説明

熱化学法による水素製造装置及びその方法

【課題】熱化学法による水素製造に係る各工程において反応の制御を行う。
【解決手段】熱化学法による水素製造装置は、ヨウ素14、二酸化硫酸15及び水11を熱化学的に分解してヨウ化水素16及び硫酸17を生成するブンゼン反応器1と、生成されたヨウ化水素16及び硫酸17を分離する二相分離器と、分離されたヨウ化水素16を水素及びヨウ素14に分解するヨウ化水素分解器と、分離された硫酸を二酸化硫黄15、酸素及び水11に分解する硫酸分解器と、ブンゼン反応器1、二相分離器、ヨウ化水素精製器、ヨウ化水素濃縮器、ヨウ化水素/ヨウ素蒸留器、ヨウ化水素分解器、ヨウ化水素/ヨウ素回収器、硫酸精製器、硫酸濃縮器、硫酸分解器及び硫酸回収器から選択された少なくとも1装置における反応を制御する反応制御手段(例えば、ブンゼン循環・攪拌系統29)と、を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱化学法による水素製造に係る各工程における反応を制御する熱化学法による水素製造装置及びその方法に関する。
【背景技術】
【0002】
未来社会の1つのビジョンとして水素をエネルギー媒体とした水素エネルギー社会の実現が注目されており、いくつかの有力な水素製造方法が知られている。
【0003】
いくつかの水素製造方法のうち、熱化学水素製造プロセスであるIS法(Iodine-Sulfur法:ヨウ素と硫酸を内部循環させながら水を熱化学的に分解して水素を製造する方法、SI法とも言われている。)が知られている(例えば、特許文献1参照)。
【0004】
このIS法は、水及び発電所等から得られた900℃程度の熱を供給することにより、主に3つの工程(ブンゼン反応工程、ヨウ化水素濃縮分解工程、硫酸濃縮分解工程)による内部循環を経て水を水素と酸素へと変換するものである。このIS法は、熱源として高温ガス炉等が用いられる。
【0005】
上記のブンゼン反応工程において、水、ヨウ素、二酸化硫黄は、熱化学プロセスを経由してヨウ化水素(HI)及び硫酸に変更される。次に、ヨウ化水素濃縮分解工程において、前工程で生成されたヨウ化水素は加熱することにより、水素及びヨウ素へ分解される。この分解したヨウ素はブンゼン反応工程へ循環され、未分解物はヨウ化水素濃縮等へ再循環される。水素は製品として取り出す。
【0006】
次に、硫酸濃縮分解工程において、上記のブンゼン反応工程において生成された一方の硫酸は、やはり加熱することにより酸素、水、二酸化硫黄に分解される。この分解した二酸化硫黄はブンゼン反応工程へ循環され、未分解物は硫酸濃縮等へ再循環される。酸素は製品として取り出される。
【特許文献1】特開2005−41764号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述した従来の熱化学法による水素製造においては、主に3つの主反応工程(ブンゼン反応工程、ヨウ化水素分解工程、硫酸分解工程)と、10にも及ぶ助反応工程(二相分離工程、ヨウ化水素精製工程、ヨウ化水素濃縮工程、ヨウ化水素/ヨウ素蒸留工程、未分解ヨウ化水素処理工程、水洗浄工程、硫酸精製工程、硫酸濃縮工程、未分解硫酸処理工程、酸素洗浄工程)を組み合わせたシステムから構成されるものである。
【0008】
上記熱化学法による水素製造は各種の化学反応を組み合わせて構成されているので、水素及び酸素を生成させるためには、各工程における制御はもちろんのこと、他の工程とのやり取りや、各工程の補機に対する制御を確実に行わなければならない、という課題があった。
【0009】
次に、個別に各工程の運転状態を考察する。先ずブンゼン反応において、以下の(1)式が示すように、反応が行われる。
【0010】
SO+I+2HO → 2HI+HSO (1)
ここで、二酸化硫黄とヨウ素と水を反応させてヨウ化水素と硫酸が生成される。この硫酸分解から得られる二酸化硫黄、ヨウ化水素分解で得られるヨウ素、燃料となる水をそれぞれ定量しながら注入する。この反応において最も重要なことは、二酸化硫黄とヨウ素が当モルで水が2倍モルにおいて反応することである。このとき、二酸化硫黄は気体で、水とヨウ素は液体若しくは固体との反応となる。気体である二酸化硫黄を系外に漏らさずに反応させるためには、モル比で二酸化硫黄以上のヨウ素と2倍以上の水を絶えず接触させる必要がある。
【0011】
また、ヨウ素については必要不可欠な反応物質であるが取り扱い困難な物質である。これはヨウ素の融点158℃と沸点185℃が近く、沸点以上の場合は気体としての扱いが強いられるからである。これを融点以上に昇温して液体として扱えば移送等も比較的容易であるが、融点を下回った部分が生じると非常に付着し易くすぐ固化してしまう。また、水に殆ど溶解しない。また固形状態では移送に難点が生じる。さらに、液体中のヨウ素は常温領域においても徐々に気化し、配管内に付着・固化して閉塞等の事象を惹起する恐れがある。これらの事項を考慮してブンゼン反応システムを組み上げる必要がある、という課題があった。
【0012】
また、生成されたヨウ化水素と硫酸はある濃度以上になると双方の比重の違いにより二相に分離する。このときに、適切に各薬剤(ヨウ素、二酸化硫黄、水)を注入することについても難点があった。
【0013】
次に、上記ブンゼン反応で得られた二相液のうち、比重の重たいヨウ化水素を主体とする溶液の組成は、ヨウ化水素/ヨウ素、水が主体となり、硫酸が不純物として混入する。この不純物となる硫酸を取り除き、かつ取り除いた硫酸についても再利用する。
【0014】
この不純物となる硫酸を取り除く反応として、以下の(2)式が示すように、ブンゼン反応の逆の反応又は蒸気圧の違いを利用した反応等が考えられる。
【0015】
2HI+HSO → SO+I+2HO (2)
ここで、不純物となる硫酸の管理を行うことにより、次段以降の反応を円滑に移行させることが肝要となる。従って、ヨウ化水素/ヨウ素溶液中の硫酸濃度を絶えず監視し、除去不純物の処理、又は不具合が生じた場合の対処方法等を考慮する必要がある、という課題があった。
【0016】
また、精製されたヨウ化水素/ヨウ素はヨウ化水素とヨウ素に分離するために蒸留を行う。このヨウ化水素中に混入するヨウ素、又はヨウ素中に混入するヨウ化水素は運転効率を低下させるだけではなく、上述したヨウ素の固化等の種々の不具合を発生させる。このために、上記の不純物濃度の監視及び不純物が混入した場合の対処等を想定した不純物処理の対策を講じる必要がある、という課題があった。
【0017】
また、分離したヨウ素を再びブンゼン反応へ供給し、一方の未分解のヨウ化水素は分解器に導入され製品となる水素とヨウ素に分解する。この分解したヨウ素は上述のように温度によりかなり激しく組成を変化ものである。このために、温度、圧力監視は勿論のこと、異常時の対応等の処置を怠るとシステム全体に影響を与える、という課題があった。また、ヨウ化水素の分解については、分解反応を促す触媒、分解生成物の監視と処理、生成した水素の抽出と管理及び不具合時の取り扱い等に課題があった。
【0018】
また、ヨウ化水素分解後においては、その分解効率により各種組成は変化するものの、分解生成物の大部分は、水素、ヨウ素並びに未分解のヨウ化水素及び水である。これら組成で得られたものから、水素は洗浄して製品として取り出し、他のものは再利用する。この水素洗浄において、水だけの洗浄では、同伴するヨウ素によりヨウ素の付着弊害を生じるため専用の洗浄を必要とする。このように、ヨウ化水素、ヨウ素又は水の再利用はこれらの濃度割合に応じて利用場所を選定することが望ましい、という課題があった。
