUT1及び第2の出力OUT2はそれぞれ、トランジスタQ13及びQ14を駆動する。
【0014】
変調入力回路64は、種々の回路構成によって、入力信号65及び較正信号61を合成することができる。たとえば、入力信号65として、差動入力信号を用いることができる。抵抗器網が、較正信号と、差動入力信号の複数の信号のうちの1つとを合成することができ、オフセットが導入されることがある。したがって、変調入力回路64の出力OUT1及びOUT2として、差動入力信号がトランジスタQ13及びQ14に加えられるとき、オフセットが生じるであろう。較正信号61によってオフセットが導入される結果として、ノードN1及びN2に先行する任意の成分又は信号に起因する電流I1とI2との間のオフセットが低減されるか、又は解消されることがある。
【0015】
別の例では、較正信号61は、差動入力信号の両方の信号に加えられることがある。たとえば、較正信号61は、差動信号の第1の信号と合成され、第1の出力OUT1を生成することができる。較正信号61を反転した信号が、差動信号の第2の信号と合成されて、第2の出力OUT2を生成することができる。こうして、較正信号は、トランジスタQ13及びQ14に別々に加えられる。
【0016】
入力信号と較正信号とを合成する際に抵抗器を用いることが説明されてきたが、較正信号と入力信号とを合成するために、抵抗器以外の構成要素を含むか、又は抵抗器に加えて他の構成要素を含む、種々の他の回路構成が用いられることがあることは、当業者には理解されよう。たとえば、他の構成要素は、コンデンサ、トランジスタ、コイル、ダイオード、結合器等を含むことができる。
【0017】
フィードバック回路14がノードN7及びN8、並びに入力段12に接続される。フィードバック回路は、較正信号61を生成するように構成される。フィードバック回路14は、トランジスタQ15及びQ16と、抵抗器R7及びR8と、較正信号発生器66とを含む。トランジスタQ15はノードN9、較正モード回路70及びノードN7に接続される。トランジスタQ16はノードN10、較正モード回路70及びノードN8に接続される。抵抗器R7は、ノードN9と電源67との間に接続される。抵抗器R8は、ノードN10と電源67との間に接続される。較正信号発生器66は、ノードN9及びN10、並びに変調入力回路64に接続される。較正信号発生器66は、較正信号61を生成するように構成される。一実施形態では、較正信号発生器66は、ノードN9上の第1の電圧及びノードN10上の第2の電圧に応答して、較正信号61を生成するように構成される。
【0018】
較正モード回路16は、フィードバック回路14に接続され、較正モード信号63を生成するように構成することができる。較正モード信号63は、較正モード及び動作モードを含む、動作に関する多数のモードを指示することができる。フィードバック回路14は、較正モード信号63に応答して動作するように構成される。この例では、フィードバック回路14は、較正モード信号が較正モードを指示するときに、第1の電流及び第2の電流に基づいて、較正信号61を生成するように構成される。また、フィードバック回路14は、較正モード信号63が動作モードを指示するときに、較正信号61を保持するように構成される。
【0019】
トランジスタQ13及びQ14として、そうする必要はないが、相対的に大きなデバイスを用いることができる。そのようにサイズを大きくして使用することで、電流I1とI2との間の不整合を改善することができる。しかしながら、そのような整合は、トランジスタQ13及びQ14に先行する信号パス内の構成要素によって導入される不整合には作用しないであろう。それでもフィードバック回路14を用いて、他のデバイスのサイズを大きくすることなく、電流I1とI2との間のDCオフセットをさらに低減し、整合を改善することができる。したがって、信号パス内にさらなる大きなデバイスを用いてオフセットを低減する回路と比べて、いくつかのデバイスのサイズを大きくする場合であっても、結果として生成されるチップ面積がそれでも低減される。
【0020】
抵抗器R7及びR8のサイズを大きくして、整合を改善することができる。さらに、種々の構成要素の整合を改善する際に、サイズを大きくすることが説明されてきたが、所望により、デバイスの配置又はレイアウトのような他の整合技術を用いることができることは当業者には理解されよう。
【0021】
混合器オフセットを較正するための一実施形態は、以下のように動作する。局部発振器信号が、VLOとして、トランジスタQ9〜Q12に加えられる。この例では、VLOは、所望のように変調するための搬送波である。変調入力回路64に入力が加えられる。変調入力回路64は、入力信号65及び較正信号61に基づいて、トランジスタQ13及びQ14を駆動する。結果として、入力信号65に基づいて、電流I1及びI2が変調される。
