説明

空気調和機

【課題】滑水性及び撥水性を有する塗膜により熱交換面への着霜を抑制しつつ、さらにデフロスト運転の効率を高めることのできる空気調和機を提供する。
【解決手段】空気調和機1の室外側熱交換器は、熱交換器上部2aと、熱交換器上部2aと並列に接続された熱交換器下部2bとを有する。また、室内側熱交換器4と熱交換器上部2a及び熱交換器下部2bとの間には、それぞれ上部膨張弁31及び第1下部膨張弁32が設けられる。この構成により、熱交換器上部2a及び熱交換器下部2bは、それぞれ独立にデフロスト運転が行われる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜がプレートフィンの熱交換面に設けられる室外側熱交換器について、これを備える空気調和機に関する。
【背景技術】
【0002】
上記空気調和機は、冷房運転時では室内の熱を汲み上げ、暖房運転時では室外の熱を汲み上げることにより、室内の温度調節を行う。また、空気調和機は、室内に設置される室内ユニット及び室外に設置される室外ユニットから構成されるものが知られている。
【0003】
また、空気調和機は、暖房運転時に熱交換器を蒸発器として動作させる。ここで、熱交換器との間で熱交換を行う空気の温度が低い場合や蒸発温度が低い場合に、熱交換器の熱交換面に着霜する。熱交換面に着霜すると、熱交換器の能力が低下するため、空気調和機の冷凍能力も低下する。
【0004】
特に、空気調和機の室外ユニットでは、室外空気の影響を直接的に受けるため、暖房運転時に室外空気の温度が低下すると蒸発器として動作している室外側熱交換器の蒸発能力が低下し、空気調和機の暖房能力の低下を招く。そのため、空気調和機では、室外側熱交換器に付着した霜を取り除くための除霜運転(以下、「デフロスト運転」という)が適宜行われることが知られている。
【0005】
しかしながら、除霜運転が行われると、暖房運転が休止されたり、暖房能力が低下したりするため、暖房快感度が低下するという問題がある。そのため、熱交換器における着霜を抑制して暖房運転の休止の頻度を低減することや、除霜運転時間の短縮を図ることが課題となっている。
【0006】
この課題を解決する方法として、表面処理を施していない熱交換面(以下、「無処理の熱交換面」という。)と比較して滑水性及び撥水性を大きくして着霜を抑制する着霜抑制層を熱交換面に設けることによって、蒸発器として動作している熱交換器への着霜量を低減する方法が提案されている(例えば、特許文献1参照)。
【0007】
ここで図10を参照して、上記着霜抑制層を熱交換面に設けた従来の室外ユニットの構造について説明する。
この熱交換器100は、いわゆるクロスフィンアンドチューブ型熱交換器である。また、熱交換面を一定の間隔を経て多数のプレートフィン101を並べるとともに、これらのプレートフィン101に対して、内部を冷媒が流通する熱交換パイプ102を貫通させて構成されている。プレートフィン101は、長手方向が上下方向に平行になるように配置されるとともに、プレートフィン101が空気流通方向103に直交する方向に沿って並べてなるフィン列が、空気流通方向103に沿って2列配列されている。熱交換パイプ102は、プレートフィン101上下方向に沿って等間隔に配置されている。熱交換面であるプレートフィン101の表面には、例えば、上述した着霜抑制層が設けられており、滑水性及び撥水性が大きくなっている。また、熱交換器100より下方には、熱交換器100から下方に向けて流下する水滴105を受けて排出するためのドレンパン106が配置されている。ドレンパン106の上面106aは、熱交換器100の下端部の全面、即ち、プレートフィン101の下端部101aの全面に対して接触する。
【0008】
そして、このように熱交換器に着霜抑制層を設けて、熱交換面の滑水性及び撥水性を大きくした場合、熱交換器100を蒸発器として動作させたときに熱交換面に凝縮する水滴が速やかに熱交換器100の上方から下方に向けて流下する。これにより、熱交換面に付着する水滴の量が低減され、熱交換面における着霜量を低減することができる。
【特許文献1】特開2002−323298号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
