説明

空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法および装置

【課題】 酸素ガスセンサーは、低濃度になると反応速度が極端に遅く、可燃ガスが含まれていると問題があった。 また、水素ガスの濃度を制御していない為、別途水素ガス警報装置が必要であった。 更に、酸素ガスと水素ガスを反応させる本願装置の場合には耐熱性や高温特性を要求されていた
【解決手段】 空気より作り出した不純物として酸素ガスを含んでいる濃度の高い窒素ガス102と水素ガス101を混合し反応させ水を作ることで酸素ガスを減少させ、反応後の濃度の高い窒素ガス104に含まれている微少の水素ガスの濃度を測定しその結果を利用して酸素ガスの濃度を調整可能にした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法および装置に関する技術であって、更に詳細に述べると、濃度の高い窒素ガスと水素ガスを混合し反応させ水を作ることで酸素ガスを減少させた結果の測定を、反応の早い水素ガスセンサーを酸素ガスセンサーの代わりに使用することで、測定した結果をすぐ出せて無駄無く効率性の高い、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる技術に関して述べたものである。
【背景技術】
【0002】
従来、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法および装置に関する技術としては、酸素ガスの濃度を酸素ガスセンサーによって測定していた。
【0003】
この場合、低濃度(窒素ガス濃度で99.999%以上、残存酸素ガス濃度として10ppm以下)測定用の酸素ガスセンサーとしては、ガルバニ型センサーとジルコニア型センサーを使用していた。
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、このような従来の、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法および装置に関しては、以下に示すような課題があった。
【0005】
即ち、酸素ガスセンサーの一種であるガルバニ型センサーの場合、低濃度になると反応速度が極端に遅くなり、正確な数値を示すには長時間(3〜5時間)かかり、変動が長周期の設備やシステムにおいては利用出来るが、短時間(5〜10分)で起動させる設備やシステムには利用出来なかった。
【0006】
一方、酸素ガスセンサーの一種であるジルコニア型センサーの場合、可燃ガス(水素、炭素系物質等)が含まれていると燃焼が起こり、表示濃度が「0」となったりして正確に数値を示さない為、水素ガスの添加量を制御することにより酸素ガスを減少させる水素ガス添加型の濃度の高い窒素ガスに残存する酸素ガスを減少させる装置には利用出来なかった。
【0007】
また、酸素ガスセンサーによる未反応酸素ガス量をフィードバックする方式では、水素ガスの濃度を制御していない為に、大気中の水素ガス濃度が4%になると爆発的に燃焼する水素ガスがどの程度発生しているかは不明であり、別途水素ガス警報装置が必要であった。
【0008】
更に、酸素ガスと水素ガスから水を作り出す反応は発熱反応であり、窒素ガスに残存する酸素ガスの量が多い場合には反応後には高温になり、酸素ガスの濃度を測定する酸素ガスセンサーは耐熱性や高温特性を要求されていた。
【課題を解決するための手段】
【0009】
本発明は、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法に於いて、濃度の高い窒素ガス102と水素ガス101を混合し反応させ水を作ることで酸素ガスを減少させ、反応後の濃度の高い窒素ガス104に含まれている微少の水素ガスの濃度を測定しその結果を利用して酸素ガスの濃度を調整可能にしたことを特徴とし、更には、前記微少の水素ガスの濃度を測定した結果により、前記微少の水素ガスが「+」の場合には前記水素ガス101を減量するように、前記微少の水素ガスが「0」の場合には前記水素ガス101を増量するように制御することを特徴とし、更には、一つの前記水素ガス101の流量に対する前記微少の水素ガスの濃度を測定した結果と、別の前記水素ガス101の流量に対する前記微少の水素ガスの濃度を測定した結果の二つの結果から、前記微少の水素ガスが0%となる前記水素ガス101の流量を推測し、推測した結果によって前記水素ガス101の流量を制御することを特徴とすることによって、上記課題を解決したのである。
【0010】
また、本発明は、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置に於いて、濃度の高い窒素ガス102と水素ガス101を混合し反応させ水を作ることで酸素ガスを減少させる反応槽31と、前記反応槽31の下流に位置して微少の水素ガスの濃度を測定する水素ガスセンサー62と、前記水素ガスセンサー62の測定結果によって前記水素ガス101の流量を制御するコントローラー63と、前記コントローラー63からの情報によって前記水素ガス101の流量を変更するマスフロー15を配設することで、酸素ガスの濃度を調整可能にしたことを特徴とし、更には、前記水素ガスセンサー62の測定した結果によって、前記微少の水素ガスが「+」の場合には前記水素ガス101を減量するように、前記微少の水素ガスが「0」の場合には前記水素ガス101を増量するようにしたことを特徴とし、更には、前記反応槽31の圧力を高める為に絞り弁32を配設したことを特徴とすることによって、上記課題を解決したのである。