【0022】
上記のように、電流I1とI2との間にDCオフセットが生じることがある。較正モードでは、較正モード信号63が、較正モード回路16からハイに駆動される。結果として、図4に示されるフィードバック回路14のトランジスタQ7及びQ8がオンに切り替えられる。電流I1及びI2の少なくとも一部が、フィードバック回路14に向かって向きを変更される。実際には、較正モードでは、電流I1及びI2の或る量から全ての量がフィードバック回路14に流れることになるが、以下の説明は、電流I1及びI2の全ての量がフィードバック回路14に向かって向きを変更されるかのような動作を記述する。フィードバック回路14に向かって向きを変更されるような電流I1及びI2を参照することは、電流の任意の部分を指すことがあることは当業者には理解されよう。
【0023】
この例では、トランジスタQ15及びQ16がオンに切り替えられるとき、電流I1及び電流I2がそれぞれ、抵抗器R7及びR8を通って流れる。結果として、ノードN9及びN10上に電圧が生成され、その電圧はそれぞれ、電流I1及びI2に比例する。抵抗器R7及びR8の抵抗値が概ね等しいものと仮定すると、ノードN9及びN10における電圧の差は、トランジスタQ15及びQ16を通って流れる電流の差に概ね比例するであろう。ノードN9及びN10上の電圧間の任意のオフセットが、電流I1とI2との間のオフセットを反映し、その結果として、出力段10のVRF出力において搬送波が漏れることがある。較正信号発生器66が、較正信号61を生成する。較正信号61は、入力段12の変調入力回路64に加えられる。結果として、変調入力回路64の出力が調整され、ノードN9及びN10上の電圧間、結果として、電流I1とI2との間のDCオフセットが低減される。
【0024】
抵抗器R7及びR8は、概ね抵抗値が等しいものとして説明されているが、抵抗器R7及びR8は、電流I1とI2との間のオフセットを検出するために、所望により異なる大きさにすることができる。たとえば、較正信号発生器66は、ノードN9及びN10上で異なる入力インピーダンス又はスケール電圧を有することがある。したがって、抵抗器R7及びR8は、フィードバック回路14が電流I1と電流I2との間のオフセットを比較することができるように選択される抵抗値を有することができる。
【0025】
こうして、電流I1及びI2を方向転換させることによって、電流I1とI2との間のDCオフセットを低減することができる。そのようなDCオフセットは、構成要素不整合、信号レベルの不均衡等を含む、種々の要因の結果として生じることがある。しかしながら、発生源に関係なく、又は個々の発生源がそれぞれ引き起こすDCオフセットの割合に関係なく、電流I1とI2との間のDCオフセットを低減することができる。
【0026】
図2は、図1のフィードバック回路14としての逐次比較回路36の一例である。逐次比較回路36は、コンパレータ30と、逐次比較レジスタ(SAR)32と、デジタル/アナログコンバータ(DAC)34とを備える。コンパレータ30は、ノードN7及びN8、並びにSAR32に接続される。SAR32は、DAC34に接続される。DAC34は、較正信号61を生成する。
【0027】
一実施形態では、コンパレータ30は、ノードN7を通って流れる電流と、ノード8を通って流れる電流とを比較する。コンパレータ30は、図4の抵抗器R7及びR8と、トランジスタQ15及びQ16とを備え、ノードN9及びノードN10上に電圧を生成することができる。その後、コンパレータ30は、2つの電圧間の比較を生成し、その比較をSAR32に出力する。
【0028】
図1の構成要素が、図5のコンパレータ30の潜在的な構成要素及び機能を記述するために用いられているが、他の構成要素及び比較技法が用いられることもある。たとえば、コンパレータ30として、電流を電圧に変換するのではなく、電流I1及びI2を比較する電流コンパレータを用いることができる。
【0029】
この例では、コンパレータ30によって生成される比較は、電流I1及びI2のいずれが大きいかを指示するデジタル信号である。コンパレータ30において比較が行われる度に、SAR32の1ビットが更新される。更新されたSAR32はDAC34を駆動する。DAC34は、較正信号61を生成する。結果として、電流I1とI2との間のオフセットが調整される。そのシーケンスは繰り返され、SAR32の全てのビットが求められるまで、更新されたオフセットを用いて新たな比較が生成される。SAR32の最終的な結果、及びDAC34から結果として生じる較正信号61は、ノードN1の電流とN2の電流との間の低減されたDCオフセットである。
