説明

照明装置及び照明装置の駆動方法

【課題】低コストにて照明光の拡散または散乱の性能を高めることが可能な照明装置及び照明装置の駆動方法を提供する。
【解決手段】光源、光源から発せられた光を拡散または散乱させる光学素子、及び、光学素子を通過した光を当該光学素子の方向に向けて反射する反射体、を備える照明装置において、光源から発せられた光を、光学素子を複数回通過させたのち照明光として出射するようにする。これにより、光源、光学素子、及び、反射体から成る簡単な構成によって、低コストにて、照明装置が発する照明光の拡散または散乱の性能を高めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、照明装置及び照明装置の駆動方法に関する。
【背景技術】
【0002】
照明装置の一種として、液晶レンズを用い、当該液晶レンズの電極膜に印加する電圧によって、発光源から出射する光の経路を電気的に制御し得る機能を有する発光装置が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−317879号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の従来技術では、液晶レンズがある一方向の偏光にしかレンズとして作用しないためにレンズ効率が悪いことから、液晶レンズの上に更にレンズを重ねることで、レンズ効率の改善を図っている。しかし、レンズの数が増えることによってコスト高になってしまう。また、光源から発せられた光がレンズをそのまま透過して照明光となる透過型の照明装置であるため、照明光の拡散または散乱の性能が低い。
【0005】
そこで、本開示は、低コストにて照明光の拡散または散乱の性能を高めることが可能な照明装置及び照明装置の駆動方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の目的を達成するための、本開示の照明装置は、
光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備えており、
光源から発せられた光は、光学素子を複数回通過したのち照明光として出射される照明装置である。
【0007】
あるいは又、上記の目的を達成するための、本開示の照明装置の駆動方法は、
光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備える照明装置の駆動に当たって、
光源から発せられた光を、光学素子を複数回通過させたのち照明光として出射する照明装置の駆動方法である。
【0008】
上記の構成の照明装置、あるいは又、照明装置の駆動方法において、光学素子を通過した光を反射する反射体を備えることで、当該照明装置は反射型の照明装置となる。反射体は、光学素子を通過した光を光学素子の方向に向けて反射する。これにより、光源から発せられた光は、当該光が光学素子を通過する往路と、反射体で反射された光が光学素子を通過する復路の少なくとも2回、即ち、複数回光学素子を通過することになる。
【発明の効果】
【0009】
本開示の照明装置、あるいは又、本開示の照明装置の駆動方法によれば、反射型の照明装置であることで、光源から発せられた光が光学素子を複数回通過するため、透過型の照明装置に比べて、低コストにて照明光の拡散または散乱の性能を高めることができる。
【図面の簡単な説明】
【0010】
【図1】実施例1に係る照明装置の構成を示す断面図である。
【図2】液晶レンズがOFF状態のとき(A)と液晶レンズがON状態のとき(B)の、実施例1に係る照明装置における光の振る舞いを示す図である。
【図3】実施例2に係る照明装置の構成を示す断面図である。
【図4】液晶レンズがOFF状態のとき(A)と液晶レンズがON状態のとき(B)の、実施例2に係る照明装置における光の振る舞いを示す図である。
【図5】実施例3に係る照明装置の構成を示す断面図である。
【図6】液晶レンズがOFF状態のとき(A)と液晶レンズがON状態のとき(B)の、実施例3に係る照明装置における光の振る舞いを示す図である。
【図7】実施例4に係る照明装置の構成を示す断面図である。
【図8】液晶レンズがON状態のときの、実施例4に係る照明装置における光の振る舞いを示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して、実施形態に基づき本開示について説明する。本開示は実施形態に限定されるものではなく、実施形態における種々の数値や材料は例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は、以下の順序で行う。
