説明

磁性粒子に影響を及ぼし且つ/或いは磁性粒子を検出する装置及び方法

本発明は、作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する装置及び方法、特に、磁性粒子撮像(MPI)を用いて脳内出血又は頭蓋内出血を監視する装置及び方法に関する。磁場を生成するための全ての信号を共通のコイル群の組に結合するよう、コイルアレイのコイルごとの共通の結合ユニットが設けられる。また、同一のコイル群が、検出信号を収集するために使用される。斯くして、特に出血の監視のために、患者に対して恒久的にそのままにされることが可能な、あるいは定期的に配設されることが可能な小型スキャナが構築され得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する装置及び方法に関する。本発明はまた、作用領域内の磁性粒子を検出し且つ出血を監視する装置及び方法に関する。本発明は更に、上記方法をコンピュータ上で実行するためのコンピュータプログラム、及び上記のような装置を制御することに関する。
【0002】
本発明は、特に、脳内出血及び頭蓋内出血の検出に関する。
【背景技術】
【0003】
この種の装置は特許文献1から知られている。特許文献1に記載された装置においては、先ず、比較的低い磁場強度を有する第1のサブゾーン(部分領域)と比較的高い磁場強度を有する第2のサブゾーンとが検査領域内に形成されるように、或る空間分布をした磁場強度を有する選択磁場が生成される。そして、検査領域内の粒子の磁化が局所的に変化するように、検査領域内のこれらサブゾーンの空間位置がシフトされる。これらサブゾーンの空間位置のシフトに影響された検査領域内の磁化に依存する信号が記録され、これらの信号から、検査領域内の磁性粒子の空間分布に関する情報が抽出され、それにより、検査領域の画像が形成され得る。このような装置は、例えば人体といった任意の検査対象について、その表面付近及びその表面から遠隔の双方において、非破壊的に、如何なる損傷をも生じさせることなく、且つ高い空間解像度で、検査対象を検査するために使用することができるという利点を有する。
【0004】
同様の装置及び方法が非特許文献1から知られている。非特許文献1に記載された磁性粒子撮像(magnetic particle imaging;MPI)用の装置及び方法は、小さい磁性粒子の非線形な磁化曲線を利用するものである。
【0005】
脳内出血又は頭蓋内出血は、CT又はMRIのような確立された撮像モダリティを用いた通常の診断スキャン中にin−situ(その場)検出することができる。これは、虚血性脳梗塞と出血との間の区別を可能にする神経学的な出来事の鑑別診断において一般的に行われていることである。しかしながら、これは、例えば脳動脈又は頭蓋内動脈の解離後といった、出血の常時監視を必要とする患者や、主な合併症の1つが突発性出血の発生である溶菌治療を受けている患者を除外するものである。
【0006】
例えばMRI(磁気共鳴撮像)又はCT(コンピュータ断層撮影)といった、出血を検出するために使用され得る医用撮像に使用されている広く知られたモダリティは、例えば診断スキャンの間といった、限られた長さの時間にわたってのみ利用可能であるに過ぎない。しかしながら、出血の常時監視を要する患者は、常に利用可能あるいは周期的に利用可能で、非常に小さい労力で利用可能にされることが可能なシステムを必要とする。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】独国特許出願公開第10151778号明細書
【非特許文献】
【0008】
【非特許文献1】Gleich,B、Weizenecker,J、「Tomographic imaging using the nonlinear response of magnetic particles」、nature、第435巻、2005年、pp.1214-1217
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、作用領域内の磁性材料に影響を及ぼし且つ/或いは該磁性粒子を検出する装置及び方法を提供し、また、より長い時間期間にわたる患者の常時あるいは周期的な監視を可能にするとともに患者に容易に利用可能にされ得る出血監視方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の第1の態様において、作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する装置が提示される。当該装置は:
− 低磁場強度を有する第1の部分領域と、より高い磁場強度を有する第2の部分領域とが作用領域内に形成されるよう、磁場強度の空間パターンを有する選択磁場を生成する、選択磁場信号発生器ユニットと選択磁場コイルとを有する選択手段と、
− 磁性材料の磁化が局所的に変化するよう、駆動磁場によって、作用領域内の2つの前記部分領域の空間位置を変化させる、駆動磁場信号発生器ユニットと駆動磁場コイルとを有する駆動手段と、
− 検出信号を収集する、少なくとも1つの信号受信ユニットと少なくとも1つの受信コイルとを有する受信手段であり、検出信号は、第1及び第2の部分領域の空間位置の変化によって影響される作用領域内の磁化に依存する、受信手段と
を有し、
選択磁場コイル、駆動磁場コイル、及び前記少なくとも1つの受信コイルは、共通のコイル群の組によって実現され、且つ
当該装置は更に結合手段を有し、結合手段は、選択磁場信号発生器ユニット、駆動磁場発生器ユニットと、共通のコイル群の組のうちの関連するコイルとの間に結合された、共通のコイル群の組のコイルごとの結合ユニットを含む。
【0011】
本発明の更なる一態様において、対応する方法が提示される。
【0012】
本発明の好適な実施形態が従属請求項にて規定される。理解されるように、請求項に記載の方法は、従属請求項に規定される特許請求に係る装置と同様且つ/或いは等しい好適実施形態を有する。
【0013】
本発明は、必要な全ての磁場の生成、すなわち、選択磁場、駆動磁場、そして適用可能な場合のフォーカス磁場の生成と、作用領域内の磁化に依存する検出信号の検出とに、共通のコイル群の組(コイルセット)すなわち単一のコイルアレイを使用するという考えに基づく。これは、特に、様々な磁場信号発生器ユニットとそれらそれぞれのコイルとの間に結合された共通の結合ユニットを使用することによって、すなわち、共通のコイル群の組(コイルアレイとも称する)の各コイルに対して結合ユニットが設けられることによって可能になる。斯くして、様々な磁場を生成するための様々な信号が、共通のコイル群の組のコイル群の共通制御のために混合(マージ)される。