【0030】
図3は、図1のフィードバック回路14の別の例を示す図である。図3に示されるフィードバック回路14は、アナログ制御回路40と、トラック・アンド・ホールド回路46とを備える。アナログ制御回路は、増幅器42と、フィルタ44とを備える。増幅器42は、ノードN7とN8との間の差を増幅する。先に説明されたように、そのような差は、電圧差又は電流差とすることができる。増幅された出力は、フィルタ44においてフィルタリングされる。
【0031】
この例では、フィルタ44は、増幅器42とは別のものであるように示される。しかしながら、増幅器42の周波数応答が、フィルタ44の所望の周波数応答を形成するように、フィルタ44を増幅器44と一体的に構成することができることは当業者には理解されよう。さらに、ローパスフィルタのための記号が図6には示されているが、フィルタは、フィードバック回路14の所望の応答を達成するために、所望の任意の形状を有することができる。
【0032】
別の例では、フィルタリングされた出力は、トラック・アンド・ホールド回路46を駆動する。トラック・アンド・ホールド回路46は、較正モード信号63に応答する。較正モードでは、トラック・アンド・ホールド回路46はトラックモードにある。結果として、トラック・アンド・ホールド回路46の出力は、入力を追跡する。したがって、フィルタ44の出力が、トラック・アンド・ホールド回路46を通って、較正信号61になる。
【0033】
較正信号61が安定した後に、トラック・アンド・ホールド回路46はホールドモードに入ることができる。たとえば、較正モード信号63が動作モードに遷移することができ、それに応答して、トラック・アンド・ホールド回路46がホールドモードに入る。したがって、較正モード中にノードN7及びN8上の信号からの差を結果として最小にした定常状態の較正信号61が、動作モードにおいて保持されるであろう。
【0034】
その回路は、動作モードから較正モードに切り替えられ、その結果、オフセットを最小に保つために、新たな較正信号61を生成できるようになる。たとえば、混合器がワイヤレスデバイスのためのアップコンバート用混合器として用いられる場合には、そのようなモード切替は、送信間の時間中に行われることがある。較正モード中の送信間に、較正信号61が生成され、DCオフセットが低減される。送信中に、較正信号61は、較正モードにおいて与えられる状態に保持され、低減されたDCオフセットが保持される。
【0035】
これまでに動作モード及び較正モードが説明されてきたが、回路のモードは、そのようなモードには限定されない。さらに、そのようなモードの名称は単に、較正信号が変更されることがある実施形態において区別を行うために選択された。したがって、較正モードでも、回路が依然として動作し続けることがあり、動作モードにおいても、回路が依然として較正されることがある。
【0036】
図4は、図1のフィードバック回路の別の例を示す図である。図4に示されるフィードバック回路14は、第1のアナログ/デジタルコンバータ(ADC)50及び第2のADC52と、デジタル信号プロセッサ(DSP)54と、DAC56とを備える。ADC50及び52はDSP54に接続される。DSP54はDAC56に接続される。DAC56は、較正信号を生成する。
【0037】
ADC50及び52はノードN7及びN8をサンプリングする。先に説明されたように、ノードN7及びN8からの信号は、電圧又は電流とすることができる。そのような信号をデジタル化するために、ADC50及び52、並びに任意のフロントエンド回路を適当に選択することができる。たとえば、ノードN1及びN2からの信号が電流である場合には、ADC50及び52として、電流入力ADCを用いることができる。ノードN1及びN2からの信号の形式に関係なく、それらの信号は、それぞれのADC50及び52においてデジタル化される。
【0038】
DSP54は、較正信号61のデジタル化された信号を生成する。上記のように、較正信号61は、較正モードにおいて生成され、動作モードにおいて保持されることができる。DSP54は、較正モード信号63のための入力を有することができる。したがって、DSP54は、動作モードにおいて、デジタル化された較正信号を保持することができる。DAC56は、デジタル化された較正信号から較正信号61を生成する。
【0039】
DSP54を用いるとき、任意の態様の技法を用いて、電流I1とI2との間のオフセットを低減することができる。たとえば、上記のアナログ制御回路40は、DSP54内で実現されるデジタル制御ループで近似することができる。別法では、上記の逐次比較回路36は、DSP54の中で実現することができる。さらに、ノードN1及びN2からのデジタル化された信号に応答して、DSPにおいて任意のデジタル制御技法を実施して、デジタル化された較正信号を調整することができる。