【0019】
次に、上記ブンゼン反応で得られた二相液のうち、比重の軽い硫酸を主体とする溶液について、溶液中の組成は、硫酸と水が主体となり、ヨウ化水素/ヨウ素が不純物として混入する。この不純物となるヨウ化水素/ヨウ素を取り除き、かつ取り除いたヨウ化水素/ヨウ素についても再利用する。
【0020】
この不純物となる硫酸を取り除く反応として、上記(2)式が示すように、ブンゼン反応の逆の反応又は蒸気圧の違いを利用した反応等が考えられる。
【0021】
ここで、不純物となるヨウ化水素/ヨウ素の管理を行うことにより、次段以降の反応を円滑に移行することが肝要となる。このように、硫酸のヨウ化水素/ヨウ素溶液中濃度を絶えず監視し、除去不純物の処理又は不具合が生じた場合の対処方法等を講じる必要がある、という課題があった。
【0022】
また、精製された硫酸は水分を多く含んだ希硫酸又は硫酸であるため、高濃度の濃硫酸を得るため濃縮操作を行う。このとき、水分除去に伴い、濃縮温度によっては硫酸が三酸化硫黄と水に分解する可能性がある。このために、温度、圧力監視はもとより、三酸化硫黄の分解監視、生成したときの対策、処理を講じる必要がある。
【0023】
また、濃縮した硫酸の分解については、分解反応を促す触媒、分解生成物の監視と処理、生成した水素の抽出と管理並びに不具合時の取り扱い等に課題があった。
【0024】
さらに、硫酸分解後においては、その分解効率により各種組成は変化するものの、分解生成物の大部分は、二酸化硫黄及び酸素、未分解の硫酸及び三酸化硫黄並びに水である。これらの組成で得られたものの内、未分解の硫酸、三酸化硫黄及び水については冷却して硫酸に戻すが、二酸化硫黄と酸素の分離は気体同士であるため分離することが難しい、という課題があった。
【0025】
上述のように、各工程における制御はもちろんのこと、他の工程とのやり取りや、各工程の補機に対する制御を確実に行わなければ水素及び酸素を生成させることが困難となる。
【0026】
本発明は上記課題を解決するためになされたもので、熱化学法による水素製造に係る各工程における制御は勿論のこと、他の工程とのやり取り又は各工程の補機に対する制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる熱化学法による水素製造装置及びその方法を提供することを目的とする。
【課題を解決するための手段】
【0027】
上記目的を達成するため、本発明の熱化学法による水素製造装置においては、ヨウ素、二酸化硫黄及び水を熱化学的に分解してヨウ化水素及び硫酸を生成するブンゼン反応器と、この生成されたヨウ化水素及び硫酸を分離する二相分離器と、この分離されたヨウ化水素から不純物である硫酸を除去するヨウ化水素精製器と、この精製されたヨウ化水素を濃縮するヨウ化水素濃縮器と、この濃縮されたヨウ化水素からヨウ素を分離するヨウ化水素/ヨウ素蒸留器と、このヨウ素が分離されたヨウ化水素を水素及びヨウ素に分解するヨウ化水素分解器と、この分解されたヨウ素及び未分解のヨウ化水素を回収するヨウ化水素/ヨウ素回収器と、前記分離された硫酸から不純物であるヨウ化水素/ヨウ素を除去する硫酸精製器と、この精製された硫酸を濃縮する硫酸濃縮器と、この濃縮された硫酸を二酸化硫黄、酸素及び水に分解する硫酸分解器と、この分解された二酸化硫黄及び未分解の硫酸を回収する硫酸回収器と、前記ブンゼン反応器、二相分離器、ヨウ化水素精製器、ヨウ化水素濃縮器、ヨウ化水素/ヨウ素蒸留器、ヨウ化水素分解器、ヨウ化水素/ヨウ素回収器、硫酸精製器、硫酸濃縮器、硫酸分解器及び硫酸回収器から選択された少なくとも1装置における反応を制御する反応制御手段と、を有することを特徴とするものである。
【0028】
また、上記目的を達成するため、本発明の熱化学法による水素製造方法においては、ヨウ素、二酸化硫酸及び水を熱化学的に分解してヨウ化水素及び硫酸を生成するブンゼン反応工程と、この生成されたヨウ化水素及び硫酸を分離する二相分離工程と、この分離されたヨウ化水素から不純物である硫酸を除去するヨウ化水素精製工程と、この精製されたヨウ化水素を濃縮するヨウ化水素濃縮工程と、この濃縮されたヨウ化水素からヨウ素を分離するヨウ化水素/ヨウ素蒸留工程と、このヨウ素が分離されたヨウ化水素を水素及びヨウ素に分解するヨウ化水素分解工程と、この分解されたヨウ素及び未分解のヨウ化水素を回収するヨウ化水素/ヨウ素回収工程と、前記分離された硫酸から不純物であるヨウ化水素/ヨウ素を除去する硫酸精製工程と、この精製された硫酸を濃縮する硫酸濃縮工程と、この濃縮された硫酸を二酸化硫黄、酸素及び水に分解する硫酸分解工程と、この分解された二酸化硫黄及び未分解の硫酸を回収する硫酸回収工程と、前記ブンゼン反応工程、二相分離工程、ヨウ化水素精製工程、ヨウ化水素濃縮工程、ヨウ化水素/ヨウ素蒸留工程、ヨウ化水素分解工程、ヨウ化水素/ヨウ素回収工程、硫酸精製工程、硫酸濃縮工程、硫酸分解工程及び硫酸回収工程から選択された少なくとも1工程における反応を制御する反応制御工程と、を有することを特徴とするものである。
【発明の効果】
【0029】
本発明の熱化学法による水素製造装置及びその方法によれば、熱化学法による水素製造に係る各工程における反応制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。
【発明を実施するための最良の形態】
【0030】
以下、本発明に係る熱化学法による水素製造装置及びその方法の実施の形態について、図面を参照して説明する。ここで、同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0031】
図1は、本発明の実施の形態の熱化学法による水素製造におけるブンゼン反応工程の概略構成を示す構成図であり、図2は、本発明の熱化学法による水素製造方法の基本的な工程を示す構成図である。
【0032】
まず、図2を用いて水素製造方法の基本的な工程について説明する。本図に示すように、IS法による熱化学的水素製造法は、主に3つの工程、すなわち、ブンゼン反応工程18、ヨウ化水素(HI)濃縮分解工程19及び硫酸濃縮分解工程20から構成される。上記それぞれの工程において、これらの主反応とこれを補助する反応が存在する。
【0033】
まず、ブンゼン反応工程18について説明する。ヨウ素(I)14、二酸化硫黄(SO)15、水11がブンゼン反応器1に供給される。このブンゼン反応器1において、ブンゼン反応と呼ばれる熱化学反応を発生させ、ヨウ化水素(HI)16及び硫酸17が生成される。
【0034】
この生成されたヨウ化水素16及び硫酸17は、二相分離器2に導入される。この二相分離器2において、比重の相違により、ヨウ化水素16と硫酸17とに分離される。この分離されたヨウ化水素16と硫酸17とは、それぞれHI濃縮分解工程19及び硫酸濃縮分解工程20へと送られる。未反応のヨウ素14、二酸化硫黄15及び水11は、二相分離器2内の生成装置で分離されて元のブンゼン反応容器1に戻される。
【0035】
次に、HI濃縮分解工程19について説明する。上記ブンゼン反応工程18で分離されたヨウ化水素16は水11と共に、HI精製器3を経由してHI濃縮器4に送り込まれる。このHI精製器3で分離された不純物となる硫酸17はブンゼン反応器1にリサイクルされる。
【0036】
このHI濃縮器4においては、加熱されてヨウ化水素16の濃度が高められる。この加熱は、例えば、発電所から導かれた熱源による加熱器21により行われる。ここで蒸留した水11は、ブンゼン反応工程18に再循環される。
【0037】