【発明の効果】
【0011】
以上の説明から明らかなように、本発明によって、以下に示すような効果をあげることが出来る。
【0012】
第一に、空気より作り出した濃度の高い窒素ガスと水素ガスを混合し反応させ水を作ることで酸素ガスを減少させ、反応後の濃度の高い窒素ガスに含まれている微少の水素ガスの濃度を測定しその結果を利用して酸素ガスの濃度を調整可能にすることで、3〜5秒と反応時間の短い、精度の安定した、高温にも安定した装置が可能となった。
【0013】
第二に、微少の水素ガスの濃度を測定した結果により、微少の水素ガスが「+」の場合には水素ガスを減量するように、微少の水素ガスが「0」の場合には水素ガスを増量するように制御することにより、色々な点で優位性を持った水素ガスセンサーによって酸素ガスを制御することが可能となった。
【0014】
第三に、反応槽の圧力を高める為に絞り弁を配設したことにより、必要に応じて反応を促進させることが可能となった。
【0015】
第四に、一つの水素ガスの流量に対する微少の水素ガスの濃度を測定した結果と、別の水素ガスの流量に対する微少の水素ガスの濃度を測定した結果の二つの結果から、微少の水素ガスが0%となる水素ガスの流量を推測し、推測した結果によって水素ガスの流量を制御することにより、限りなく残存する酸素ガスの量を0%に近づけることが可能となった。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態を図面と共に詳細に説明する。
ここで、図1は、本願発明の全体を示した図である。
【0017】
図1に見られるように、121は窒素ガス配管で、濃度の高い窒素ガス102を流すようになっている。 この場合、具体的に図示していないが、窒素ガス配管121の上流には、分離膜方式やPSA方式や液体空気によるもの等の空気から濃度の高い窒素ガスを製造する装置が接続している。 従って、濃度の高い窒素ガス102には、不純物として大半は酸素ガスを混人していることになる。 尚、窒素ガス配管121は、分岐部93と窒素ガス配管122を経由して合流部92に接続し、分岐部93には濃度の高い窒素ガス102の圧力を測定する圧力計21が接続している。
【0018】
一方、水素ガス配管111の上流には、手動で開閉する開閉弁11を介して水素ガス101を製造する装置や水素ガスボンベを接続している。 そして、水素ガス配管111の下流には、異物を除去するフィルター12と、水素ガス配管112と、一定の圧力を感知すると何等かの情報を発するプレッシャースイッチ13を接続している分岐部91と、水素ガス配管113と、プレッシャースイッチ13の情報によって開閉の動作をする電磁弁14と、水素ガス配管114と、通過する水素ガス101の流量を調整するマスフロー15と、水素ガス配管115と、上流から下流には水素ガス101を流すが下流から上流に流れることを遮断する逆止弁16と、水素ガス配管116を経由して合流部92に接続している。
【0019】
次に、合流部92からは、窒素ガスを中心とする混合ガス配管131を経由して反応槽31に接続している。 この場合、反応槽31には、触媒が充填されていて、混合ガスが通過すると、下記の数式1に見られる反応を行いながら反応熱を発生するようになっている。
【数1】
+ 2H→ 2HO + 反応熱
【0020】
尚、使用する触媒としては、一例として大きさが3.2mmΦ×3.2mmHである円筒状のアルミナの表面にオングストローム単位のPdを付着させたものが考えられる。但し、大きさに関しては、実際に使用している一例を示したものでこれに限定される訳ではない。 また、形状に関しても、円筒に限らず球でも構わない。 従って、反応槽31の下流には、温度の高い反応後の濃度の高い窒素ガス103、104が流れるようになっている。
【0021】
更に、反応槽31の下流には、反応後の窒素ガス配管132と、絞り弁32と、反応後の窒素ガス配管133と、異物を除去するフィルター33と、反応後の窒素ガス配管134を経由して分岐部94に接続している。
【0022】
ここで、絞り弁32を位置させている理由は、反応槽31に充填している触媒は背圧が無いと反応しない(少なくとも、0.7Kgf/cm以上は必要)ために、必要に応じて絞り弁32によって流路を絞ることで、反応槽31の圧力を上げて反応を促進しているのである。
【0023】
一方、分岐部94からは、反応後の窒素ガス配管141と、反応後の窒素ガス分岐管151に分岐している。 そして、反応後の窒素ガス配管141は、上流から下流には窒素ガスを流すが下流から上流に流れることを遮断する逆止弁41と反応後の窒素ガス配管142を経由して反応後の濃度の高い窒素ガス103を送り出すことが出来るようになっている。
【0024】