1.本開示の照明装置及び照明装置の駆動方法、全般に関する説明
2.実施例1
3.実施例2
4.実施例3
5.実施例4
【0012】
[本開示の照明装置及び照明装置の駆動方法、全般に関する説明]
本開示の照明装置は、光源、光源から発せられた光を拡散または散乱させる光学素子、及び、光学素子を通過した光を光学素子の方向に向けて反射する反射体、を備えており、光源から発せられた光を、光学素子を複数回通過させたのち照明光として出射する。すなわち、本開示の照明装置は、光学素子を通過した光を反射する反射体を備えることで、反射型の照明装置の構成となっている。
【0013】
光源として用いる発光素子については特に限定するものではない。発光素子(即ち、光源)としては、LED(発光ダイオード)、EL(エレクトロルミネセンス)、電球などの周知の光源を用いることができる。光源の指向性については問わない。光源は、点光源であってもよいし、面光源であってもよい。
【0014】
入射光を拡散または散乱させる光学素子は特に限定するものではない。この光学素子として、偏光依存性を持つ光学素子を用いるのが好ましい。偏光依存性を持つ光学素子としては、液晶レンズや散乱型液晶素子などを例示することができる。液晶レンズは、液晶に電圧を印加すると、その印加電圧に応じて見かけ上の液晶の透過率が変化するのを利用したレンズの一種である。散乱型液晶素子は、光の散乱状態、非散乱状態(透過状態)でスイッチングを行う素子である。
【0015】
散乱型液晶素子には、高分子分散型液晶素子(Polymer Dispersed Liquid Crystal:PDLC)や、動的散乱型(Dynamic Scattering Mode:DSM)液晶素子などがある。高分子分散型液晶素子は、光の透過を散乱強度によって制御する素子である。動的散乱型液晶素子は、液晶分子の乱流などによる光散乱を用いて表示の明/暗の状態を制御する素子である。
【0016】
反射体は特に限定するものではない。反射体として、周知の反射板(ミラー)などを用いることができる。反射体(または、反射板)の反射面(即ち、鏡面)の形状は特に問わない。反射体の反射面は、平面鏡であってもよいし、凹面鏡であってもよいし、あるいは又、凸面鏡であってもよい。
【0017】
反射体の反射面(鏡面)は、偏光解消を起こすように表面処理が施されているのが好ましい。具体的には、偏光解消を起こすような素材や粗さで形成されるのが望ましい。ここで、「偏光解消」とは、特定の偏光しか持たない状態を、様々な偏光が混在する状態に変換することによって偏光を解消することを言う。
【0018】
反射体の個数は特に限定するものではない。すなわち、1個に限られるものではなく、複数であってもよい。反射体が1個の場合は、光源から発せられた光は、当該光が光学素子を通過する往路と、反射体で反射された光が光学素子を通過する復路の、計2回光学素子を通過することになる。
【0019】
反射体が複数の場合としては、当該反射体が、光学素子の一方の素子面側に設けられた第1の反射体と、光学素子の他方の素子面側に設けられた第2の反射体との2個から成る構成を例示することができる。このとき、照明光(出射光)の光軸方向を光源から発せられる光の光軸方向に合わせるといった観点からすると、第1の反射体の反射面と第2の反射体の反射面とは平行な平面であることが望ましい。
【0020】
反射体が2個の場合は、光源から発せられた光は、当該光が光学素子を通過する1回目と、1回目の光が第1の反射体で反射されて光学素子を通過する2回目と、2回目の光が第2の反射体で反射されて光学素子を通過する3回目の、計3回光学素子を通過することになる。反射体の数を更に増やすことで、光源から発せられた光が光学素子を通過する回数を更に増やすことができる。
【0021】
光学素子と反射体の反射面との間には、位相差板を配置するのが好ましい。位相差板を配置する場合は、反射体の反射面については、偏光解消を起こすような表面処理は施さないこととする。位相差板として、λ/4板(λは波長)を用いるのが好ましい。λ/4板は、直交する偏光成分の間にπ/2(=90度)の位相差を生じさせる複屈折素子(位相板)である。
【0022】
λ/4板としては、所定の帯域(広帯域)の波長に対して一定の位相差を与える、換言すれば、どのような波長に対しても一定の位相差を与える広帯域の位相差板が望ましい。広帯域のλ/4板を用いることで、波長依存性を減らすことができる。
【0023】