【0014】
本発明は特に、小型のコイルを用いるとき、及び低い磁場強度を必要とするときに適用可能である。そのような小さいサイズ、及びそのような低い磁場強度により、装置、特に共通のコイル群の組を、コンパクト且つ便利なように構築することが可能であり、それにより、該装置を患者ベッドで恒久的に利用可能にする、あるいは、例えばカートに搭載して、該装置を患者ベッドまで定期的に持って来ることによって非常に少ない労力で該装置を利用可能にすることが可能になる。故に、例えば、頭蓋内出血又は脳内出血を監視することに専用の磁性粒子撮像スキャナを構築することができ、また、患者を監視しながら同時に患者への快適かつ容易なアクセスを可能にするよう、オープンな形状でスキャナを構築することができる。当然ながら、本発明は、その他の目的の装置、特に例えば心臓又は腹部領域などの他の患者部分を監視する装置にて実現されることも可能である。
【0015】
好適な一実施形態によれば、コイル群の組のコイル群は、当該コイル群を接続する軟磁性材料で実質的に製造されたコイルコネクタを含む共通筐体内に配置される。軟磁性材料は好ましくは鉄からなり、コイルコネクタは好ましくは、特に銅からなる遮蔽体を有する。コイルコネクタは、磁束の良好な方向付けを提供し、磁場強度を増大させる。また、遮蔽体により、主に駆動磁場に起因する磁性コイルコネクタ内での高調波の発生が防止される。
【0016】
更なる一実施形態によれば、共通のコイル群の組のコイル群、筐体、及びコイルコネクタは、特に患者の頭部である患者の身体部分の近傍に配置されるように適応される。本発明は、監視すべき身体部分に隣接して配置される必要がある基本要素を、それらがそれら重要な部分のみを覆ってそれら部分に近接して配置され得るように設計することを可能にする。上述のように、装置のこれらの要素は、例えば出血の常時監視を可能にするよう患者ベッド上に直に位置する、あるいは複数の異なる患者の定期的なスキャンのための装置の容易な設置を可能にするようカート上に位置するように実現されることができる。
【0017】
患者の頭部内での出血の監視のため、これらの要素は、患者ベッド上に配置することが可能で、患者の頭部を内部に配置することが可能なヘルメットの形態に構成され得る。
【0018】
更なる一実施形態において、コイルコネクタは、共通のコイル群の組のコイル群を覆うハーフシェルの形態に構成され、且つコイル群への接続のための特にスパイク状の延在部である延在部を有する。これらの延在部は特に、磁束を改善し、磁束を個々のコイルへと導く。更なる1つの利点は、これによって一層低い電力要求がもたらされることである。
【0019】
好ましくは、結合ユニットはタンク回路を有し、タンク回路は好ましくは、複数の磁場信号発生器ユニットにより生成される複数の信号を同時にコイル群に結合するよう適応される。タンク回路は特に、駆動磁場信号がグランドにショートカットされ、該信号がグランドに導かれることによって該信号が検出不能になること、がないことを保証する機能を果たすように設けられる。
【0020】
共通コイル群の組のコイル群のうちの、受信コイルとして作用する1つ以上によって収集される検出信号の正確な検出のため、更なる一実施形態において、受信コイルに直列に結合された誘導性素子を設け、且つ該誘導性素子と該受信コイルとの結合点と該受信コイルに付随する受信ユニットとの間に結合された共振回路を更に設けることが提案される。故に、該誘導性素子及び受信コイルにより、それらの間の結合点で検出信号を取り出す(タップする)誘導性分圧器が形成される。
【0021】
更なる一実施形態において、所定の領域内で生成される駆動磁場の振幅が所定の磁場強度を超えないように駆動磁場信号発生器ユニットを制御する制御ユニットが設けられる。斯くして、該所定の領域内で過度な加熱が起こらないことを確保することができる。例えば、可能性ある歯科充填材や歯列矯正具(ブレース)若しくは歯の矯正固定装置(リテーナ)のような矯正装置の加熱を斯くして最小化し、常時監視過程中の患者への危害を防止することができる。
【0022】
本発明の更なる一態様において、作用領域内の磁性粒子を検出し且つ出血を監視する装置が提示される。当該装置は、信号受信手段によって受信された検出信号を処理する信号処理手段を有し、該信号処理手段は:
− 受信された作用領域の検出信号を、前もって収集された同一の作用領域からの基準信号と比較する比較手段と、
− 血液量が増加した領域群を前記比較に基づいて決定する第1の決定手段と、
− 血液量が増加した領域群における血液の脈動パターンを決定する第2の決定手段と、
− 決定された脈動パターンに基づいて、血液量が増加した領域群のうちの何れが出血を伴う領域であるかを決定する第3の決定手段とを有する。
【0023】
本発明のこの態様は特に出血の監視に向けられ、血液量の増加を示す特定の領域が、出血を伴う領域であるのか、あるいは単に局部血液量の正常変化を示しているのかを決定することを可能にする。主たる考えは、血液量が増加した領域における血液の脈動パターンの決定を用いて、上記の2つの領域を区別するというものである。局部血液量における正常変化(増加)の領域は通常、心拍による特徴的な脈動パターンを示すが、出血によって血液量が増加した領域は異なるパターンを有するか、パターンを全く有しないかになる。本発明のこの態様によれば、好ましくはこの認識が活用される。
【0024】
上述の本発明の第1の態様に従った装置は、特に患者の常時監視又は周期的な監視に使用されることが可能であるので、とりわけ出血の監視に適用されることができる。このような種類の用途では、磁性粒子撮像(MPI)技術は、一般的な複数の撮像モダリティにわたってその利点を示す。
【0025】
他の好適な一実施形態によれば、処理手段は更に、患者の動き補正のために、信号受信手段によって受信された信号を基準信号と整合させるレジストレーション手段を有する。これにより、上記方法の精度が高められる。
【図面の簡単な説明】
【0026】
本発明の上述及びその他の態様は、以下にて説明される実施形態を参照することで明らかになる。
【図1】磁性粒子撮像(MPI)装置の原理レイアウトを示す模式図である。