【0040】
ADC50及び52、並びにDAC56は、DSP54とは別個であるように示されているが、ADC50及び52、並びにDAC56の任意の組み合わせを、DSP54の一部にすることができる。さらに、DSP54は、デジタル信号処理のためだけに設計されるプロセッサである必要はない。たとえば、DSP54として、汎用プロセッサを用いることができる。さらに、DSP54は、デジタル信号プロセッサと呼ばれる必要はない。デジタル信号を操作することができる任意の回路をDSP54として用いることができる。たとえば、フィールドプログラマブルゲートアレイ(FPGA)、プログラマブル論理デバイス(PLD)等をDSP54として用いることができる。
【0041】
上記のように、較正信号61は、較正モード中に生成することができる。混合器が動作モードにおいて動作しているとき、較正信号61を保持することができる。別法では、較正回路は絶えず動作することがある。上記のように、アナログフィルタ及びデジタルフィルタの種々の実施態様を用いることができる。それらのフィルタは、制御ループのオフセット低減効果が変調入力信号に影響を及ぼさないように実現することができる。たとえば、或る特定の変調入力信号が、特定の周波数、たとえば10キロヘルツ(KHz)未満で重要な周波数成分を含まない場合には、10KHz未満のカットオフ周波数を有するように、制御ループの帯域幅を選択することができる。こうして、DCから制御ループのカットオフ周波数までの周波数を有する電流I1及びI2の差の周波数成分を低減することができる。しかしながら、カットオフ周波数よりも高い、電流I1及びI2に寄与する変調入力信号の周波数成分は影響を及ぼされないであろう。結果として、電流I1とI2との間のDCオフセットを絶えず低減することができる。
【0042】
図5は、別の実施形態による、オフセットを較正するための回路を示す図である。その回路は、ノードN1及びノードN2に接続される出力段10を備える。入力段12が、ノードN1及びノードN2に接続される。入力段12は、入力信号11を受信するように構成される。フィードバック回路14が、ノードN1、ノードN2及び入力段12に接続される。フィードバック回路は、較正信号13を生成するように構成される。
【0043】
図1の構成要素は混合器の一部として説明されているが、他の構成要素が入力段12及び出力段10を形成することもできる。たとえば、混合器以外で用いるためのアナログ乗算器、又はギルバートセルの他の実施態様若しくは応用形態が、電流I1とI2との間にDCオフセットがある結果として、出力信号17が不均衡になるノードN1及びN2を含むことができる。
【0044】
さらに、本開示全体を通して、電流を参照する際に、用語「〜から」、「〜に」、「〜の中に」及び他の方向に関する用語が用いられることがあるが、或る実施形態では、電流の方向が反対になるように構成要素が用いられることがあることは、当業者には理解されよう。たとえば、一実施形態では、入力段12から流れ出るように電流が示されることがある。別の実施形態では、電流が入力段12に流れ込むことがある。さらに、一実施形態における全ての電流が、必ずしも同じように反対にされる必要がないことがある。
【0045】
図6は、別の実施形態による、混合器オフセットを較正することを示す流れ図である。80において、混合器の内部のオフセットが測定される。80における測定は、種々の技法を用いて実行されることができる。たとえば、電流が電圧に変換されることができ、電圧が比較されることができる。別法では、電流がそのまま比較されることがある。さらに、比較のために用いられる任意のそのような電流又は電圧はデジタル化され、デジタル化された値が比較されることがある。この説明において用いられるときに、80の測定のために第1の電流及び第2の電流を比較することは、デジタル測定を含むことがある。したがって、その測定は、2つ以上の取り得る状態を有するデジタル出力を生成することがある。別法では、80の第1の電流及び第2の電流は、アナログ測定を含むことがある。したがって、その測定は、取り得る出力状態の連続したスペクトルを有するアナログ出力を生成することがある。
【0046】
その測定に応答して、82において較正信号が生成される。較正信号は種々の方法において生成されることができる。たとえば、先に説明したように、82の較正信号は、アナログ技法、デジタル技法又はそのような技法の組み合わせによって生成されることができる。
【0047】