上記の加熱によって濃縮されたヨウ化水素16は、HI/I蒸留器5経由してHI分解器6に送り込まれる。このHI/I蒸留器5では、ヨウ化水素16とヨウ素14が分離される。この分離されたヨウ素14はブンゼン反応器1に再循環され、ヨウ化水素16はHI分解器6に導入される。このHI分解器6では、加熱されてヨウ化水素16は水素12とヨウ素14とに分解される。この加熱は、例えば、発電所から導かれた熱源による加熱器21により行われる。ただし、このヨウ化水素16の分解の割合は、分解物の平衡により導入されたヨウ化水素16の20%程度である。このために、HI分解器6の出口からは、水素12とヨウ素14の他に未分解のヨウ化水素16と水11が同伴する。
【0038】
この分解した水素12とヨウ素14は、未分解のヨウ化水素16と共に、HI及びヨウ素回収器10に送り込まれる。このHI及びヨウ素回収器10において、冷却器46により冷却されて水素12が回収される。また、回収されたヨウ素14はブンゼン反応器1に再循環される。
【0039】
この回収された水素12は水素洗浄器24に導入され洗浄される。かくして、この洗浄された水素12は製品として取り出される。
【0040】
次に、硫酸濃縮分解工程20について説明する。二相分離器2で分離した硫酸17は水11と共に、硫酸精製器7を経由して硫酸濃縮器8に送り込まれる。この硫酸精製器7で分離された不純物となるヨウ化水素16やヨウ素14はブンゼン反応器1にリサイクルされる。
【0041】
この硫酸濃縮器8においては、加熱して硫酸17の濃度が高められる。この加熱は、例えば、発電所から導かれた熱源による加熱器21により行われる。ここで蒸留した水11は、ブンゼン反応器1に再循環される。
【0042】
上記加熱されて濃縮した硫酸17は、硫酸分解器23に送り込まれる。この硫酸分解器23において、硫酸17が加熱して分解されて、二酸化硫黄15や酸素13が生成される。または、この硫酸17が加熱して分解されて、三酸化硫黄22や水11が生成される。この生成された三酸化硫黄22は、さらに加熱して、二酸化硫黄15や酸素13が生成される。この分解は反応温度にもよるが、導入された硫酸の80%程度であるため、硫酸分解器23の出口からは二酸化硫黄15と酸素13の他に未分解の硫酸17と水11が同伴する。
【0043】
上述のように生成された二酸化硫黄15、三酸化硫黄22、酸素13及び水11は、硫酸回収器9に送り込まれる。この硫酸回収器9では、二酸化硫黄15は、回収されて元のブンゼン反応器1に戻される。また、未反応の硫酸17は、上記硫酸分解器23にリサイクルされる。ただし、酸素13の回収においては、気体である二酸化硫黄15と同時に動き気体同士の分離が容易でないので、ブンゼン反応工程18へ再循環し二酸化硫黄15だけを反応させた後に、酸素13を取り出すこととなる。この回収された酸素13は酸素洗浄器25に導入され洗浄される。
【0044】
上記のIS法による熱化学的水素製造装置の構成は、本実施の形態を実現するための基本的な構成であって、場合によって各機器を2段階に分けて反応工程を構成することもある。
【0045】
例えば、硫酸分解器23おいて、硫酸17から直接二酸化硫黄15を生成するのではなく、硫酸17を分解して水11と三酸化硫黄22が生成される。その後、三酸化硫黄22は、分解されて二酸化硫黄15と酸素13が生成されるという2段階に分けて機器を構成することもある。しかし、一般的にはこれらの反応工程は、硫酸分解器23内で行われるので、同じ機能を有する機器構成と考えることができる。
【0046】
ここで、ブンゼン反応工程18における反応制御について説明する。
【0047】
上述のブンゼン反応器1において、燃料となる水11や硫酸17の分解から得られる二酸化硫黄15は気体と使用し、ヨウ化水素16の分解で得られるヨウ素14は液体として使用される。このように、上記ブンゼン反応おいては、気体と液体の反応を制御しなければならない。
【0048】
このために、ブンゼン反応工程18においては、気液反応を100%行うため、各送液や反応容器の加熱器21による加熱や冷却器46による冷却を含めた温度制御は勿論のこと、混合器の設置や圧力制御等により反応を促進させている。ここで、二酸化硫黄15は気体であるので、ブンゼン反応工程18において100%反応しないときには、酸素13と同様に飛散してしまう可能性がある。
【0049】
この対策として、図1に示すように、ブンゼン反応器1の下部にブンゼン循環・攪拌系統29を設ける。このブンゼン循環・攪拌系統29は、ブンゼン反応器1に配置したバイパス配管に循環ポンプ28や攪拌機30を設けて、循環させて攪拌を行っている。
【0050】
本実施の形態において、このブンゼン循環・攪拌系29に、硫酸濃縮分解工程20から導入される二酸化硫黄15を仕切弁33を介して通気することにより効率良く二酸化硫黄15を反応させることが可能となる。かくして、ブンゼン反応工程おける反応のし難い気体と液体の熱化学反応を促進させ、効率的にヨウ化水素(HI)16及び硫酸17が生成される。
【0051】
また、上記ブンゼン反応工程18におけるブンゼン反応が進行するとヨウ化水素16と硫酸17が生成され、図1に示す二相分離器2においてそれぞれの比重差で二相に分離される。
【0052】
上述のように、このブンゼン反応器1の下部にブンゼン循環・攪拌系統29を設けることにより、二相分離した状態においても比重の大きいヨウ化水素とヨウ素の溶液が主体となってブンゼン循環・攪拌系統29内を循環するため、さらに効率よく二酸化硫黄15を反応させることが可能となる。
【0053】
また、上記ブンゼン循環・攪拌系統29に、仕切弁33を介して硫酸・ヨウ素・ヨウ化水素計測系統40を設置することができる。この硫酸・ヨウ素・ヨウ化水素計測系統40おいて、イオンクロマトグラフィ等によりブンゼン反応工程18における原料及び生成物の確認を行うことができる。
【0054】
また、ブンゼン反応器1の使用温度を温度計32を用いて計測する。さらに、硫酸・ヨウ素・ヨウ化水素計測系統40においてヨウ化水素16とヨウ素14の濃度を計測する。これらの計測値を基にして、ブンゼン反応器1へ注入する水11及びヨウ素14の最適注入量を制御することができる。
【0055】
上記ブンゼン反応工程18において、上述のように二酸化硫黄15、ヨウ素14及び水11は1:1:2のモル割合で反応する。この内、二酸化硫黄15は、気体であるので二酸化硫黄の系外放出を防止する観点から、ヨウ素14及び水11を多めに反応させることが望ましい。
【0056】
また、ヨウ素14は、溶液中に存在するヨウ化水素16の濃度と反応温度により溶解量を変化させる。例えば、温度が室温の場合は、ヨウ化水素16が1モルに対して2モルのヨウ素14が溶解する。この温度が80℃程度であると、ヨウ化水素16が1モルに対して3モル以上のヨウ素14が溶解する。これ以上にヨウ素14が注入されたときには、このヨウ素14の融点以下の温度であるときには固化し、配管等の閉塞を発生させる恐れがある。上述のように、反応温度とヨウ化水素16及びヨウ素14の濃度からブンゼン反応器1に充填するヨウ素14の注入量及び水11の注入量を決定することが可能となる。
【0057】
また、上記ブンゼン反応器1において、後述する液面開始を絶えず行うことにより、溶液量を定量化し攪拌機等の攪拌効果を最適な状態に施している。しかし、この反応過程途中の二相分離まで到達しない状態において、反応薬剤の注入による容量増に対応する必要がある。このようなときに、溶液監視を行って後段への送液停止の処理を行っている。すなわち、ブンゼン反応補器57へ溶液を移送することにより、確実に反応を制御することを可能としている。
【0058】