【図2】図1に示すような装置によって作り出される磁力線パターンの一例を示す図である。
【図3】作用領域内に存在する磁性粒子を示す拡大図である。
【図4a】そのような粒子の磁化特性を示す図である。
【図4b】そのような粒子の磁化特性を示す図である。
【図5】本発明に従った装置を示すブロック図である。
【図6】カート内への本発明に従った装置の実装例を模式的に示す図である。
【図7】頭部コイルとしての本発明に従った装置のコイルの実装例を模式的に示す図である。
【図8】一種のヘルメットとしての本発明に従った装置のコイルの実装例を模式的に示す図である。
【図9】本発明に従った装置の回路図を示す図である。
【図10】本発明に従った出血監視方法を例示するフロー図である。
【発明を実施するための形態】
【0027】
本発明の詳細を説明する前に、図1−4を参照して、磁性粒子撮像の基礎を詳細に説明する。
【0028】
図1は、MPI装置10によって検査される任意の対象物を示している。図1の参照符号1は、このケースではヒト又は動物の患者である対象物を表しており、該対象物は、頂面のみが図示された患者テーブル2上に配置されている。撮像方法の適用に先立ち、装置10の作用領域300内に磁性粒子100(図1には図示せず)が配置される。特に、例えば腫瘍の治療処置及び/又は診断処置に先立ち、例えば、患者1の体内に注入される磁性粒子100を有する液体(図示せず)によって、作用領域300内に磁性粒子100が位置付けられる。
【0029】
コイル配置の一例として、図2には、選択手段210を形成する複数のコイルを有する配置が示されている。選択手段210の対象範囲が、処置領域300とも呼ぶ作用領域300を定める。例えば、選択手段210は、患者1の上方及び下方、又はテーブル頂面の上方及び下方に配置される。例えば、選択手段210は、患者1の上下で同軸に配置され且つ、特に反対方向に、等しい電流によって横切られる2つの相等しく構築された巻線210’及び210”からなる第1の対のコイル210’、210”を有する。以下では、第1のコイル対210’、210”を総称して選択手段210と呼ぶ。好ましくは、このケースでは直流電流が使用される。選択手段210は、図2において磁力線によって表される傾斜磁場であることが一般的な選択磁場211を生成する。この磁場は、選択手段210のコイル対の軸(例えば、鉛直軸)の方向に実質的に一定の勾配を有し、この軸上の点で値ゼロに至る。この無磁場点(図2には個別に示さない)から始めて、選択磁場211の磁場強度は、3つの空間方向の全てにおいて、該無磁場点からの距離が増大するに連れて増大する。無磁場点の周りの破線によって示す第1のサブゾーン301又は部分領域301においては磁場強度が小さいため、該第1のサブゾーン301内に存在する粒子100の磁化は飽和しないが、第2のサブゾーン内(領域301の外側)に存在する粒子100の磁化は飽和状態にある。無磁場点又は作用領域300の第1のサブゾーン301は、好ましくは空間的にコヒーレントな領域であり、また、点状領域又は直線状あるいはフラットな領域であり得る。第2のサブゾーン302(すなわち、第1のサブゾーン301の外側の、作用領域300の残り部分)においては、磁場強度は粒子100を飽和状態に維持するのに十分な強さである。作用領域300内で2つのサブゾーン301、302の位置を変化させることにより、作用領域300内の(全体的な)磁化が変化する。作用領域300内の磁化又は該磁化によって影響される物理パラメータを測定することにより、作用領域内の磁性粒子の空間分布に関する情報を得ることができる。作用領域300内の2つのサブゾーン301、302の相対的な空間位置を変化させるため、更なる磁場である所謂“駆動磁場”221が、作用領域300内又は作用領域300の少なくとも一部内で選択磁場211に重畳される。
【0030】
図3は、以上にて示した装置10とともに使用される種類の磁性粒子100の一例を示している。これは、しかしながら、本発明に従った装置とも使用され得る。磁性粒子100は例えば、軟磁性層102を備えた、例えばガラスの、球状基板101を有し、軟磁性層102は、例えば5nmの厚さを有し、例えば鉄ニッケル合金(例えば、パーマロイ)からなる。この層は、例えば、酸などの化学的且つ/或いは物理的に攻撃的な環境から粒子100を保護する被覆層103によって覆われていてもよい。このような粒子100の磁化の飽和に必要な選択磁場211の磁場強度は、例えば粒子100の直径、磁性層102に使用される磁性材料及びその他のパラメータなどの、様々なパラメータに依存する。
【0031】
例えば10μmの直径の場合、およそ800A/m(近似的に1mTの磁束密度に相当する)の磁場が必要とされるが、100μmの直径の場合には、80A/mの磁場で十分である。より低い飽和磁化を有する材料の被覆102が選択されるとき、又は層102の厚さが低減されるとき、更に低い値が得られる。
【0032】
好適な磁性粒子100の更なる詳細については、先述の特許文献1の対応部分、特に、特許文献1の優先権を主張する欧州特許出願公開第1304542号明細書の段落16−20及び段落57−61をここに援用する。
【0033】
第1のサブゾーン301の大きさは、選択磁場211の勾配の強さと、飽和に必要な磁場強度とに依存する。80A/mの磁場強度と、160×10A/mに達する選択磁場211の(所与の空間方向での)磁場強度勾配とでの、磁性粒子100の十分な飽和のため、粒子100の磁化が飽和されない第1のサブゾーン301は(上記所与の空間方向において)約1mmの寸法を有する。
【0034】
以下では駆動磁場と呼ぶ更なる磁場が、作用領域300内の選択磁場210(又は傾斜磁場210)に重畳されるとき、第1のサブゾーン301は、この駆動磁場221の方向に、第2のサブゾーン302に対してずらされる(シフトされる)。このシフトの程度は、駆動磁場221の強度が増すに連れて増大する。重畳される駆動磁場221が時間変動するとき、第1のサブゾーン301の位置はそれに従って時間的且つ空間的に変化する。第1のサブゾーン301内に位置する磁性粒子100からの信号を、駆動磁場221の変動の周波数帯域とは別の(より高い周波数にシフトされた)周波数帯域で受信あるいは検出することが有利である。これが可能であるのは、磁化特性の非線形性の結果としての作用領域300内の磁性粒子100の磁化の変化により、駆動磁場221の周波数の高調波の周波数成分が発生するためである。