84では、較正信号を用いて、混合器が、オフセットを低減するように制御される。混合器のオフセットを制御するために、入力段の少なくとも1つの信号が変更されることがある。そのような変更は、加算すること、減算すること、又は較正信号と入力段における信号とを他の方法で合成することを含むことができる。較正信号は、ただ1つの信号を変更することがあるか、又は入力段の多数の信号を変更することがある。たとえば、差動入力段の場合、2つの入力信号が入力段を駆動する。したがって、入力段において2つの信号が存在するときに、それら2つの入力信号が、較正信号によって変更されることがある。詳細には、差動信号の場合、84において、差動信号のうちの第1の信号を増加し、差動信号のうちの第2の信号を減少して、混合器内のオフセットを低減することができる。
【0048】
80におけるオフセットの測定、82における較正信号の生成、及び84における混合器の制御は、混合器のオフセットを最小限に抑えるように繰り返すことができる。
【0049】
図7は、別の実施形態による、混合器オフセットを較正するために、レジスタが如何に更新されるかを示す流れ図である。86では、80の測定に応答して、レジスタ内の値が更新される。この値は、88において、較正信号を生成するために用いられる。一例では、上記のように、較正信号は、逐次比較レジスタ(SAR)を用いて生成されることがある。したがって、80の測定に応答して、SARの1ビットが更新される。SAR内の値は、較正信号を生成するために用いられる。
【0050】
図8は、別の実施形態による、種々のモードにおいて混合器オフセットが如何に較正されるかを示す流れ図である。先に説明したように、混合器は、較正モード及び動作モードを含む、種々のモードにおいて動作することができる。90では、モードが較正モードであるか否かが判定される。モードが較正モードである場合には、先に説明したように、80においてオフセットが測定され、82において較正信号が生成され、84において混合器が制御される。
【0051】
対照的に、モードが較正モードでない場合には、92において、較正信号が保持される。較正モードは、種々の技法を用いて保持することができる。たとえば、先に説明したように、アナログ制御ループが較正信号を生成する場合、92において較正信号を保持するために、アナログのトラック・アンド・ホールド回路がアナログ較正信号を保持することができる。別法では、デジタル制御ループが用いられる場合には、較正信号を生成するために用いられるデジタル化された値を一定に保持することができる。さらに、アナログ技法及びデジタル技法の組み合わせを用いることもできる。たとえば、較正モード中に、アナログ較正信号をデジタル化することができる。動作モードにおいて、最後にデジタル化された較正信号を用いて、較正信号を生成し、したがってそれを保持することができる。
【0052】
動作モードでは、混合器の入力段からの第1の電流及び第2の電流が、混合器の出力段まで流れる。80においてオフセットの測定を行うために、94において、第1の電流及び第2の電流のうちの少なくとも一部を、較正信号フィードバック回路に方向転換させることができる。たとえば、較正モードに入るとき、第1の電流及び第2の電流がトランジスタに接続される抵抗を通って流れるように、トランジスタがオンに切り替えられる。こうして、第1及び第2の電流が、94において方向転換され、80において測定される。
【0053】
図面では1つのタイプのトランジスタが示されているが、上記のトランジスタとして、任意のタイプを用いることができる。たとえば、それらのトランジスタとして、バイポーラ(NPN又はPNP)、金属酸化膜半導体MOS(Nチャネル又はPチャネル)等を用いることができる。
【0054】
明確にするために、広く知られており且つ本発明とは無関係である、改善された解決策と、それを設計及び製造する方法との細部の多くが、以下の説明から省略されている。
【0055】
さらに、本明細書全体を通して、「一実施形態」又は「一例」を参照することは、その実施形態との関連で説明される特定の機構、構造又は特徴が、少なくとも一実施形態に含まれるが、必ずしも全ての実施形態に含まれる必要はないことを意味する。それゆえ、本明細書の種々の部分において、「一実施形態(an embodiment)」、又は「一実施形態(one embodiment)」、又は「別の実施形態」が2回以上参照されても、必ずしも全てが同じ実施形態を参照するのではないことははっきりと理解されたい。さらに、特定の機構、構造又は特徴は、本発明の1つ又は複数の実施形態において相応しいように組み合わせることができる。
【0056】