また、ブンゼン反応器1における反応後の気体は、上部にあるヨウ素洗浄器26へ移行される。このヨウ素洗浄器26には、加熱された酸素13と共に昇華したヨウ素14が移行する。温度の低いヨウ素14は、このヨウ素洗浄器26内に付着固化する。
【0059】
この循環ポンプ28を介して付着固化したヨウ素14を洗浄するために、ヨウ素洗浄用循環器27が設けられている。このヨウ素洗浄用循環器27には、上記ヨウ素14を洗浄するために閉循環する希釈ヨウ化水素38が貯溜されている。
【0060】
また、このヨウ素洗浄器26内に、循環する希釈ヨウ化水素38を貯溜するためにヨウ素洗浄容器希釈ヨウ化水素貯め37を設けている。このように、ヨウ素洗浄容器希釈ヨウ化水素貯め37を設けることにより、昇華したヨウ素14を効率的に洗浄することができる。
【0061】
さらに、上記循環ポンプ28の出口からのヨウ化水素16及び燃料となる水11をヨウ素洗浄器26に注入することにより、ヨウ化水素16の濃度の調整と燃料となる水11の補給を同時に行うことを可能としている。
【0062】
また、ヨウ素洗浄器26には、仕切弁33を介して二酸化硫黄計測系統35が設けられている。この二酸化硫黄計測系統35を設けることにより、未反応の二酸化硫黄15を監視することができる。この二酸化硫黄15が流出したときには、仕切弁33aを閉じ、仕切弁33bを介して二酸化硫黄除去器36において二酸化硫黄15を処理している。
【0063】
本実施の形態において、この二酸化硫黄除去器36において二酸化硫黄15を処理した酸素13は、仕切弁33c、ガス移送ポンプ58を介して酸素洗浄器25へ導出している。かくして、有害な二酸化硫黄15の排出を軽減することを可能としている。
【0064】
また、このように構成された本実施の形態において、二酸化硫黄計測系統35において、未反応の二酸化硫黄を検知したときには、圧力調整弁34より、ブンゼン反応器1及びヨウ素洗浄器26等における圧力を制御することを可能としている。
【0065】
本実施の形態によれば、この圧力制御は、上記ブンゼン反応工程18に大きな影響を与える。上記ブンゼン反応工程18は、二酸化硫黄15、ヨウ素14及び水11の反応である。この反応を素反応で考察したときには、上記二酸化硫黄15は、水11と反応して三酸化硫黄22を含む三酸化硫黄水が形成され、次に、ヨウ素14と反応する。この反応において、二酸化硫黄15と水11の反応は圧力に対して敏感に反応し、圧力に応じて定量的に反応することを実験的に確認することができた。このことは、未反応の二酸化硫黄15に対する処置を、圧力制御することにより確実なものとすることが可能であることを示している。
【0066】
本実施の形態によれば、熱化学法による水素製造に係るブンゼン反応工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。かくして、熱化学法による水素製造に係るブンゼン反応工程における制御を確実に行うことにより、効率的に水素を生成することできる。
【0067】
図3は、本発明の実施の形態の熱化学法による水素製造における二相分離工程の概略構成を示す構成図である。本図は、図1のブンゼン反応器1の上流側に二相分離器2を設けたものであり、図1と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0068】
本図に示すように、ブンゼン反応器1で生成された二相分離液は、一旦別容器に移送してから当該二相液を分離することも可能であるが、ここではブンゼン反応器1を用いて二相液を分離する工程について示す。このブンゼン反応器1に、液面・界面検知器41を設ける。この液面・界面検知器41は、超音波等により反応液中の二相液の界面、溶液中の固化ヨウ素及び溶液全体の液面を監視するものである。また、この液面・界面検知器41により二相液の界面が検知された時点から、図2のブンゼン反応工程18を停止することなく二相分離を開始する。
【0069】
上記ブンゼン循環・攪拌系統29において、ブンゼン反応器1の最下部に設けた採取口を介して二相液の重液であるヨウ化水素16/ヨウ素14の溶液を循環することにより、二酸化硫黄15と効率よく反応させている。
【0070】
また、ブンゼン反応器1の上部よりヨウ素14を注入することにより、二相軽液中に残存する可能性がある二酸化硫黄15と反応させている。また、このヨウ素14はその性状から溶液として注入する場合には150℃以上の温度に保持したものを注入する。この二相軽液の移送は、ブンゼン反応器1の二相界面上部にある配管から仕切弁33dを経由して二相分離軽液容器2bに重力落下又は専用移送ポンプ(図示せず)を用いて行う。
【0071】
また、二相重液の移送は、ブンゼン反応器1の下部にある配管から仕切弁33eにより二相分離重液容器2aに重力落下又は専用移送ポンプ(図示せず)を用いて行う。このとき、液面・界面検知器41により液面・界面の監視を行い、温度計32による温度計測を行い、圧力計31による圧力計測を行うことにより、例え、異常が生じたときでも迅速な対処が可能となる。
【0072】
さらに、ブンゼン反応器1の二相界面部に配置された溶液移送配管に介在する仕切弁33f及び液移送ポンプ44を介してブンゼン反応補器57が設けられている。このブンゼン反応補器57において、上記液面・界面検知器41で監視された情報に基づき液面制御を行うことにより、最適な反応状態を維持することが可能である。
【0073】
本実施の形態によれば、熱化学法による水素製造に係る二相分離工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。かくして、熱化学法による水素製造に係る二相分離工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0074】
図4は、本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素精製工程の概略構成を示す構成図である。本図は、図1のブンゼン反応器1の上流側にヨウ化水素(HI)精製容器3を設けたものであり、図1と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0075】
本図に示すように、ブンゼン反応器1で得られた二相層分離液のうち、ヨウ化水素16/ヨウ素14を主とする重液には不純物として硫酸17が混入している。この不純物としての硫酸17を除去するために、ヨウ化水素精製器3を設置する。
【0076】
この不純物除去方法として逆ブンゼン方法や蒸気圧分離方法がある。この不純物除去方法について以下に説明する。
【0077】
上記二相層分離液のうちヨウ化水素16/ヨウ素14を主とする重液は二相分離重液容器2aに貯溜される。この二相分離重液容器2aに貯溜されたヨウ化水素16/ヨウ素14を主とする重液はヨウ化水素精製器3に導入される。このヨウ化水素精製器3において、精製されたヨウ化水素16/ヨウ素14の水溶液はヨウ化水素濃縮器4へ導出され、不純物である硫酸17は精製不純物容器42へ導出される。
【0078】
このヨウ化水素精製器3内において、精製溶液の流入速度の制御、精製用キャリアガス容器43aからの精製用キャリアガス43の速度制御、ヨウ化水素精製器3の温度計32に基づく温度計測及び圧力調整弁34a、34bによる圧力調整を行う。このようにして調整した圧力を利用して、排出溶液及びガス速度を制御することにより精製を可能としている。
【0079】
このヨウ化水素精製容器3における温度制御は、上部/下部個別の加熱を施す2段加熱制御又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。