【0035】
任意の所与の空間方向でこれらの駆動磁場221を生成するため、3つの更なるコイル対、すなわち、第2のコイル対220’、第3のコイル対220”及び第4のコイル対220’’’が設けられる。以下では、これらを総称して駆動手段220と呼ぶ。例えば、第2のコイル対220’は、第1のコイル対210’、210”すなわち選択手段210のコイル軸の方向、すなわち例えば鉛直方向、に延在する駆動磁場221の成分を生成する。この目的のため、第2のコイル対220’の巻線は、同一方向の相等しい電流で横切られる。第2のコイル対220’によって達成されることが可能な効果は、原理的に、第1のコイル対210’、210”内の反対方向の相等しい電流に、一方のコイルで電流が減少し且つ他方のコイルで電流が増加するように、同一方向の電流を重畳することによっても達成されることができる。しかしながら、そして特に、より高い信号対雑音比での信号解釈の目的では、時間的に一定の(あるいは、擬似的に一定の)選択磁場211(傾斜磁場とも呼ばれる)と時間変動する鉛直方向の駆動磁場とが、選択手段210のコイル対と駆動手段220のコイル対という別々のコイル対によって生成されることが有利となり得る。
【0036】
2つの更なるコイル対220”、220’’’は、例えば作用領域300(又は、患者1)の長手方向に水平な方向といった異なる1つの空間方向と、それに垂直な方向とに延在する駆動磁場221の成分を生成するために設けられる。仮に、この目的のために(選択手段210及び駆動手段220のコイル対のような)ヘルムホルツ型の第3及び第4のコイル対220”、220’’’が用いられる場合、これらのコイル対は、それぞれ、処置領域の左右又は該領域の前後に配置されなければならないことになる。そうすることは、作用領域300又は処置領域300へのアクセスのしやすさに影響を及ぼすことになる。故に、第3及び/又は第4の磁気コイル対すなわちコイル220”、220’’’も作用領域300の上下に配置され、それ故に、巻線構成は第2のコイル対220’のそれとは異なるものにされなければならない。この種のコイルは、無線周波数(RF)コイル対が処置領域の上下に置かれ、該RFコイル対によって水平方向の時間変動する磁場を生成することが可能な、オープン磁石を有する磁気共鳴装置(オープンMRI)の分野で知られている。従って、これらのコイルの構成はここで更に詳述する必要のないものである。
【0037】
装置10は更に、図1では単に模式的に示した受信手段230を有する。受信手段230は通常、作用領域300内の磁性粒子100の磁化パターンによって誘起された信号を検出することが可能なコイルを有する。この種のコイルは、例えば、可能な限り高い信号対雑音比を有するように無線周波数(RF)コイル対が作用領域300の周りに置かれる磁気共鳴装置の分野で知られている。従って、これらのコイルの構成はここで更に詳述する必要のないものである。
【0038】
図1に示した選択手段210の代替的な一実施形態においては、傾斜選択磁場211を生成するために永久磁石(図示せず)を用いることができる。そのような(対向する)永久磁石(図示せず)の対向する極が同じ極性を有するとき、永久磁石の2つの極の間の空間内に、図2の磁場と同様の磁場が形成される。装置の代替的な一実施形態においては、選択手段210は、少なくとも1つの永久磁石と、図2に示したような少なくとも1つのコイル210’、210”との双方を有する。
【0039】
選択手段210、駆動手段220及び受信手段230の相異なる成分のために、あるいは該相異なる成分にて、通常使用される周波数範囲は概して以下のようにされる。選択手段210によって生成される磁場は、時間的に全く変化しない、あるいは、その変化はかなり低速であり、好ましくはおよそ1Hzとおよそ100Hzとの間である。駆動手段220によって生成される磁場は、好ましくはおよそ25kHzとおよそ100kHzとの間で変化する。受信手段が感度を有することが想定される磁場変化は、好ましくはおよそ50kHzからおよそ10MHzまでの周波数範囲内にある。
【0040】
図4a及び4bは、粒子100(図4a及び4bには図示せず)を有する分散系における、粒子100の磁化特性すなわち磁化Mの変化を、粒子100の位置での磁場強度Hの関数として示している。磁化Mは+Hを超える磁場強度及び−H未満の磁場強度ではもはや変化しないように見える。これは、磁化飽和に達したことを意味する。磁化Mは値+Hと値−Hとの間では飽和していない。
【0041】
図4aは、結果としての(すなわち、“粒子100によって見られる”)正弦波磁場H(t)の絶対値が、粒子100を磁気的に飽和させるのに必要な磁場強度より低い場合の、すなわち、更なる磁場がアクティブでない場合の、粒子100の位置での正弦波磁場H(t)の効果を例示している。この条件での粒子100又は粒子群100の磁化は、その2つの飽和値の間で磁場H(t)の周波数のリズムで往復する。結果として得られる磁化の時間変動は、図4aの右側のM(t)によって示されている。磁化も周期的に変化し、このような粒子の磁化は周期的に反転されることが示されている。
【0042】
曲線の中心にある破線部は、磁化M(t)の近似的な平均変化を、正弦波磁場H(t)の磁場強度の関数として表している。この中心線からの逸脱として、磁化は、磁場Hが−Hから+Hに増加するときに僅かに右に広がり、磁場Hが+Hから−Hに減少するときに僅かに左に広がる。この既知の効果は、熱の生成のメカニズムの根底にあるヒステリシス効果と呼ばれている。曲線の2つの経路間に形成されるヒステリシス表面積並びにその形状及び大きさは、材料に依存するものであり、磁化の変化を受けての熱生成の指標である。
【0043】
図4bは、静磁場Hが重畳された正弦波磁場H(t)の効果を示している。磁化は飽和状態にあるため、正弦波磁場H(t)による影響を実効的に受けない。この領域において、磁化M(t)は時間的に一定のままである。従って、磁場H(t)は磁化の状態変化を引き起こさない。
【0044】
図5は、本発明に従った装置10の一実施形態のブロック図を示している。上述の磁性粒子撮像の一般原理は、特に断らない限り、ここでも同様に当てはまり適用可能である。
【0045】