同様に、実施形態のこれまでの説明では、本開示を簡素にし、本発明の種々の態様のうちの1つ又は複数を理解するのを助けるために、本発明の種々の特徴が単一の実施形態、図面又はその説明の中にまとめられることがあることは理解されたい。しかしながら、これは、開示のこの方法が、各請求項において明確に列挙される特徴よりも多くの特徴が必要とされることを意図するものと解釈されるべきではない。したがって、添付の特許請求の範囲は、この詳細な説明の中に明確に援用されており、各請求項は、そのままで本発明の別個の実施形態として成り立つ。さらに、特定の実施形態が説明されてきたが、添付の特許請求の範囲から逸脱することなく、種々の変更を加えることができることは当業者には理解されよう。
【図面の簡単な説明】
【0057】
【図1】一実施形態による、オフセット較正回路を有する混合器を示す図である。
【図2】図1のフィードバック回路の別の例を示す図である。
【図3】図1のフィードバック回路の別の例を示す図である。
【図4】図1のフィードバック回路の別の例を示す図である。
【図5】別の実施形態による、オフセットを較正するための回路を示す図である。
【図6】別の実施形態による、混合器オフセットが如何に較正されるかを示す流れ図である。
【図7】別の実施形態による、混合器オフセットを較正するために、レジスタが如何に更新されるかを示す流れ図である。
【図8】別の実施形態による、種々のモードにおいて混合器オフセットが如何に較正されるかを示す流れ図である。

【特許請求の範囲】
【請求項1】
混合器であって、
第1のノードに接続される第1の差動トランジスタ対と、
前記第1の差動トランジスタ対に交差接続され、且つ第2のノードに接続される第2の差動トランジスタ対と、
前記第1のノード及び前記第2のノードに接続される第3の差動トランジスタ対と、
前記第1のノード及び前記第2のノードに接続され、且つ該第1のノードと該第2のノードとの間で測定された信号オフセットに基づいて、較正信号を生成するように構成されるフィードバック回路と、
前記第3の差動トランジスタ対に接続され、且つ前記較正信号に応答する変調入力回路と
を備える、混合器。
【請求項2】
前記フィードバック回路に接続され、且つ較正モード信号を生成するように構成される較正モード回路をさらに備え、
前記フィードバック回路は、前記較正モード信号が較正モードを指示するときに、前記測定されたオフセット信号に基づいて前記較正信号を生成するようにさらに構成され、且つ前記較正モード信号が動作モードを指示するときに、前記較正信号を保持するようにさらに構成される、請求項1に記載の混合器。
【請求項3】
前記フィードバック回路は、
電源と第3のノードとの間に接続される第1の抵抗器と、
前記電源と第4のノードとの間に接続される第2の抵抗器と、
前記第1のノードと前記第3のノードとの間に接続される第1のトランジスタと、
前記第2のノードと前記第4のノードとの間に接続される第2のトランジスタと
をさらに備える、請求項1に記載の混合器。
【請求項4】
前記フィードバック回路は、前記第3のノード上の第1の電圧、及び前記第4のノード上の第2の電圧に応答して、前記較正信号を生成するようにさらに構成される、請求項3に記載の混合器。
【請求項5】
前記フィードバック回路は、前記第1の電圧及び前記第2の電圧が概ね等しくなるまで、較正モードにおいて前記較正信号を調整するようにさらに構成される、請求項4に記載の混合器。
【請求項6】
前記フィードバック回路は、逐次比較フィードバックループをさらに備える、請求項5に記載の混合器。
【請求項7】
回路であって、
差動信号を有する部分回路と、
前記部分回路に接続され、且つ前記差動信号間のオフセットを測定すると共に、該測定に応答して較正信号を生成すると共に、該較正信号に応答して前記オフセットを低減するように構成されるフィードバック回路と
を備える、回路。
【請求項8】
前記部分回路は、
第3のノードと第1のノードとの間に接続される第1のトランジスタと、
第4のノードと前記第1のノードとの間に接続される第2のトランジスタと、
前記第3のノードと第2のノードとの間に接続される第3のトランジスタと、
前記第4のノードと前記第2のノードとの間に接続される第4のトランジスタと、
前記第3のノードと電源との間に接続される第1の抵抗器と、
前記第4のノードと前記電源との間に接続される第2の抵抗器と
をさらに備え、
前記差動信号は前記第1のノード及び前記第2のノードの中を通る、請求項7に記載の回路。
【請求項9】
前記部分回路は、
前記較正信号及び入力信号を受信すると共に、前記較正信号及び該入力信号に応答して第1の出力及び第2の出力を生成するように構成される変調入力回路と、
第1のノードに接続され、前記第1の出力に応答する第1のトランジスタと、