照明装置の装置本体のコンパクト化や取扱いの簡便化を図るといった観点からすると、光源、光学素子、及び、反射体をパッケージに収納して1パッケージ化を図るのが好ましい。位相差板を用いる場合には、当該位相差板についても光源、光学素子、及び、反射体
と共に同じパッケージに収納して1パッケージ化を図るのが好ましい。
【0024】
上記の構成の照明装置、あるいは又、照明装置の駆動方法によれば、当該照明装置が反射型であることで、光源から発せられた光が光学素子を複数回通過したのち照明光として出射されることになるため、透過型に比べて照明光の拡散または散乱の性能を高めることができる。また、光源、光学素子、及び、反射体から成る簡単な構成であるため、低コストにて本照明装置を提供できる。
【0025】
本開示の照明装置は、一般的な照明装置としての他、監視カメラ用の照明装置(光源装置)や、フラッシュ等のカメラ用の照明装置などとして用いることができる。但し、これらの用途に限られるものではない。例えば、自動車用の照明装置などとして用いることもできる。
【0026】
以下に、光源から発せられた光を拡散または散乱させる光学素子として、例えば、液晶レンズを用いる実施形態に係る照明装置の具体的な実施例について説明する。
【0027】
[実施例1]
図1は、実施例1に係る照明装置の構成を示す断面図である。図1において、(A)は照明装置の断面図を、(B)は液晶レンズの断面図をそれぞれ示している。
【0028】
図1の(A)において、実施例1に係る照明装置10Aは、光源11、偏光依存性を持つ光学素子である液晶レンズ12、及び、反射体13を備える構成となっている。光源11は、LED、EL、電球などから成る。
【0029】
ここでは、光源11として点光源を用いるものとする。但し、光源11としては、点光源に限られるものではなく、平行光を発する面光源を用いることも可能である。液晶レンズ12は、2つの透明基板と、2つの透明基板間に封入された液晶材料から成る液晶層とを有し、液晶層間に印加する電圧に応じて拡散具合などのレンズ性能が可変な構成となっている。
【0030】
具体的には、図1の(B)に示すように、液晶レンズ12は、透明基板である例えば2つのガラス基板121,122と、これらガラス基板121,122間に液晶材料が封止されて成る液晶層123とを有している。2つのガラス基板121,122は、無反射コーティングされている。液晶層123は、例えば、ホモジニアス分子配列のネマティック液晶から成る。
【0031】
2つのガラス基板121,122の内面には、例えば、スズを添加した酸化インジウムのITO膜といった金属酸化膜の透明電極が形成されている。具体的には、2つのガラス基板121,122の一方の内面には、電気的な接地面を形成するための透明電極124がガラス基板全面に亘って形成されている。また、2つのガラス基板121,122の他方の内面には、液晶層123に対して必要な電界分布を与えるための帯状の透明電極125が例えば環状に形成されている。
【0032】
上記の構成の液晶レンズ12において、液晶層123を挟む上下の透明電極124,125間に電圧を印加すると、複屈折率(即ち、液晶分子の長軸と短軸の屈折率差)を持つネマティック液晶が電場に沿って傾く。つまり、液晶分子(長軸の向き)と平行な方向の直線偏光をもった光にとって、液晶層123は電圧の分布に応じて局所的に異なった屈折率の分布をもった媒質と等価となる。従って、液晶層123を通過した光の波面には、液晶の印加電圧の面内分布に応じた空間的な波面変調、あるいは、位相変調が加わることになる。
【0033】
液晶レンズ12において、光学位相差は、液晶の配向によって決まる。また、液晶層123に対する電圧の印加の仕方を変えると光学位相差分布が変わる。従って、液晶レンズ12は、液晶層123に対して印加する電圧によって液晶レンズ12の焦点距離や光の角度(方向)を電気的に制御できる光学素子である。
【0034】
反射体(または、反射板)13は、その反射面が例えば平面鏡となっており、当該反射面が液晶レンズ12の素子面に対して好ましくは平行になるように配置されている。ここで、「平行」とは、反射体の反射面が液晶レンズ12の素子面に対して厳密に平行である場合の他、実質的に平行である場合も含む。設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
【0035】
尚、本例では、反射体13の反射面を平面鏡としているが、凹面鏡や凸面鏡とすることも可能である。反射体13の反射面は、偏光解消を起こすような素材や粗さで形成されている、即ち、偏光解消を起こすように表面処理が施されている。