図5に示す装置10の実施形態は、後述するように必要な全ての磁場の生成と信号検出とのために作用する3つの共通コイル200a、200b、200cの組200を有している。上述の選択磁場を生成するため、選択磁場信号発生器ユニット20が設けられ、(一般的には、全ての選択磁場コイルに対して単一の共通の選択磁場信号発生器ユニット20を設けることも可能であるが、)好ましくは、選択磁場コイルとして使用される組200の各コイル200a、200b、200cごとに、別個の選択磁場信号発生器ユニット20が設けられる。この選択磁場信号発生器ユニット20は、所望の方向で選択磁場の勾配強度を個別に設定するようにそれぞれの選択磁場コイルに選択磁場電流を提供する制御可能な選択磁場電流源21(一般的に、増幅器を含む)及びフィルタユニット22を有している。好ましくは、DC電流が提供される。選択磁場コイルが例えば作用領域の反対側で対向するコイルとして構成される場合、対向するコイルの選択磁場電流は好ましくは反対向きにされる。
【0046】
選択磁場信号発生器ユニット20は制御ユニット70によって制御され、制御ユニット70は好ましくは、選択磁場の全ての空間部分の磁場強度の和及び勾配強度の和が所定レベルに維持されるように、選択磁場電流の発生を制御する。
【0047】
駆動磁場の生成のため、装置10は更に駆動磁場信号発生器ユニット30を有しており、好ましくは、組200のうちの駆動磁場の生成に使用されるコイルごとに別個の駆動磁場信号発生器ユニットを有する。この駆動磁場信号発生器ユニット30は、それぞれの駆動磁場コイルに駆動磁場電流を供給する駆動磁場電流源31(好ましくは電流増幅器を含む)及びフィルタユニット32を有している。駆動磁場電流源31は、AC電流を生成するように適応され、また、制御ユニット70によって制御される。
【0048】
(必ずしもそうである必要はないが)好ましくは、装置10は更にフォーカス磁場信号発生器ユニット40を有する。フォーカス磁場信号発生器ユニット40は、コイルの組200のうちのフォーカス磁場を生成するために使用されるそれぞれのコイルにフォーカス磁場電流を提供するフォーカス磁場電流源41(好ましくは電流増幅器を有する)及びフィルタユニット42を有している。フォーカス磁場は、一般的に、MPI技術において一般的に知られているように、作用領域の空間位置を変化させるために使用される。
【0049】
信号検出のため、信号検出に使用される組200のコイル200a、200b、200cによって検出された信号を受信する信号受信ユニット50が設けられる。好ましくは、信号受信コイルとして使用される上記組のコイルごとに別個の信号受信ユニット50が設けられる。信号受信ユニット50は、受信された検出信号をフィルタリングするフィルタユニット51を有している。このフィルタリングの目的は、2つの部分領域(301、302)の位置の変化に影響される検査領域内の磁化によって生じる測定値を、その他の干渉信号から分離することである。この目的のため、フィルタユニット51は、例えば、コイル200a、200b、200cが動作される時間周波数より低い、あるいは該時間周波数の2倍より低い、時間周波数を有する信号が当該フィルタユニット51を通過しないように設計され得る。その後、信号は増幅器ユニット52を介してアナログ/デジタル変換器(ADC)53に伝送される。アナログ/デジタル変換器53によって生成されたデジタル化された信号は画像処理ユニット(再構成手段とも呼ぶ)71に送られ、画像処理ユニット71が、これらの信号と、検査領域内の第1の磁場の第1の部分領域301がそれぞれの信号の受信中に仮定し且つ画像処理ユニット71が制御ユニット70から取得するそれぞれの位置とから、磁性粒子の空間分布を再構成する。再構成された磁性粒子の空間分布は、最終的に、制御手段70を介してコンピュータ12に伝送され、コンピュータ12によってモニタ13上に表示される。斯くして、検査領域内の磁性粒子の分布を示す画像を表示することができる。
【0050】
さらに、例えばキーボードといった入力ユニット14が設けられる。故に、ユーザは、所望の、最も高い分解能の方向を設定することができ、そして、作用領域の該当する画像をモニタ13上で受け取る。最も高い分解能が必要とされる重要方向が、ユーザが最初に設定した方向から逸脱している場合、ユーザは、改善された撮像分解能で更なる画像を生成するために、方向を手動で変更することができる。この分解能の改善処理はまた、制御ユニット70及びコンピュータ12によって自動的に行われることも可能である。この実施形態における制御ユニット70は、自動的に見積もられる、あるいは開始値としてユーザによって設定される第1の方向に傾斜磁場を設定する。傾斜磁場の方向は、その後、コンピュータ12によって比較されるそれによる受信画像の解像度が最大となり、それ以上改善されなくなるまで、段階的に変化される。故に、最も重要な方向は、可能な限り高い解像度を受け得るように自動的に適応されて見出され得る。
【0051】
装置10は更に、共通コイルの組200のコイル200a、200b、200cごとの結合ユニット60a、60b、60cを含む結合(カップリング)手段60を有している。結合手段60は、選択磁場信号発生器ユニット20、駆動磁場信号発生器ユニット30、フォーカス磁場信号発生器ユニット40(存在する場合)と、共通コイルの組200のうちの関連するコイル200a、200b、200cとの間に結合される。結合手段60は、一般的に全てのコイルサイズ及び磁場強度に対しても可能なことであるが、磁場の生成に必要な様々な信号を混合(マージ)するように適応される。しかし、これは、特に必要な電力及び冷却の観点で、コイルが小さいサイズを有し且つ低い磁場強度が要求される場合に特に有利である。そのような結合ユニットの一実施形態については更に詳細に後述する。
【0052】
図6は、本発明に従った装置の第1の実装例を模式的に示している。この実施形態において、患者ベッド2の一部が、ここでは頭部である患者の身体の一部の下に配置される一種の移動可能なカート(手押し車)2bとして実現されており、患者の身体の主な部分は患者ベッドの静止部分2a上に配置されている。故に、装置の共通コイルはカートの内部に配置されており、図6に示すカート2bの図は概して模式図として理解されるものである。斯くして、この装置は、定期的に監視期間にそれを患者ベッド2のところに持って来ることによって、容易に利用可能にされることができる。しかしながら、同じ装置を他の患者を監視することにも使用することができる。また、この装置は、患者の視界及び医療従事者の患者への視線を妨げないオープンな形状にて構築されている。
【0053】