第2のノードに接続され、前記第2の出力に応答する第2のトランジスタと
をさらに備え、
前記差動信号は前記第1のノード及び前記第2のノードの中を通る、請求項7に記載の回路。
【請求項10】
前記フィードバック回路は、
電源と第3のノードとの間に接続される第1の抵抗器と、
前記電源と第4のノードとの間に接続される第2の抵抗器と、
前記第3のノードと前記第1のノードとの間に接続される第1のトランジスタと、
前記第4のノードと前記第2のノードとの間に接続される第2のトランジスタと、
前記第3のノード上の第1の電圧、及び前記第4のノード上の第2の電圧に応答して、前記較正信号を生成するように構成される較正信号発生器と
をさらに備える、請求項7に記載の回路。
【請求項11】
前記第1のトランジスタ及び前記第2のトランジスタに接続され、且つ較正モード信号を生成するように構成される較正モード回路をさらに備え、
前記第1のトランジスタ及び前記第2のトランジスタはそれぞれ、前記較正モード信号に応答する、請求項10に記載の回路。
【請求項12】
前記フィードバック回路は、
第1のノード及び第2のノードに接続され、且つ前記較正信号を生成するように構成される逐次比較回路をさらに備え、
前記差動信号は前記第1のノード及び前記第2のノードの中を通る、請求項7に記載の回路。
【請求項13】
前記フィードバック回路は、
第1のノード及び第2のノードに接続され、且つ制御信号を生成するように構成されるアナログ制御回路と、
前記アナログ制御回路に接続され、且つ前記制御信号を追跡及び保持し、前記較正信号を生成するように構成されるトラック・アンド・ホールド回路と
をさらに備え、
前記差動信号は前記第1のノード及び前記第2のノードの中を通る、請求項7に記載の回路。
【請求項14】
前記フィードバック回路は、
第1のノードに接続され、且つ該第1のノードに応答して第1のデジタル信号を生成するように構成される第1のアナログ/デジタルコンバータと、
第2のノードに接続され、且つ該第2のノードに応答して第2のデジタル信号を生成するように構成される第2のアナログ/デジタルコンバータと、
前記第1のアナログ/デジタルコンバータ及び前記第2のアナログ/デジタルコンバータに接続され、且つデジタル化された較正信号を生成するように構成されるデジタル信号処理回路と、
前記デジタル信号処理回路に接続され、且つ前記デジタル化された較正信号に応答して、前記較正信号を生成するように構成されるデジタル/アナログコンバータと
をさらに備え、
前記差動信号は前記第1のノード及び前記第2のノードの中を通る、請求項7に記載の回路。
【請求項15】
前記フィードバック回路は、較正モードにおいて前記較正信号を調整するように構成され、
前記フィードバック回路は、動作モードにおいて前記較正信号のレベルを保持するように構成される、請求項7に記載の回路。
【請求項16】
混合器を構成する方法であって、
前記混合器内部のオフセットを測定すること、
前記測定に応答して、較正信号を生成すること、及び
前記較正信号で前記混合器を制御して、前記オフセットを低減すること
を含む、方法。
【請求項17】
前記測定に応答して、レジスタ内の値を更新すること、及び
前記レジスタ内の前記値に対応する前記較正信号を生成すること
をさらに含む、請求項16に記載の方法。
【請求項18】
前記較正信号を生成することは、
較正モードにおいて前記較正信号を生成すること、及び
動作モードにおいて前記較正信号を保持すること
をさらに含む、請求項16に記載の方法。
【請求項19】
第1の差動トランジスタの第1のノードの第1の電流と第2の差動トランジスタの第2のノードの第2の電流とを比較することによって、前記較正信号を生成すること、並びに
前記第1の電流及び前記第2の電流が概ね等しくなるまで、前記較正信号を調整すること
をさらに含む、請求項16に記載の方法。
【請求項20】
較正モードに入ること、並びに
第1の電流及び第2の電流のうちの少なくとも一部を、前記混合器から較正信号フィードバック回路に方向転換させること
をさらに含む、請求項16に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2009−510841(P2009−510841A)
【公表日】平成21年3月12日(2009.3.12)
【国際特許分類】
【出願番号】特願2008−532442(P2008−532442)
【出願日】平成18年9月22日(2006.9.22)
【国際出願番号】PCT/US2006/037092
【国際公開番号】WO2007/038333
【国際公開日】平成19年4月5日(2007.4.5)
【出願人】(301020237)サイプレス セミコンダクター コーポレイション (18)