【0036】
上記の構成の実施例1に係る照明装置10Aにおいて、光源11から発せられた光は、当該光が液晶レンズ12を通過する往路と、反射体13で反射された光が液晶レンズ12を通過する復路の、計2回液晶レンズ12を通過することになる。このように、光源11から発せられた光が液晶レンズ12を複数回通過したのち照明光として出射されることで、照明光の拡散または散乱の性能を高めることができる。また、光源、光学素子、及び、反射体から成る簡単な構成であるため、低コストにて本照明装置を提供できる。
【0037】
続いて、液晶レンズ12がOFF状態のときと液晶レンズ12がON状態のときの、実施例1に係る照明装置10Aにおける光の振る舞いについて、図2を用いて説明する。図2において、(A)は液晶レンズ12がOFF状態のときの光の振る舞いを一点鎖線で示し、(B)は液晶レンズ12がON状態のときの光の振る舞いを一点鎖線で示している。
【0038】
ここで、「液晶レンズ12がOFF」とは、液晶層123に対して電圧を印加しない状態を言う。以下の実施例においても同様とする。「液晶レンズ12がON」とは、液晶層123に対して電圧を印加する状態を言う。以下の実施例においても同様とする。
【0039】
液晶レンズ12がOFF状態のときは、図2の(A)に示すように、光源11から発せられた光は偏光依存性を持つ液晶レンズ12を通過(透過)し、しかる後、反射体13の反射面で反射される。ここで、反射体13の反射面は、偏光解消を起こすように表面処理が施されている。従って、反射体13の反射面で反射された光は偏光解消された状態で再度液晶レンズ12を通過(透過)し、照明光として出射される。
【0040】
液晶レンズ12がON状態のときは、図2の(B)に示すように、光源11から発せられた光は、偏光依存性を持つ液晶レンズ12を通過する際に、当該液晶レンズ12による拡散の作用によって拡散光となる。この拡散光は、反射体13の反射面で偏光解消されて反射され、再度液晶レンズ12を通過する。このとき、液晶レンズ12による拡散の作用によって更に拡散された拡散光となり、照明光として出射される。そして、液晶レンズ12の液晶層123に印加する電圧の制御により、照明光(拡散光)の拡散具合を変化させることができる。
【0041】
上記の構成の反射型の実施例1に係る照明装置10Aによれば、光源11から発せられた光が照明光として出射される過程で、液晶レンズ12を2回通るため、従来技術に係る透過型の照明装置に比べて拡散性能が高い。但し、液晶レンズ12が偏光依存性を持つために拡散効率は低下する。
【0042】
[実施例2]
図3は、実施例2に係る照明装置の構成を示す断面図である。図3において、(A)は照明装置の断面図を、(B)は液晶レンズの断面図をそれぞれ示している。図3の(B)に示す液晶レンズの構成については、図1の(B)に示す液晶レンズの構成と同じであるため、ここではその説明は省略する。
【0043】
図3の(A)において、実施例2に係る照明装置10Bは、光源11、偏光依存性を持つ光学素子である液晶レンズ12、反射体13、及び、位相差板であるλ/4板14を備える構成となっている。本例では、液晶レンズ12は、横方向偏光のみ拡散するレンズ特性を有するものとする。λ/4板14は、直交する偏光成分の間にπ/2(=90度)の位相差を生じさせる作用を為す。
【0044】
λ/4板14は、液晶レンズ12と反射体13との間に、その素子面が液晶レンズ12の素子面及び反射体13の反射面に対して平行になるように配されている。ここでは、「平行」とは、λ/4板14の素子面が液晶レンズ12の素子面及び反射体13の反射面に対して厳密に平行である場合の他、実質的に平行である場合も含む。設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
【0045】
このλ/4板14として、所定の帯域、例えば、400nm程度〜700nm程度の帯域の広帯域の位相差板を用いるのが好ましい。このような広帯域のλ/4板を用いることで、どのような波長に対しても一定の位相差を与えることができるため、波長依存性を減らすことができる。
【0046】
上記の構成の実施例2に係る照明装置10Bにおいて、光源11から発せられた光が、液晶レンズ12を2回通過する点については実施例1の場合と同じである。そして、本実施例2に係る照明装置10Bでは、液晶レンズ12と反射体13との間にλ/4板14を配したことで、光源11から発せられた光の全てを液晶レンズ12によって拡散させることができるため、実施例1に係る照明装置10Aの場合よりも照明光の拡散性能及び拡散効率を上げることができる。