別の実現例を図7に模式的に示す。ここでは、コイルアレイ200が、患者の頭部3の周りに配置される(単なる一例として)全部で7個のコイル200a−200gを有している。これらのコイルは、患者の頭部3の構造に最適にフィット(適合)するように配置される。また、好ましくは、選択磁場コイルとして使用されるコイルを、その対称軸を耳から耳への向きにして、すなわち、水平にして配置し、それにより、患者の顔が何れかのコイルによって覆われることが回避される。
【0054】
コイル構成は、図8に模式的に示すように、コイル200a−200eが内部に配置された筐体400を有する一種のヘルメットとして実装されることもできる。また、この実施形態においては、コイルアレイ200の全体が、コイルコネクタ410を形成する軟磁性材料で覆われ且つ該材料に接続されている。コイルコネクタ410は好ましくは、鉄又はその他の軟磁性材料で製造される。さらに、駆動磁場による軟磁性材料内での高調波の発生及び相互変調を防止し、磁束を導き、且つ磁場強度を高めるため、コイルコネクタ410上に銅シールド(遮蔽体)420が設けられている。シールド420は好ましくは、コイルコネクタ410全体の周りに設けられる。好ましくは、図8にも示すように、磁束を導くことを更に改善し且つ磁束強度を更に高めるため、コイルコネクタ4は、それを個々のコイル200a−200eに接続するスパイク(先鋭部)状の延在部430を備えたハーフシェル(半殻)のように、コイルアレイ200を覆うよう実装される。
【0055】
図9は、本発明に従った装置の回路の一実施形態を示している。具体的には、コイルの組200のうちの単一のコイル200aが、該コイル200aによって磁場を生成するための信号を提供し且つ該コイル200aによって検出された信号を受信する回路とともに示されている。この図には、駆動磁場電流を結合ユニット60に提供する駆動磁場信号発生器ユニット30が示されている。さらに、選択磁場電流及びフォーカス磁場電流を結合ユニット60に提供する共通の選択磁場信号発生器ユニット20及びフォーカス磁場信号発生器ユニット40が示されている。双方の電流の周波数レンジが互いに十分に近接しているので、選択磁場電流及びフォーカス磁場電流の双方が同一の発生器ユニットによって提供され得る。
【0056】
結合ユニット60は、並列に結合されたインダクタンスL1とキャパシタンスC1とを有するタンク回路61を有している。駆動磁場電流の入力端子62とタンク回路61との間に、直列キャパシタンスC2が結合されている。また、駆動磁場電流の入力端子62とフォーカス・選択磁場電流の入力端子63との間に、2つのキャパシタC3及びC4が結合されており、これら2つのキャパシタンスの接続点64がグランド電位に結合されている。この結合は、(好適なフィルタリング後の)高周波数の駆動磁場信号と低周波数の選択磁場・フォーカス磁場信号とを混合(マージ)することを可能にする。タンク回路61により主として、駆動磁場信号がグランドにショートカットされないことが実現される。
【0057】
結合ユニットの回路はコイル群を共振させ、例えば、キャパシタンスC4に、(ローパスフィルタとしての)フィルタ効果が関係する。キャパシタンスC2及びC3は一緒になって、駆動磁場信号発生器ユニット30のインピーダンスをコイル200aに整合させるマッチング回路を形成する。
【0058】
検出信号を受信するため、コイル200aに直列に、別の誘導性素子250が結合されている。誘導性素子250の他端はグランドに接続されている。コイル200aと誘導性素子250との間のタッピング端子270が検出信号を提供し、検出信号は、並列結合された誘導性素子L2と容量性素子C5とを有する共振回路260を介して、信号受信ユニット50に与えられる。
【0059】
なお、フォーカス・選択磁場電流は、図5に示したように、別々の発生器ユニットによって生成されてもよい。また、必ずしも、組200のコイル群の各々が選択磁場コイル、駆動磁場コイル、フォーカス磁場コイル及び/又は受信コイルとして作用しなければならないわけではない。或る特定のコイルがこれらの機能のうちの1つ又は一部のみを有することも可能であり、例えば、1つのコイルは磁場を生成するのみとし、別の1つのコイルは検出信号を受信するのみとし、更に別の1つのコイルは双方の機能を提供する、としてもよい。そのような場合、回路のそれぞれの部分は、完全に省略されてもよいし、単に、それぞれの信号を与えられながらアクティブにされないようにしてもよい。これは、例えば、制御ユニットによって制御され得る。
【0060】
また、本発明によれば概して、磁場を生成するコイル及び信号検出用のコイルのみが、監視、撮像あるいは加熱される身体部分の(すぐ)近傍に配置される必要があり、その他全ての部分、すなわち、上記回路(特に、発生器ユニット、結合ユニット、処理ユニット、制御ユニットなど)は患者から離隔した位置に配置されることができる。
【0061】
本発明の多くの特別な用途においては、およそ5−10mmの空間分解能で十分であろう。故に、かなり低い磁場強度で十分である。例えば、およそ300mT/mの傾斜磁場強度を有する選択磁場で十分となる。好適な一実施形態において実現されるように、例えば患者の耳の付近に、選択磁場を実現するために使用されるコイル同士の間の間隙が約200mmである場合、最大フォーカス磁場強度はおよそ30mTである必要があるが、駆動磁場強度は数mTに制限することができる。これらの低い磁場強度は、上述の信号群の混合(マージ)及び共通の結合ユニットの使用を可能にする。さらに、これは、近接する患者部分の加熱を最小化する。
【0062】
フィルタユニット及びタンク回路の全般的な機能は、国際公開第2008/078244号パンフレットにも記載されている。この文献は、磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する装置と、そのような装置を校正する方法と、作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する方法とを開示するものである。その装置は、特に、信号対雑音比を向上させるために、結合手段によって駆動信号チェーン及び/又は検出信号チェーンに補償信号を提供する補償コントローラを有している。結合手段にて、異なる複数のアナログフィルタが使用されている。特に、駆動信号チェーンに補償信号を結合するために抵抗性結合が使用されている。選択肢として、補償信号用の3つの異なる結合点が示されている。好ましくは、結合点は、少なくとも1つの最終受動フィルタ段が当該結合点の後に設けられるように選択される。