ところで、反応後の窒素ガス分岐管151は、分岐部95で、更に測定用配管161と反応後の窒素ガス分岐管152に分岐し、反応後の窒素ガス分岐管152は、手動で開閉する開閉弁51と、反応後の窒素ガス分岐管153を経由して反応後の濃度の高い窒素ガス104を送り出すことが出来るようになっている。
【0025】
尚、測定用配管161は、流れる流体の流量を変える絞り弁61と測定用配管162を経由して水素ガスセンサー62に接続している。 この場合、水素ガスセンサー62は、反応時間が3〜5秒と短いPd/Ni膜センサーや半導体ガスセンサーを使用することで、高温特性も良く、精度も安定していて、微少の水素ガスの濃度を測定することを可能としている。
【0026】
また、水素ガスセンサー62によって測定したデーターは、信号163としてコントローラー63に送られ、微少の水素ガスの濃度が「+」の場合には水素ガス101を減量するよう、微少の水素ガスが「0」の場合には水素ガス101を増量するように、コントローラー63から信号164という形でマスフロー15に送ることが出来るようになっている。
【0027】
本発明による、空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法および装置は前述したように構成されており、以下にその動作についてその内容を説明する。
【0028】
先ず、一方からの濃度の高い窒素ガス102を、窒素ガス配管121と分岐部93と窒素ガス配管122を経由させ、他方からの水素ガス101を、開閉弁11と水素ガス配管111とフィルター12と水素ガス配管112と分岐部91と水素ガス配管113と電磁弁14と水素ガス配管114とマスフロー15と水素ガス配管115と逆止弁16と水素ガス配管116を経由させ、両者を合流部92で合流させている。 この場合、濃度の高い窒素ガス102の窒素ガスの濃度は、99.5〜99.99%程度のものが流れて来ている。 尚、分岐部91にはプレッシャースィッチ13が接続していて、プレッシャースィッチ13の情報によって電磁弁14を開閉している。
【0029】
そこで、合流した混合ガスは、合流部92から窒素ガスを中心とする混合ガス配管131を経由して反応槽31に送り込まれる。 尚、反応槽31では、濃度の高い窒素ガス102に含まれている微少量の酸素ガスと水素ガス101を反応させることで水を作り出すと同時に、熱を発生させながら微少量の酸素ガスを更に減少させている。 従って、水素ガス101の供給する量によっては、水素ガスが残ったり酸素ガスが残ったりすることになる。
【0030】
一方、反応後の気体は、反応後の窒素ガス配管132と絞り弁32と反応後の窒素ガス配管133とフィルター33と反応後の窒素ガス配管134と分岐部94と反応後の窒素ガス配管141と逆止弁41と反応後の窒素ガス配管142を経由して反応後の濃度の高い窒素ガス103を送り出すようになっている。 従って、必要に応じて絞り弁32を絞ると反応槽31内の圧力が高くなり反応が促進されるのである。
【0031】
ここで、分岐部94からは、反応後の窒素ガス分岐管151と分岐部95と反応後の窒素ガス分岐管152と開閉弁51と反応後の窒素ガス分岐管153を経由して反応後の濃度の高い窒素ガス104を送り出すようになっている。 この場合、反応後の濃度の高い窒素ガス103と反応後の濃度の高い窒素ガス104は分岐しただけのものであり、同一の成分であり濃度であると考えて良い。
【0032】
尚、分岐部95からは、測定用配管161と絞り弁61と測定用配管162を経由して濃度の高い窒素ガス104と同一の成分であり濃度の気体が水素ガスセンサー62に送り込まれ水素ガスの濃度が測定されるようになっている。 当然のことながら、ここに流れてくる流体としては、高温の流体が流れて来る可能性はあるが、水素ガスセンサー62に関しては高温特性の点では安定していると言える。
【0033】
この場合、水素ガスセンサー62によって測定した結果は、信号163としてコントローラー63に送られ、コントローラー63で一定の判断を行い、その結果を信号164としてマスフロー15に送り、マスフロー15では指示に従って流量調整の動作をおこなっている。
【0034】
即ち、水素ガスセンサー62によって測定したデーターは、信号163としてコントローラー63に送られ、微少の水素ガスの濃度が「+」の場合には水素ガス101を減量するよう、微少の水素ガスが「0」の場合には水素ガス101を増量するように、コントローラー63から信号164という形でマスフロー15に送っている。 従って、この様に制御することによって、窒素ガスの濃度を99.999%以上まで高めることが可能となったのである。
【0035】
また、水素ガス101の流量を確定する別の手段としては、一つの水素ガス101の流量に対する微少の水素ガスの濃度を測定した結果と、別の水素ガス101の流量に対する微少の水素ガスの濃度を測定した結果の二つの結果から、二つの結果が近似的には直線上に存在するという仮定の下に、微少の水素ガスが0%となる水素ガス101の流量を推測し、その推測した結果によって水素ガス101の流量を制御するということを考えることは出来る。
【産業上の利用可能性】
【0036】