【0047】
続いて、液晶レンズ12がOFF状態のときと液晶レンズ12がON状態のときの、実施例2に係る照明装置10Bにおける光の振る舞いについて、図4を用いて説明する。図4において、(A)は液晶レンズ12がOFF状態のときの光の振る舞いを一点鎖線で示し、(B)は液晶レンズ12がON状態のときの光の振る舞いを一点鎖線で示している。
【0048】
液晶レンズ12がOFF状態のときは、図4の(A)に示すように、光源11から発せられた光は液晶レンズ12及びλ/4板14を通過(透過)し、しかる後、反射体13の反射面で反射される。ここで、反射体13の反射面は、実施例1の場合と異なり、偏光解消を起こすような表面処理は施されていない。従って、反射体13の反射面で反射された光は偏光を保持した状態でλ/4板14に入射し、再度液晶レンズ12を通過して照明光として出射される。これにより、照明光は、光源11の指向性をもった光となる。
【0049】
次に、液晶レンズ12がON状態のときの光の振る舞いについて、図4の(B)を用いて説明する。尚、先述したように、液晶レンズ12は、横方向偏光のみ拡散するものとする。図4の(B)において、光源11から液晶レンズ12及びλ/4板14を通過して反射体13の反射面に至る往路の偏光状態については黒塗りの矢印が付いた実線で示し、反射体13の反射面で反射され、液晶レンズ12及びλ/4板14を再度通過する復路の偏光状態については黒塗りの矢印が付いた破線で示している。ここで、「黒塗りの矢印」とは、線の端に黒塗りの三角形が付いた矢印を言う。
【0050】
光源11から発せられた光が液晶レンズ12に入射すると、液晶レンズ12は、横方向偏光については拡散させ、縦方向偏光については拡散させない。すなわち、横方向偏光は液晶レンズ12を通過する際に拡散され、縦方向偏光は液晶レンズ12を通過する際に拡散されない。
【0051】
液晶レンズ12で拡散された横方向偏光は、λ/4板14を通過することで、当該λ/4板14の作用によって左円偏光になる。λ/4板14を通過後の左円偏光は、反射体13の反射面で反射されることによって右円偏光になり、再度λ/4板14を通過することによって縦偏光になる。そして、この縦偏光は、液晶レンズ12を通過する際に拡散されずに縦偏光のまま照明光の一部として出射される。
【0052】
一方、液晶レンズ12で拡散されずにそのまま通過した縦方向偏光は、λ/4板14を通過することで、当該λ/4板14の作用によって右円偏光になる。λ/4板14を通過後の右円偏光は、反射体13の反射面で反射されることによって左円偏光になり、再度λ/4板14を通過することによって横偏光になる。そして、この横偏光は、液晶レンズ12を通過する際に拡散され、拡散光となって照明光の一部として出射される。
【0053】
上述したことから明らかなように、実施例2に係る照明装置10Bによれば、液晶レンズ12と反射体13の反射面との間にλ/4板14が配されていることで、光源11から発せられる光の全てについて液晶レンズ12で拡散させることができる。具体的には、光源13から発せられた横方向偏光については往路で、光源13から発せられた縦方向偏光については復路でそれぞれ拡散させることができる。従って、照明光の拡散性能及び拡散効率の向上を図ることができる。
【0054】
[実施例3]
図5は、実施例3に係る照明装置の構成を示す断面図である。図5において、(A)は照明装置の断面図を、(B)は液晶レンズの断面図をそれぞれ示している。図5の(B)に示す液晶レンズの構成については、図1の(B)に示す液晶レンズの構成と同じであるため、ここではその説明は省略する。
【0055】
実施例3に係る照明装置10Cは、光源11、液晶レンズ12、反射体13、及び、λ/4板14を基本的な構成要素とする点で実施例2に係る照明装置10Bと同じである。すなわち、液晶レンズ12として、横方向偏光のみ拡散するレンズ特性のものが用いられているものとする。そして、実施例3に係る照明装置10Cは、基本的な構成要素である光源11、液晶レンズ12、反射体13、及び、λ/4板14をパッケージ15内に収納し、1パッケージ化した構成を採っている。
【0056】
光源11の指向性の種類は問わない。点光源から発せられる拡散光であってもよいし、あるいは又、面光源から発せられる平行光であってもよい。本例では、反射体13の反射面を平面鏡としているが、これに限られるものではない。反射体13の反射面は、凹面鏡であってもよいし、あるいは又、凸面鏡であってもよい。