【0080】
このように構成された本実施の形態において、ヨウ化水素濃縮器4へ導出されるヨウ化水素精製溶液は、仕切弁33を介して硫酸・ヨウ素・ヨウ化水素計測系統40へ一部が導出される。この硫酸・ヨウ素・ヨウ化水素計測系統40において組成分析を行うことにより、不純物として流入する硫酸17を監視している。
【0081】
本実施の形態によれば、この硫酸17の混入が認められたときには、上述した精製溶液流入速度を減少させ、精製用キャリアガス43の速度及び圧力調整弁34bにて圧力を調整して排出ガス速度を増加させることにより、不純物としての硫酸17を効率的に除去することができる。
【0082】
一方、ヨウ化水素精製器3の不純物として出る気体状の硫酸17又は二酸化硫黄15は、精製不純物容器42において冷却される。水分を多量に含む硫酸17は溶液として溶液移送ポンプ44によりブンゼン反応容器1へ導出される。
【0083】
また、上記精製不純物容器42においては、二酸化硫黄計測系統35が仕切弁33gを介して接続され、精製不純物中の二酸化硫黄15を監視している。この二酸化硫黄15を検知したときには、仕切弁33hを開放し、ガス回収器45を介してブンゼン反応容器1における二酸化硫黄注入系統に排出する。この工程を設けることにより、逆ブンゼン反応により得られた二酸化硫黄15を無駄にすることなく再利用することを可能としている。
【0084】
本実施の形態によれば、熱化学法による水素製造に係るヨウ化水素精製工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。かくして、熱化学法による水素製造に係るヨウ化水素精製工程における反応制御を確実に行うことにより効率的に水素を生成することできる。
【0085】
図5は、本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素濃縮工程の概略構成を示す構成図である。本図は、図4のヨウ化水素(HI)精製器3の上流側にヨウ化水素(HI)濃縮器4を設けたものであり、図4と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0086】
本図に示すように、上記ヨウ化水素精製器3にて不純物を除去したヨウ化水素16/ヨウ素14及び水11はヨウ化水素濃縮器4へ導出される。このヨウ化水素濃縮器4において、導入されたヨウ化水素16/ヨウ素14及び水11は水分除去を主とした濃縮が行われる。この濃縮方法については加熱による濃縮、電気透析によるもの、膜分離を利用したもの等がある。これらの濃縮方法により濃縮されたヨウ化水素16/ヨウ素14は、溶液移送ポンプ44によりヨウ化水素(HI)/ヨウ素(I)蒸留容器5へ送液される。
【0087】
一方、ヨウ化水素濃縮器4から排出された水蒸気11は、水回収容器47に導出される。この水回収容器47において、導入された水蒸気11は冷却された後に、溶液移送ポンプ44を介してブンゼン反応器1へ導出され再利用される。
【0088】
このように構成された本実施の形態において、この水回収容器47において、仕切弁33iを介して硫酸・ヨウ素・ヨウ化水素計測系統40に接続されている。この硫酸・ヨウ素・ヨウ化水素計測系統40において水中の不純物監視を行う。不純物が検知されたときには仕切弁33jを閉じる。同時に、仕切弁33kを開放し溶液移送ポンプ44を介してヨウ化水素精製容器3へ戻されて再度精製操作が行われる。水分以外の不純物として硫酸17が検知されたときには、この硫酸17は、図4に示す精製不純物容器42へ導出される。このように構成することにより効率的な運転を可能としている。
【0089】
本実施の形態によれば、熱化学法による水素製造に係るヨウ化水素濃縮工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを確実に反応させることができる。かくして、熱化学法による水素製造に係るヨウ化水素濃縮工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0090】
図6は、本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素/ヨウ素蒸留工程の概略構成を示す構成図である。本図は、図5のヨウ化水素(HI)濃縮容器4の上流側にヨウ化水素/ヨウ素蒸留器5を設けたものであり、図5と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0091】
本図に示すように、上記ヨウ化水素濃縮器4にて濃縮したヨウ化水素16/ヨウ素14は、ヨウ化水素/ヨウ素蒸留器5に導入される。このヨウ化水素16/ヨウ素14は、ポリヨウ化水素酸(HIx x=2〜10以上)を形成し、ヨウ化水素16とヨウ素14とが混在する形であるので、これを蒸留により分離する。この分離方法は、ヨウ化水素16/ヨウ素14のそれぞれの沸点の違いを利用する。このために、ヨウ化水素/ヨウ素の蒸留器5における温度制御は、上部/下部個別の加熱を施す2段加熱制御、又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。
【0092】
このヨウ化水素/ヨウ素蒸留器5の上部又は中部はヨウ化水素16の沸点以上で、かつヨウ素14の沸点以下に温度制御する。ヨウ化水素/ヨウ素蒸留器5の下部は上部/中部よりも温度が高くかつヨウ素14が気化する直前の温度制御を行う。このように温度制御することにより、ヨウ化水素/ヨウ素蒸留容器5において沸点の低いヨウ化水素16は仕切弁33lを介してヨウ化水素分解容器6へ移送される。
【0093】
一方、沸点の高いヨウ素14は仕切弁33mを介してヨウ素回収器10へ導入される。このヨウ素回収器10に貯溜されたヨウ素14は、溶液移送ポンプ44aによりヨウ素リボイラー容器49へ移送される。このヨウ素リボイラー容器49において、この溶液中に含まれる可能性のある微量のヨウ化水素16は、仕切弁33を介してヨウ化水素/ヨウ素蒸留器5へ導出される。ヨウ素14は溶液ポンプ44aによりブンゼン反応器1へ移送される。
【0094】
上述のように、ブンゼン反応器1におけるヨウ素14の注入量は確実に制御を行う必要がある。このために、余剰分として得られたヨウ素14については、溶液移送ポンプ44bによりヨウ素回収器10へ戻される。この工程を設けることにより、ブンゼン反応器1へのヨウ素14の供給を確実なものとすることができる。
【0095】
本実施の形態によれば、熱化学法による水素製造に係るヨウ化水素/ヨウ素蒸留工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを確実に反応させることができる。かくして、熱化学法による水素製造に係るヨウ化水素/ヨウ素蒸留工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0096】
図7は、本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素分解工程の概略構成を示す構成図である。本図は、図6のヨウ化水素/ヨウ素蒸留器5の上流側にヨウ化水素分解器6を設けたものであり、図6と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0097】