【0063】
本発明に従った処理ユニット71の一実施形態を図10に示す。この実施形態は、特に、出血の監視に関するものである。この目的のため、処理ユニット71は、信号受信手段によって受信された(実行中のスキャンの)現在の検出信号Dを基準信号R(例えば、最初のスキャン又は以前のスキャンなどである参照スキャンにて取得される)と整合させて、信号検出中の、より具体的には、検出信号Dの検出と基準信号Rの検出との間の、患者の動きを補正するレジストレーション(整合)手段710を有している。このようなレジストレーションは技術的に広く知られている。
【0064】
好適な一実施形態において、患者の頭部に2つ以上の基準マーカが装着される。監視の開始時において、基準信号が検出され、座標系が決定される。その後の検出信号Dの信号検出中には、基準マーカを用いて、患者の頭部の位置が基準信号検出中の位置と比較されている。当然ながら、基準マーカに代えて、解剖学的なランドマークとして大血管(又は、その他の特徴的な身体部分若しくは点)を用いることも可能であり、あるいは、患者の顔の視覚的な印象を用いること、すなわち、ビデオカメラを用いて顔の造形を追跡撮影することも可能である。患者が動いていた場合、マーカ(又は、この目的で使用されるその他の要素)の位置の比較から変換(例えば、剛体変換)が導出され、全ての信号に同一の座標系を参照させるよう、収集された検出信号に該変換が適用される。
【0065】
次に、比較手段711により、基準信号Rからの局部的な血液量が、その後の検出信号D(場合により、動き補正されている)からの血液量と比較される。その後、この比較に基づいて、第1の決定手段712により、血液量が増加した領域(エリア)群が決定される。その後、第2の決定手段713の使用により、血液量が増加した領域群における血液の脈動パターンが決定される。そして、第3の決定手段714により、血液量が増加した領域群のうちの何れが出血を伴う領域であるかを、決定された脈動パターンに基づいて決定することによって、出血の存在について決定することができる。
【0066】
好ましくは、血液量が増加した領域群は、或る特定の閾値を用いた血液量の比較、すなわち、一部の領域群において以前より相当多い血液が存在しているという比較を用いることによって決定される。また、例えば興奮又は不安の高まりによって、血液量が自然増加した領域は好ましくは排除される。これは、好ましくは、そのような血液量増加領域は心拍によって或る特徴的な脈動パターンを示すが、出血によって血液量が増加した領域は異なる特徴的な脈動パターンを有する、あるいは特徴的な脈動パターンを全く有しないという事実を用いることにより、第3の決定手段714によって行われる。斯くして、単純且つ有効な出血監視方法を自動的に構築することができる。
【0067】
なお、処理ユニット71のこれら要素は、ハードウェア、ソフトウェア(例えば、コンピュータ又はプロセッサ上で実行されるコンピュータプログラム)、又はハードウェアとソフトウェアとを混合したものにて実装され得る。
【0068】
トレーサ材料として好適に使用される磁性ナノ粒子に関して言及しておくに、より長い時間にわたって後にスキャンすることを可能にするよう、十分に長い血液保持時間を示す磁性材料が使用されるべきである。代替的に、繰り返される複数回のスキャンで、繰り返し少ドーズ量の磁性材料が注入される。さらに、赤血球に埋め込まれて、それら装填された赤血球が自然に存続する限り患者の血流内で循環する磁性材料を使用することができる。
【0069】
そのような材料は、例えば、C.Sfara、L.Mosca、E.Manuali、M.Magnani、「New biomimetic constructs for improved in vivo circulation of superparamagnetic nanoparticles」、L.Nonosci Nanotechnol、2008年、第8巻、第5号、pp.2270-2278から知られている。その他の好適な磁性粒子は、例えば、既知の材料のResovist又はFeridexである。
【0070】
本発明は好ましくは、例えば、頭蓋内出血及び脳内出血の継続的な監視、頭蓋内出血及び脳内出血の繰り返しての定期的な監視、頭蓋領域若しくは脳領域内の血液の局部濃度の撮像、及び/又は脳かん流の測定における、発作診断及び監視のために、医療分野、特に、神経学分野で使用され得る。当然ながら、その他の用途も同様に可能である。具体的には、本発明は、特に、例えば癌細胞を破壊するために、温熱療法を用いて患者の身体の選択部分を加熱するよう、作用領域内の磁性粒子に影響を及ぼすことにも適用され得る。
【0071】
図面及び以上の記載にて本発明を詳細に図示して説明したが、これらの図示及び説明は、限定的なものではなく、例示的あるいは典型的なものと見なされるべきである。本発明は、開示した実施形態に限定されるものではない。図面、明細書及び特許請求の範囲を調べて請求項に係る発明を実施する当業者によって、開示した実施形態へのその他の変形が理解されて実現され得る。
【0072】
特許請求の範囲において、用語“有する”はその他の要素又はステップを排除するものではなく、不定冠詞“a”又は“an”は複数であることを排除するものではない。単一の要素又はその他の装置が、請求項中に列挙された複数の項目の機能を果たしてもよい。特定の複数の手段が相互に異なる従属項にて列挙されているという単なる事実は、それらの手段の組み合わせが有利に使用され得ないということを指し示すものではない。
【0073】
請求項中の如何なる参照符号も、範囲を限定するものとして解されるべきでない。

【特許請求の範囲】
【請求項1】
作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する装置であって:
− 低磁場強度を有する第1の部分領域と、より高い磁場強度を有する第2の部分領域とが前記作用領域内に形成されるよう、磁場強度の空間パターンを有する選択磁場を生成する、選択磁場信号発生器ユニットと選択磁場コイルとを有する選択手段と、
− 磁性材料の磁化が局所的に変化するよう、駆動磁場によって、前記作用領域内の2つの前記部分領域の空間位置を変化させる、駆動磁場信号発生器ユニットと駆動磁場コイルとを有する駆動手段と、