【0057】
続いて、液晶レンズ12がOFF状態のときと液晶レンズ12がON状態のときの、実施例3に係る照明装置10Cにおける光の振る舞いについて、図6を用いて説明する。図6において、(A)は液晶レンズ12がOFF状態のときの光の振る舞いを一点鎖線で示し、(B)は液晶レンズ12がON状態のときの光の振る舞いを一点鎖線で示している。
【0058】
尚、実施例3に係る照明装置10Cは、基本的な構成要素が実施例2に係る照明装置10Bと同じであることから、液晶レンズ12のOFF時、ON時の光の振る舞いについても、基本的に、実施例2に係る照明装置10Bと同じである。
【0059】
すなわち、液晶レンズ12がOFF状態のときは、図6の(A)に示すように、光源11から発せられた光は液晶レンズ12及びλ/4板14を通過(透過)し、しかる後、反射体13の反射面で反射される。この反射の際には偏光解消が行われないため、反射光は偏光を保持した状態でλ/4板14に入射し、再度液晶レンズ12を通過して照明光として出射される。
【0060】
液晶レンズ12がON状態のときは、実施例2に係る照明装置10Bの場合と同様に、光源11から発せられた光が液晶レンズ12に入射すると、液晶レンズ12は、横方向偏光については拡散させ、縦方向偏光については拡散させない。液晶レンズ12で拡散された横方向偏光は、λ/4板14を通過することによって左円偏光になり、しかる後、反射体13で反射されることによって右円偏光になる。そして、右円偏光は、このλ/4板14を通過することによって縦偏光になり、液晶レンズ12で拡散されずに照明光の一部として出射される。
【0061】
一方、液晶レンズ12で拡散されずにそのまま通過した縦方向偏光は、λ/4板14を通過することによって右円偏光になり、しかる後、反射体13で反射されることによって左円偏光になる。そして、この左円偏光は、λ/4板14を通過することによって横偏光になり、液晶レンズ12を通過する際に拡散され、拡散光となって照明光の一部として出射される。
【0062】
実施例3に係る照明装置10Cによれば、構成要素をパッケージ15内に収納し、1パッケージ化したことで、装置本体のコンパクト化を図ることができると共に、取扱いが簡便になる。また、液晶レンズ12のON/OFF時の光の振る舞いから明らかなように、液晶レンズ12のON/OFFにより、指向性が高い/低いといった照明光の指向性の切り替えの制御が可能になる。この点については、実施例2に係る照明装置10Bでも同様のことが言える。
【0063】
[実施例4]
図7は、実施例4に係る照明装置の構成を示す断面図である。図7において、(A)は照明装置の断面図を、(B)は液晶レンズの断面図をそれぞれ示している。図7の(B)に示す液晶レンズの構成については、図1の(B)に示す液晶レンズの構成と同じであるため、ここではその説明は省略する。
【0064】
実施例4に係る照明装置10Dは、光源11、液晶レンズ12、及び、反射体13を基本的な構成要素とする点で実施例1に係る照明装置10Aと同じである。実施例1に係る照明装置10Aと異なるのは、光源11として平行光を発する面光源を用いる点と、反射体を2個、即ち、第1の反射体13A及び第2の反射体13Bを有する点である。
【0065】
第1の反射体13A及び第2の反射体13Bの各反射面は平面鏡となっている。但し、平面鏡に限られるものではなく、凹面鏡であってもよいし、あるいは又、凸面鏡であってもよい。第1の反射体13A及び第2の反射体13Bの各反射面が液晶レンズ12の素子面に対して平行であるか否かは問わない。
【0066】
但し、出射光(照明光)の光軸方向を、光源11から発せられる光の光軸方向に合わせるといった観点からすれば、第1,第2の反射体13A,13Bの各反射面が液晶レンズ12の素子面に対して平行であるのが好ましい。ここで、「平行」とは、第1、第2の反射体13A,13Bの各反射面が液晶レンズ12の素子面に対して厳密に平行である場合の他、実質的に平行である場合も含む。設計上あるいは製造上生ずる種々のばらつきの存在は許容される。
【0067】
第1,第2の反射体13A,13Bの各反射面は、偏光解消を起こすような素材や粗さで形成されている、即ち、偏光解消を起こすように表面処理が施されている。そして、第1の反射体13Aは、光源11から発せられ、液晶レンズ12を通過(透過)した光を液晶レンズ12の方向に向けて反射する作用を為す。第2の反射体13Bは、第1の反射体13Aで反射され、液晶レンズ12を通過(透過)した光を液晶レンズ12の方向に向けて反射する作用を為す。