本図に示すように、ヨウ化水素/ヨウ素蒸留器5にて得られたヨウ化水素16はヨウ化水素分解器6へ導入される。このヨウ化水素分解器6において、充填された触媒によりヨウ化水素16はヨウ素14と水素12に分解される。このヨウ化水素16の分解に使用する触媒として白金触媒を使用することにより、400℃の温度において21%の効率で分解することを実験的に確認することができた。
【0098】
ヨウ化水素分解器6における容器構造は、分解容器出口側に容器量の1/2から2/3程度触媒を充填する。入口側にヨウ化水素16を蒸発させるため、又は凝縮を防ぐために空洞の加熱部を設ける。この加熱部において、熱効率を上昇させるため、ヨウ化水素16と全く反応しない充填物(ガラスないしは石英)を充填することも有効である。
【0099】
さらに、ヨウ化水素分解容器6における温度制御は、上部/下部個別の加熱を施す2段加熱制御、又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。ヨウ化水素分解器6の入口側の温度をヨウ化水素分解温度とヨウ化水素沸点温度の中間温度程度としてヨウ化水素16を蒸発させる。触媒充填部では、分解温度で温度制御することで効率的なヨウ化水素16の分解が可能となる。分解後の400℃の気体は、分解した水素12、ヨウ素14及び未分解のヨウ化水素16である。
【0100】
分解後の400℃の気体は、未分解ヨウ化水素回収器50に導入される。この未分解ヨウ化水素回収器50において120℃程度に冷却されて気体と液体に分離される。この未分解ヨウ化水素回収器50には、仕切弁33nを経由して冷却器46が接続されている。この冷却器46より常温まで冷却された溶液は、硫酸・ヨウ素・ヨウ化水素計測系統40に導入される。この硫酸・ヨウ素・ヨウ化水素計測系統40において、溶液中のヨウ化水素16とヨウ素14の濃度計測が行われる。この計測値からヨウ化水素16の分解部における触媒の分解効率を求め、実験的に求めた温度に対するヨウ化水素分解効率と照合して、触媒寿命の判断基準を求めることが可能である。
【0101】
本実施の形態によれば、熱化学法による水素製造に係るヨウ化水素分解工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを確実に反応させることができる。かくして、熱化学法による水素製造に係るヨウ化水素分解工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0102】
図8は、本発明の実施の形態の熱化学法による水素製造における水素回収利用工程の概略構成を示す構成図である。本図は、図7のヨウ化水素分解器6の上流側に未分解ヨウ化水素回収器50を設けたものであり、図7と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0103】
本図に示すように、ヨウ化水素分解器6において分解した後の400℃の気体は、分解した水素12、ヨウ素14及び未分解のヨウ化水素16である。このヨウ化水素分解器6における分解後の400℃の気体は、仕切弁33pを介して未分解ヨウ化水素回収器50へ導入される。
【0104】
この未分解のヨウ化水素16は、溶液移送ポンプ44を介してヨウ化水素/ヨウ素蒸留器5へ導出される。このヨウ化水素/ヨウ素蒸留器5において、このヨウ化水素16は蒸留工程に戻され再利用される。このヨウ化水素16の一部は、図1に示すブンゼン反応器1上部に配置されたヨウ素洗浄器26の洗浄溶液としての希釈ヨウ化水素38として使用される。
【0105】
このために、この未分解ヨウ化水素回収器50の温度を120℃に制御している。未分解ヨウ化水素16の大部分と分解生成物であるヨウ素14は仕切弁33qを経由し溶液移送ポンプ44を介してヨウ化水素/ヨウ素蒸留容器5の蒸留用環流液として戻される。
【0106】
また、上記未分解ヨウ化水素回収器50の制御温度が120℃であるので、水分と溶液濃度で10%程度のヨウ化水素16は気体として、水素洗浄器24へ導出される。この水素洗浄器24において、常温まで冷却されて10%程度のヨウ化水素16を含む水分11は、仕切弁33を介し溶液移送ポンプ44を経由して図1に示すヨウ素洗浄用循環器27に導出される。このヨウ素洗浄用循環器27において、ヨウ素洗浄用希釈ヨウ化水素38としてヨウ素洗浄に供される。
【0107】
また、未分解ヨウ化水素回収器50において気体として回収された水素12は、仕切弁33sを介して水素洗浄器24に導出される。この洗浄された水素12は、水素流量計60により計量管理された後に、水素回収容器51に導出され製品として納入される。
【0108】
本実施の形態によれば、熱化学法による水素製造に係る未分解ヨウ化水素回収工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを確実に反応させることができる。かくして、熱化学法による水素製造に係る未分解ヨウ化水素回収工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0109】
図9は、本発明の実施の形態の熱化学法による水素製造における硫酸精製工程の概略構成を示す構成図である。本図は、図1のブンゼン反応器1の上流側に硫酸精製器7を設けたものであり、図1と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0110】
本図に示すように、ブンゼン反応器1で得られた二相分離液のうち、硫酸17を主とする軽液に、不純物としてヨウ化水素16/ヨウ素14が混入する。この不純物としてのヨウ化水素16/ヨウ素14を除去するために、硫酸精製器7を設置する。
【0111】
この不純物除去方法として逆ブンゼン方法や蒸気圧分離方法がある。この不純物除去方法について以下に説明する。
【0112】
上記二相分離液のうち硫酸17を主とする軽液は二相分離軽液容器2bに貯溜される。この二相分離重液容器2bに貯溜された硫酸17を主とする軽液は、硫酸精製容器7に導入される。この硫酸精製容器7において、硫酸17の水溶液は硫酸濃縮容器8へ導出され、不純物であるヨウ化水素16/ヨウ素14は精製不純物容器54へ導出される。
【0113】
このとき、硫酸精製器7内において、精製溶液の流入速度、精製用キャリアガス容器53aからの精製用キャリアガス53の速度、硫酸精製器7内の温度計32による温度を計測しながら、圧力調整弁34cにて圧力を調整する。この調整される圧力を利用して排出溶液及びガス速度を制御することにより精製を可能としている。
【0114】
また、硫酸精製器7における温度制御は、上部/下部個別の加熱を施す2段加熱制御、又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。
【0115】
この精製された硫酸精製溶液17は硫酸濃縮器8へ導入される。この導出された硫酸精製溶液17の一部は、硫酸・ヨウ素・ヨウ化水素計測系統40へ送られる。この硫酸・ヨウ素・ヨウ化水素計測系統40において組成分析を行うことにより、不純物として流入されたヨウ化水素16/ヨウ素14を監視している。このとき、ヨウ化水素16/ヨウ素14の混入が認められたときには、上記精製溶液流入速度を減少させ、精製用キャリアガス53の速度と圧力調整弁34dにて圧力を調整する。この調整された圧力を利用して排出ガス速度を減少させることにより、不純物としてのヨウ化水素16/ヨウ素14を除去できることを実験的に確認している。
【0116】
一方、上記硫酸精製器7において不純物として発生した気体状の二酸化硫黄15は、精製不純物容器54に導出される。この精製不純物容器54において、冷却器46により冷却され、水分を多量に含むヨウ化水素16/ヨウ素14は溶液として溶液移送ポンプ44を経由してブンゼン反応容器1へ導出される。