− 検出信号を収集する、少なくとも1つの信号受信ユニットと少なくとも1つの受信コイルとを有する受信手段であり、前記検出信号は、前記第1及び第2の部分領域の空間位置の変化によって影響される前記作用領域内の前記磁化に依存する、受信手段と
を有し、
前記選択磁場コイル、前記駆動磁場コイル、及び前記少なくとも1つの受信コイルは、共通のコイル群の組によって実現され、且つ
当該装置は更に結合手段を有し、前記結合手段は、前記選択磁場信号発生器ユニット、駆動磁場発生器ユニットと、前記共通のコイル群の組のうちの関連するコイルとの間に結合された、前記共通のコイル群の組のコイルごとの結合ユニットを含む、
装置。
【請求項2】
前記コイル群の組のコイル群は、当該コイル群を接続する軟磁性材料で実質的に製造されたコイルコネクタを含む共通筐体内に配置される、請求項1に記載の装置。
【請求項3】
前記コイルコネクタは、特に銅で製造された遮蔽体を有する、請求項2に記載の装置。
【請求項4】
前記共通のコイル群の組のコイル群、前記筐体、及び前記コイルコネクタは、特に患者の頭部である患者の身体部分の近傍に配置されるように適応されている、請求項2に記載の装置。
【請求項5】
前記共通のコイル群の組のコイル群、前記筐体、及び前記コイルコネクタは、患者の頭部に配置されるヘルメットの形態に構成されている、請求項4に記載の装置。
【請求項6】
前記コイルコネクタは、前記共通のコイル群の組のコイル群を覆うハーフシェルの形態に構成され、且つ前記コイル群に接続される特にスパイク状の延在部である延在部を有する、請求項5に記載の装置。
【請求項7】
フォーカス磁場によって前記作用領域の空間位置を変化させる、フォーカス磁場信号発生器ユニットとフォーカス磁場コイルとを有するフォーカス磁場手段、を更に有する請求項1に記載の装置。
【請求項8】
前記受信コイルに直列に結合された誘導性素子、及び
前記誘導性素子と前記受信コイルとの結合点と前記受信コイルに結合された前記信号受信ユニットとの間に結合された共振回路、
を更に有する請求項1に記載の装置。
【請求項9】
所定の領域内で、生成される駆動磁場の振幅が所定の磁場強度を超えないように、前記駆動磁場信号発生器ユニットを制御する制御ユニット、を更に有する請求項1に記載の装置。
【請求項10】
作用領域内の磁性粒子を検出し且つ出血を監視する特に請求項1に記載の装置であって、前記受信手段によって受信された検出信号を処理する信号処理手段を有し、前記信号処理手段は:
− 受信された作用領域の検出信号を、前もって収集された同一の作用領域からの基準信号と比較する比較手段と、
− 血液量が増加した領域群を前記比較に基づいて決定する第1の決定手段と、
− 前記血液量が増加した領域群における血液の脈動パターンを決定する第2の決定手段と、
− 決定された前記脈動パターンに基づいて、前記血液量が増加した領域群のうちの何れが出血を伴う領域であるかを決定する第3の決定手段と
を有する、装置。
【請求項11】
前記第3の決定手段は、脈動パターンを有しない領域、又は心拍による脈動パターンに特有なものではない脈動パターンを有する領域を、出血を伴う領域として決定するよう適応されている、請求項10に記載の装置。
【請求項12】
前記信号処理手段は更に、患者の動き補正のために、前記信号受信手段によって受信された信号を前記基準信号と整合させるレジストレーション手段を有する、請求項10に記載の装置。
【請求項13】
作用領域内の磁性粒子に影響を及ぼし且つ/或いは該磁性粒子を検出する方法であって:
− 選択磁場信号発生器ユニットと選択磁場コイルとを有する選択手段により、低磁場強度を有する第1の部分領域と、より高い磁場強度を有する第2の部分領域とが前記作用領域内に形成されるよう、磁場強度の空間パターンを有する選択磁場を生成するステップと、
− 駆動磁場信号発生器ユニットと駆動磁場コイルとを有する駆動手段により、磁性材料の磁化が局所的に変化するよう、駆動磁場によって、前記作用領域内の2つの前記部分領域の空間位置を変化させるステップと、
− 少なくとも1つの信号受信ユニットと少なくとも1つの受信コイルとを有する受信手段により、検出信号を収集するステップであり、前記検出信号は、前記第1及び第2の部分領域の空間位置の変化によって影響される前記作用領域内の前記磁化に依存する、収集するステップと、
− 前記選択磁場信号発生器ユニット、駆動磁場発生器ユニットと、共通のコイル群の組のうちの関連するコイルとの間に結合された、前記共通のコイル群の組のコイルごとの結合ユニットを含む結合手段により、前記選択手段及び前記駆動手段からの信号を前記共通のコイル群に結合するステップと
を有する方法。
【請求項14】
作用領域内の磁性粒子を検出し且つ出血を監視する特に請求項13に記載の方法であって:
− 前記受信手段によって受信された検出信号を処理するステップと、
− 受信された作用領域の検出信号を、前もって収集された同一の作用領域からの基準信号と比較するステップと、
− 血液量が増加した領域群を前記比較に基づいて決定するステップと、
− 前記血液量が増加した領域群における血液の脈動パターンを決定するステップと、
− 決定された前記脈動パターンに基づいて、前記血液量が増加した領域群のうちの何れが出血を伴う領域であるかを決定するステップと
を有する方法。
【請求項15】
プログラムコード手段を有するコンピュータプログラムであって、前記プログラムコード手段は、当該コンピュータプログラムがコンピュータ上で実行されるときに、請求項13又は14に記載の方法のステップを実行するように前記コンピュータに請求項1に記載の装置を制御させる、コンピュータプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2012−527291(P2012−527291A)
【公表日】平成24年11月8日(2012.11.8)
【国際特許分類】
【出願番号】特願2012−511384(P2012−511384)
【出願日】平成22年5月12日(2010.5.12)
【国際出願番号】PCT/IB2010/052111
【国際公開番号】WO2010/134006
【国際公開日】平成22年11月25日(2010.11.25)
【出願人】(590000248)コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ (12,071)
【Fターム(参考)】