【0068】
照明装置10Dの基本的な構成要素、即ち、光源11、液晶レンズ12、及び、第1,第2の反射体13A,13Bは、実施例3の場合と同様に、パッケージ15内に収納されて1パッケージ化されている。パッケージ15内は単なる空間であってもよいし、パッケージ15内に例えば樹脂を充填してもよい。パッケージ15内に樹脂を充填することで、界面、即ち、構成要素との境界面の反射を抑えることができる利点がある。
【0069】
また、パッケージ15の開口面に対して傾斜角を持って入射する光を、界面(開口面)での屈折率の差によって拡散させるといった観点からすれば、パッケージ15内に例えば樹脂を充填するのが好ましい。本例では、パッケージ15内に例えば樹脂を充填するものとする。
【0070】
上記の構成の実施例4に係る照明装置10Dにおいて、光源11から発せられた光は、液晶レンズ12を通過(透過)した後、1の反射体13Aで反射されて再度液晶レンズ12を通過する。この液晶レンズ12を通過した光は第2の反射体13Bで反射されて更に液晶レンズ12を通過する。これにより、光源11から発せられた光は、照明光として出射される過程(光路中)で、液晶レンズ12を複数回通過する。
【0071】
具体的には、光源11から発せられた光が液晶レンズ12を通過する1回目と、1回目の光が第1の反射体13Aで反射されて液晶レンズ12を通過する2回目と、2回目の光が第2の反射体13Bで反射されて液晶レンズ12を通過する3回目の、計3回液晶レンズ12を通過する。本例では、反射体の数を2つとしたが、反射体の数を更に増やすことで、光源11から発せられた光が液晶レンズ12を通過する回数を更に増やすことができる。
【0072】
続いて、液晶レンズ12がOFF状態のときと液晶レンズ12がON状態のときの、実施例4に係る照明装置10Dにおける光の振る舞いについて説明する。
【0073】
液晶レンズ12がOFF状態のときの光の振る舞いについては、図7に一点鎖線で示す通りである。すなわち、面光源である光源11から発せられた平行光は、平行状態を保ったまま液晶レンズ12を通過(透過)し、更に、平行状態を保ったまま第1の反射体13Aで液晶レンズ12の方向に反射される。
【0074】
第1の反射体13Aで反射された平行光は、平行状態を保ったまま液晶レンズ12を通過し、更に、平行状態を保ったまま第2の反射体13Bで液晶レンズ12の方向に反射される。第2の反射体13Bで反射された平行光は、液晶レンズ12を通過した後、パッケージ15の開口面(界面)に対して垂直に入射し、光源1から発せられた平行光の光軸方向と同じ光軸方向の平行光で照明光として外部に出射される。
【0075】
液晶レンズ12がON状態のときの光の振る舞いについては、図8を用いて説明する。図8においも、図7と同様に、光の振る舞いを一点鎖線で示している。
【0076】
光源11から発せられた平行光は、液晶レンズ12を通過する際に拡散される。この拡散光は、第1の反射体13Aで液晶レンズ12の方向に反射され、液晶レンズ12を通過する際に再度拡散される。この拡散光は、第2の反射体13Bで液晶レンズ12の方向に反射され、液晶レンズ12を通過する際に更に拡散され、しかる後、パッケージ15の開口面(界面)で拡散されて照明光として外部に出射される。
【0077】
上記の構成の実施例4に係る照明装置10Dによれば、光源11から発せられた光が照明光として出射されるまでの過程(光路中)で液晶レンズ12、即ち、拡散層を複数回通過(透過)するため、照明光の拡散性能及び拡散効率の向上を図ることができる。また、上述した光の振る舞いの説明から明らかなように、液晶レンズ12のOFF時は平行光が照明光となり、液晶レンズ12のON時は拡散光が照明光となるため、液晶レンズ12のON/OFFにより、照明光の広がりが広い/狭いといった照明光の広がりの切り替えの制御が可能になる。
【0078】
尚、上記の各実施例では、光源から発せられた光を拡散または散乱させる光学素子として、液晶レンズを用いる場合を例に挙げて説明した、液体レンズを用いる構成を採ることも可能である。
【0079】
尚、本開示は以下のような構成を取ることができる。
(1)光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備えており、
光源から発せられた光は、光学素子を複数回通過したのち照明光として出射される照明装置。
(2)反射体は、光学素子の一方の素子面側に設けられた第1の反射体と、光学素子の他方の素子面側に設けられた第2の反射体との少なくとも2つの反射体から成る前記(1)に記載の照明装置。