【0117】
また、精製不純物容器54において、二酸化硫黄計測系統35が仕切弁33を介して接続されている。この二酸化硫黄計測系統35において、上記精製不純物中の二酸化硫黄15を監視している。二酸化硫黄15を検知したときには、仕切弁33eを開放しガス回収器45に導入される。この回収器45に貯溜された二酸化硫黄15は、ガス移送ポンプ58を介してブンゼン反応器1における二酸化硫黄注入系統に排出される。
【0118】
本実施の形態によれば、熱化学法による水素製造に係る硫酸精製工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。かくして、熱化学法による水素製造に係る硫酸精製工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0119】
また、硫酸精製工程において、逆ブンゼン反応により得られた二酸化硫黄15を効率的に再利用することを可能としている。
【0120】
図10は、本発明の実施の形態の熱化学法による水素製造における硫酸濃縮工程の概略構成を示す構成図である。本図は、図9の硫酸精製器7の上流側に硫酸濃縮器8を設けたものであり、図9と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0121】
本図に示すように、上記硫酸精製器7にて不純物を除去した硫酸17は硫酸濃縮器8に送り込まれる。この硫酸濃縮器8において、水分除去を主とした濃縮が行われる。この濃縮方法は、一般に加熱による濃縮が行われる。この硫酸濃縮器8における温度制御は、上部/下部個別の加熱を施す2段加熱制御、又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。この硫酸濃縮器8の入口側温度を硫酸沸点と溶液温度の中間に制御し、濃縮出口において硫酸沸点温度以上の340℃程度に制御することにより、硫酸17の濃度を98%以上に濃縮することを可能としている。この濃縮した硫酸17は溶液移送ポンプ44を介して硫酸分解器23へ導かれる。
【0122】
一方、上記硫酸濃縮容器8から排出される水は濃縮不純物容器54に導入される。この濃縮不純物容器54おいて冷却された排出水は溶液移送ポンプ44を介してブンゼン反応器1へ導出され再利用される。この濃縮不純物容器54において、仕切弁33を介して硫酸・ヨウ素・ヨウ化水素計測系統40が接続されている。この硫酸・ヨウ素・ヨウ化水素計測系統40において水中の不純物の監視を行っている。この不純物が検知されたときには仕切弁33fを閉じ、仕切弁33gを介し溶液移送ポンプ44を経由して硫酸精製器7へ戻して再度精製操作を行っている。
【0123】
本実施の形態によれば、熱化学法による水素製造に係る硫酸濃縮工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを効率的に反応させることができる。かくして、熱化学法による水素製造に係る硫酸濃縮工程における制御を確実に行うことにより、効率的な運転を可能としている。
【0124】
図11は、本発明の実施の形態の熱化学法による水素製造における硫酸分解工程の概略構成を示す構成図である。本図は、図10の硫酸濃縮器8の上流側に硫酸分解器23を設けたものであり、図10と同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。
【0125】
本図に示すように、上記硫酸濃縮器8にて得られた濃硫酸17は、硫酸分解器23に導入される。この硫酸分解器23内に充填された触媒により、この導入された濃硫酸17は酸素13及び二酸化硫黄15に分解される。この硫酸分解に使用する触媒として白金触媒を使用することにより、900℃以上の温度において80%以上の効率で濃硫酸17を分解できることを実験的に確認している。
【0126】
上記硫酸分解器23における容器構造について説明する。この硫酸分解器23の出口側に容器全量の1/2から2/3程度の触媒を充填する。この硫酸分解器23の入口側に硫酸17を蒸発させるため又は凝縮を防ぐために空洞の加熱部を設ける。この加熱部においては熱効率を上昇させるため、硫酸17と全く反応しない充填物(ガラス又は石英)を充填することも有効である。
【0127】
また、硫酸分解器23における温度制御は、上部/下部個別の加熱を施す2段加熱制御、又は上部/中部/下部個別の加熱を施す3段加熱制御が望ましい。この硫酸分解器23の入口側の温度を硫酸蒸発温度以上に制御し、触媒充填部は分解温度で温度制御することにより効率的な硫酸17の分解を可能としている。
【0128】
上記硫酸17の分解後の900℃の気体は、分解した酸素13、二酸化硫黄15及び未分解の硫酸17から混成される。この気体は硫酸回収器9に導入され、常温に冷却されて気体と液体に分離される。
【0129】
この硫酸回収器9において、仕切弁33を介して硫酸・ヨウ素・ヨウ化水素計測系統40が接続されている。この硫酸・ヨウ素・ヨウ化水素計測系統40において溶液中の未分解の硫酸17の濃度計測を行っている。この硫酸17の濃度計測結果や溶液移送ポンプ44による硫酸速度から、上記硫酸分解器23における触媒の分解効率を算出し、実験的に求めた温度に対する硫酸分解効率と照合して、触媒寿命の判断基準を算定することを可能としている。
【0130】
なお、硫酸回収器9において気体としての二酸化硫黄15及び酸素13は、仕切弁33を介して図1に示すブンゼン循環・攪拌系統29へ通気される。このブンゼン循環・攪拌系統29を介して、この二酸化硫黄15及び酸素13はブンゼン反応器1に供給される。この酸素13は、酸素洗浄器25を経由して酸素流量計62で計量管理された後に、酸素回収容器63において製品として貯溜される。
【0131】
本実施の形態によれば、熱化学法による水素製造に係る硫酸分解工程における制御を確実に行うことにより、気体である二酸化硫黄と液体又は固体である取り扱い困難な物質であるヨウ素とを確実に反応させることができる。かくして、熱化学法による水素製造に係る硫酸分解工程における反応制御を確実に行うことにより、効率的に水素を生成することできる。
【0132】
さらに、本発明は、上述したような各実施の形態に何ら限定されるものではなく、本発明の各実施例を組み合わせて、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。
【図面の簡単な説明】
【0133】
【図1】本発明の実施の形態の熱化学法による水素製造におけるブンゼン反応工程の概略構成を示す構成図。
【図2】本発明の熱化学法による水素製造の基本的な工程を示す構成図。
【図3】本発明の実施の形態の熱化学法による水素製造における二相分離工程の概略構成を示す構成図。
【図4】本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素精製工程の概略構成を示す構成図。
【図5】本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素濃縮工程の概略構成を示す構成図。
【図6】本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素/ヨウ素蒸留工程の概略構成を示す構成図。
【図7】本発明の実施の形態の熱化学法による水素製造におけるヨウ化水素分解工程の概略構成を示す構成図。
【図8】本発明の実施の形態の熱化学法による水素製造における水素回収利用工程の概略構成を示す構成図。