酸素ガスセンサーに代えて水素ガスセンサーを使用することで、短時間で反応が確認出来て安定した精度の空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置が可能となった。
【図面の簡単な説明】
【0037】
【図1】 本願発明の全体を示した図
【符号の説明】
【0038】
11・・・・・・開閉弁
12・・・・・・フィルター
13・・・・・・プレッシャースィッチ
14・・・・・・電磁弁
15・・・・・・マスフロー
16・・・・・・逆止弁
21・・・・・・圧力計
31・・・・・・反応槽
32・・・・・・絞り弁
33・・・・・・フィルター
41・・・・・・逆止弁
51・・・・・・開閉弁
61・・・・・・絞り弁
62・・・・・・水素ガスセンサー
63・・・・・・コントローラー
91・・・・・・分岐部
92・・・・・・合流部
93・・・・・・分岐部
94・・・・・・分岐部
95・・・・・・分岐部
101・・・・・水素ガス
102・・・・・濃度の高い窒素ガス
103・・・・・反応後の濃度の高い窒素ガス
104・・・・・反応後の濃度の高い窒素ガス
111・・・・・水素ガス配管
112・・・・・水素ガス配管
113・・・・・水素ガス配管
114・・・・・水素ガス配管
115・・・・・水素ガス配管
116・・・・・水素ガス配管
121・・・・・窒素ガス配管
122・・・・・窒素ガス配管
131・・・・・窒素ガスを中心とする混合ガス配管
132・・・・・反応後の窒素ガス配管
133・・・・・反応後の窒素ガス配管
134・・・・・反応後の窒素ガス配管
141・・・・・反応後の窒素ガス配管
142・・・・・反応後の窒素ガス配管
151・・・・・反応後の窒素ガス分岐管
152・・・・・反応後の窒素ガス分岐管
153・・・・・反応後の窒素ガス分岐管
161・・・・・測定用配管
162・・・・・測定用配管
163・・・・・信号
164・・・・・信号

【特許請求の範囲】
【請求項1】
空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法に於いて、濃度の高い窒素ガス(102)と水素ガス(101)を混合し反応させ水を作ることで酸素ガスを減少させ、反応後の濃度の高い窒素ガス(104)に含まれている微少の水素ガスの濃度を測定しその結果を利用して酸素ガスの濃度を調整可能にしたことを特徴とする空気より作り出した濃度の高い窒素ガスに残存する酸素ガス減少させる方法。
【請求項2】
前記微少の水素ガスの濃度を測定した結果により、前記微少の水素ガスが「+」の場合には前記水素ガス(101)を減量するように、前記微少の水素ガスが「0」の場合には前記水素ガス(101)を増量するように制御することを特徴とする請求項1に記載の空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法。
【請求項3】
一つの前記水素ガス(101)の流量に対する前記微少の水素ガスの濃度を測定した結果と、別の前記水素ガス(101)の流量に対する前記微少の水素ガスの濃度を測定した結果の二つの結果から、前記微少の水素ガスが0%となる前記水素ガス(101)の流量を推測し、推測した結果によって前記水素ガス(101)の流量を制御することを特徴とする請求項1に記載の空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる方法。
【請求項4】
空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置に於いて、濃度の高い窒素ガス(102)と水素ガス(101)を混合し反応させ水を作ることで酸素ガスを減少させる反応槽(31)と、前記反応槽(31)の下流に位置して微少の水素ガスの濃度を測定する水素ガスセンサー(62)と、前記水素ガスセンサー(62)の測定結果によって前記水素ガス(101)の流量を制御するコントローラー(63)と、前記コントローラー(63)からの情報によって前記水素ガス(101)の流量を変更するマスフロー(15)を配設することで、酸素ガスの濃度を調整可能にしたことを特徴とする空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置。
【請求項5】
前記水素ガスセンサー(62)の測定した結果によって、前記微少の水素ガスが「+」の場合には前記水素ガス(101)を減量するように、前記微少の水素ガスが「0」の場合には前記水素ガス(101)を増量するようにしたことを特徴とする請求項4に記載の空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置。
【請求項6】
前記反応槽(31)の圧力を高める為に絞り弁(32)を配設したことを特徴とする請求項4または請求項5に記載の空気より作り出した濃度の高い窒素ガスに残存する酸素ガスを減少させる装置。

【図1】
image rotate


【公開番号】特開2007−91570(P2007−91570A)
【公開日】平成19年4月12日(2007.4.12)
【国際特許分類】
【出願番号】特願2005−307761(P2005−307761)
【出願日】平成17年9月26日(2005.9.26)
【出願人】(000154521)株式会社フクハラ (87)