(3)第1の反射体の反射面と第2の反射体の反射面とは平行な平面である前記(2)に記載の照明装置。
(4)反射体の反射面は、偏光解消を起こすように表面処理されている前記(1)に記載の照明装置。
(5)光学素子と反射体の反射面との間に配された位相差板を有する前記(1)に記載の照明装置。
(6)位相差板は、λ/4板(λは波長)である前記(5)に記載の照明装置。
(7)λ/4板は、所定の帯域の波長に対して一定の位相差を与える広帯域の位相差板である前記(6)に記載の照明装置。
(8)光源、光学素子、及び、反射体は、1つのパッケージに収納されている前記(1)から前記(4)のいずれかに記載の照明装置。
(9)位相差板は、光源、光学素子、及び、反射体と共に1つのパッケージに収納されている前記(5)から前記(7)のいずれかに記載の照明装置。
(10)光学素子は、偏光依存性を持つ前記(1)から前記(9)のいずれかに記載の照明装置。
(11)光学素子は、液晶レンズである前記(10)に記載の照明装置。
(12)液晶レンズは、2つの透明基板と、2つの透明基板間に封入された液晶材料から成る液晶層とを有し、液晶層間に印加する電圧に応じてレンズ性能が可変である前記(11)に記載の照明装置。
(13)光学素子は、液体レンズである前記(1)から前記(9)のいずれかに記載の照明装置。
(14)光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備える照明装置の駆動に当たって、
光源から発せられた光を、光学素子を複数回通過させたのち照明光として出射する照明装置の駆動方法。
【符号の説明】
【0080】
10A,10B,10C,10D・・・照明装置、11・・・光源、12・・・液晶レンズ、13・・・反射体、13A・・・第1の反射体、13B・・・第2の反射体、14・・・λ/4板、15・・・パッケージ

【特許請求の範囲】
【請求項1】
光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備えており、
光源から発せられた光は、光学素子を複数回通過したのち照明光として出射される照明装置。
【請求項2】
反射体は、光学素子の一方の素子面側に設けられた第1の反射体と、光学素子の他方の素子面側に設けられた第2の反射体との少なくとも2つの反射体から成る請求項1に記載の照明装置。
【請求項3】
第1の反射体の反射面と第2の反射体の反射面とは平行な平面である請求項2に記載の照明装置。
【請求項4】
反射体の反射面は、偏光解消を起こすように表面処理されている請求項1に記載の照明装置。
【請求項5】
光学素子と反射体の反射面との間に配された位相差板を有する請求項1に記載の照明装置。
【請求項6】
位相差板は、λ/4板(λは波長)である請求項5に記載の照明装置。
【請求項7】
λ/4板は、所定の帯域の波長に対して一定の位相差を与える広帯域の位相差板である請求項6に記載の照明装置。
【請求項8】
光源、光学素子、及び、反射体は、1つのパッケージに収納されている請求項1に記載の照明装置。
【請求項9】
位相差板は、光源、光学素子、及び、反射体と共に1つのパッケージに収納されている請求項5に記載の照明装置。
【請求項10】
光学素子は、偏光依存性を持つ請求項1に記載の照明装置。
【請求項11】
光学素子は、液晶レンズである請求項10に記載の照明装置。
【請求項12】
液晶レンズは、2つの透明基板と、2つの透明基板間に封入された液晶材料から成る液晶層とを有し、液晶層間に印加する電圧に応じてレンズ性能が可変である請求項11に記載の照明装置。
【請求項13】
光学素子は、液体レンズである請求項1に記載の照明装置。
【請求項14】
光源、
光源から発せられた光を拡散または散乱させる光学素子、及び、
光学素子を通過した光を光学素子の方向に向けて反射する反射体、
を備える照明装置の駆動に当たって、
光源から発せられた光を、光学素子を複数回通過させたのち照明光として出射する照明装置の駆動方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−73862(P2013−73862A)
【公開日】平成25年4月22日(2013.4.22)
【国際特許分類】
【出願番号】特願2011−213659(P2011−213659)
【出願日】平成23年9月29日(2011.9.29)
【出願人】(598172398)株式会社ジャパンディスプレイウェスト (90)
【Fターム(参考)】