【図9】本発明の実施の形態の熱化学法による水素製造における硫酸精製工程の概略構成を示す構成図。
【図10】本発明の実施の形態の熱化学法による水素製造における硫酸濃縮工程の概略構成を示す構成図。
【図11】本発明の実施の形態の熱化学法による水素製造における硫酸分解工程の概略構成を示す構成図。
【符号の説明】
【0134】
1…ブンゼン反応器、2…二相分離器、2a…二相分離重液容器、2b…二相分離軽液容器、3…ヨウ化水素(HI)精製器、4…ヨウ化水素(HI)濃縮器、5…HI/I蒸留器、6…ヨウ化水素(HI)分解器、7…硫酸精製器、8…硫酸濃縮器、9…硫酸回収器、10…HI及びヨウ素回収器、11…水、12…水素、13…酸素、14…ヨウ素(I)、15…二酸化硫黄(SO)、16…ヨウ化水素(HI)、17…硫酸、18…ブンゼン反応工程、19…ヨウ化水素HI濃縮分解工程、20…硫酸濃縮分解工程、21…加熱器、22…三酸化硫黄、23…硫酸分解器、24…水素洗浄器、25…酸素洗浄器、26…ヨウ素洗浄器、27…ヨウ素洗浄用循環器、28…循環ポンプ、29…ブンゼン循環・攪拌系統、30…攪拌機、31…圧力計、32…温度計、33…仕切弁、34…圧力調整弁、35…二酸化硫黄計測系統、40…硫酸・ヨウ素・ヨウ化水素計測系統、41…液面・界面検知器、42…精製不純物容器、43…ヨウ化水素精製用キャリアガス、43a…ヨウ化水素精製用キャリアガス容器、44…溶液移送ポンプ、45…ガス回収器、46…冷却器、47…水回収容器、50…未分解ヨウ化水素回収器、51…水素回収容器、53…硫酸精製用キャリアガス、54…精製不純物容器、55…硫酸濃縮用キャリアガス、56…硫酸分解用キャリアガス、57…ブンゼン反応補器、58…ガス移送ポンプ、59…蒸留用キャリアガス、60…水素流量計、62…酸素流量計、63…酸素回収容器。

【特許請求の範囲】
【請求項1】
ヨウ素、二酸化硫黄及び水を熱化学的に分解してヨウ化水素及び硫酸を生成するブンゼン反応器と、
この生成されたヨウ化水素及び硫酸を分離する二相分離器と、
この分離されたヨウ化水素から不純物である硫酸を除去するヨウ化水素精製器と、
この精製されたヨウ化水素を濃縮するヨウ化水素濃縮器と、
この濃縮されたヨウ化水素からヨウ素を分離するヨウ化水素/ヨウ素蒸留器と、
このヨウ素が分離されたヨウ化水素を水素及びヨウ素に分解するヨウ化水素分解器と、
この分解されたヨウ素及び未分解のヨウ化水素を回収するヨウ化水素/ヨウ素回収器と、
前記分離された硫酸から不純物であるヨウ化水素/ヨウ素を除去する硫酸精製器と、
この精製された硫酸を濃縮する硫酸濃縮器と、
この濃縮された硫酸を二酸化硫黄、酸素及び水に分解する硫酸分解器と、
この分解された二酸化硫黄及び未分解の硫酸を回収する硫酸回収器と、
前記ブンゼン反応器、二相分離器、ヨウ化水素精製器、ヨウ化水素濃縮器、ヨウ化水素/ヨウ素蒸留器、ヨウ化水素分解器、ヨウ化水素/ヨウ素回収器、硫酸精製器、硫酸濃縮器、硫酸分解器及び硫酸回収器から選択された少なくとも1装置における反応を制御する反応制御手段と、
を有することを特徴とする熱化学的水素製造装置。
【請求項2】
前記ブンゼン反応器における反応制御手段は、前記ブンゼン反応器にバイパス配管を介して設けられ前記ヨウ素、二酸化硫酸及び水を循環し攪拌させるブンゼン循環/攪拌系統を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項3】
前記二相分離器における反応制御手段は、前記二相分離器に仕切弁を介して設けられ前記二相液のうち重液であるヨウ化水素/ヨウ素の溶液を貯溜する二相分離重液容器と、二相液の軽液である硫酸の溶液を貯溜する二相分離軽液容器と、を具備することを特徴とする請求項1記載の熱化学的水素製造装置。
【請求項4】
前記ヨウ化水素精製器における反応制御手段は、前記ヨウ化水素精製器に仕切弁を介して設けられ前記除去された不純物である硫酸を貯溜する精製不純物容器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項5】
前記ヨウ化水素濃縮器における反応制御手段は、前記ヨウ化水素濃縮容器から排出された水蒸気を貯溜する水回収容器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項6】
前記ヨウ化水素/ヨウ素蒸留器における反応制御手段は、前記ヨウ化水素/ヨウ素蒸留器に仕切弁を介して設けられ蒸留により分離されたヨウ素を貯溜するヨウ素回収容器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項7】
前記ヨウ化水素分解器における反応制御手段は、前記ヨウ化水素分解器に仕切弁を介して設けられ前記分解した水素、ヨウ素及び未分解のヨウ化水素を貯溜する未分解ヨウ化水素回収器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項8】
前記ヨウ化水素/ヨウ素回収器における反応制御手段は、前記分解した水素を洗浄する水素洗浄器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項9】
前記硫酸精製器における反応制御手段は、前記硫酸精製器に仕切弁を介して設けられ前記除去された不純物であるヨウ化水素/ヨウ素を貯溜する精製不純物容器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項10】
前記硫酸濃縮器における反応制御手段は、前記硫酸濃縮容器から排出された水を貯溜する濃縮不純物容器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項11】
前記硫酸分解器における反応制御手段は、前記分解した酸素を洗浄する硫酸洗浄器を具備すること、を特徴とする請求項1記載の熱化学的水素製造装置。
【請求項12】
ヨウ素、二酸化硫黄及び水を熱化学的に分解してヨウ化水素及び硫酸を生成するブンゼン反応工程と、
この生成されたヨウ化水素及び硫酸を分離する二相分離工程と、
この分離されたヨウ化水素から不純物である硫酸を除去するヨウ化水素精製工程と、
この精製されたヨウ化水素を濃縮するヨウ化水素濃縮工程と、
この濃縮されたヨウ化水素からヨウ素を分離するヨウ化水素/ヨウ素蒸留工程と、
このヨウ素が分離されたヨウ化水素を水素及びヨウ素に分解するヨウ化水素分解工程と、
この分解されたヨウ素及び未分解のヨウ化水素を回収するヨウ化水素/ヨウ素回収工程と、
前記分離された硫酸から不純物であるヨウ化水素/ヨウ素を除去する硫酸精製工程と、
この精製された硫酸を濃縮する硫酸濃縮工程と、
この濃縮された硫酸を二酸化硫黄、酸素及び水に分解する硫酸分解工程と、
この分解された二酸化硫黄及び未分解の硫酸を回収する硫酸回収工程と、
前記ブンゼン反応工程、二相分離工程、ヨウ化水素精製工程、ヨウ化水素濃縮工程、ヨウ化水素/ヨウ素蒸留工程、ヨウ化水素分解工程、ヨウ化水素/ヨウ素回収工程、硫酸精製工程、硫酸濃縮工程、硫酸分解工程及び硫酸回収工程から選択された少なくとも1工程における反応を制御する反応制御工程と、
を有することを特徴とする熱化学的水素製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2007−290889(P2007−290889A)
【公開日】平成19年11月8日(2007.11.8)
【国際特許分類】
【出願番号】特願2006−118673(P2006−118673)
【出願日】平成18年4月24日(2006.4.24)
【出願人】(000003078)株式会社東芝 (54,554)