ところで、上記熱交換器100においては、熱交換器に着霜抑制層を設けて、熱交換面の滑水性及び撥水性を大きくしたため、プレートフィン101の下部に付着する水滴105の量は、プレートフィン101の上部に付着する水滴105の量より多くなる。したがって、プレートフィン101の下部の着霜量は、プレートフィン101の上部の着霜量より多くなる。
【0010】
しかしながら、従来のデフロスト運転の作動条件では、熱交換面の着霜量の増加により、熱交換器の熱交換能力が著しく低下した時をセンサ等によって検知して、デフロスト運転が行われていた。即ち、プレートフィン101の上部の着霜量が少ない状態であるにもかかわらず、プレートフィン101の上部及び下部の区別なく、プレートフィン101の全体に対してデフロスト運転が行われるため、デフロスト運転の効率の観点から改善の余地を残すものとなっている。
【0011】
そこで、本発明は、上記実情に鑑みてなされたものであり、その目的とするところは、滑水性及び撥水性を有する塗膜により熱交換面への着霜を抑制しつつ、さらにデフロスト運転の効率を高めることのできる空気調和機を提供することである。
【課題を解決するための手段】
【0012】
請求項1に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記デフロスト装置は、前記熱交換器上部の冷媒制御と前記熱交換器下部の冷媒制御とを個別に行うとともに、前記熱交換器上部に対するデフロスト運転のデフロスト能力を前記熱交換器下部に対するデフロスト運転のデフロスト能力よりも小さくするものであることを要旨とする。
【0013】
この発明によれば、室外側熱交換器の上部及び下部、即ち、プレートフィンのフィン上部及びフィン下部のそれぞれにデフロストを行うことが可能となるため、室外側熱交換器に対して行うデフロスト運転の制御の自由度を向上させることができる。また、フィン上部と比較して着霜量が多いフィン下部について、デフロスト運転のデフロスト能力が高いため、フィン上部と比較して、フィン下部を積極的に除霜(以下、「デフロスト」という。)することができる。したがって、フィン上部及びフィン下部に対して、デフロスト運転のデフロスト能力に差を付けることができるため、プレートフィンの全体に対して一律に、即ち、デフロスト運転のデフロスト能力に差を付けずにデフロスト運転を行う場合と比較して、デフロスト運転の効率を高めることができる。なお、デフロスト能力とは、例えば、単位時間当たりにデフロストすることのできる霜の量として評価することができる。
【0014】
請求項2に記載の発明は、請求項1に記載の空気調和機において、前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転の実行回数を前記熱交換器下部に対するデフロスト運転の実行回数よりも少なくすることを要旨とする。
【0015】
この発明によれば、熱交換器下部と比較して、着霜量の少ない熱交換器上部のデフロスト運転の実行回数を少なくすることにより、熱交換器上部に着霜していない状態、もしくは、着霜量が少ない状態において熱交換器上部にデフロスト運転を行うことを抑制することができる。
【0016】
請求項3に記載の発明は、請求項1または請求項2に記載の空気調和機において、前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転の1回当たりの実行時間を前記熱交換器下部に対するデフロスト運転の1回当たりの実行時間よりも短くすることを要旨とする。
【0017】
この発明によれば、熱交換器下部と比較して、着霜量の少ない熱交換器上部のデフロスト運転の1回当たりの実行時間を短くすることにより、熱交換器上部に着霜していない状態、もしくは、着霜量が非常に少ない状態においても熱交換器上部にデフロスト運転を行い続けることを抑制することができる。
【0018】
請求項4に記載の発明は、請求項1〜請求項3のいずれか1項に記載の空気調和機において、前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転時の前記熱交換器上部の冷媒流量を前記熱交換器下部に対するデフロスト運転時の前記熱交換器下部の冷媒流量よりも少なくすることを要旨とする。
【0019】
この発明によれば、熱交換器上部の冷媒流量を熱交換器下部の冷媒流量よりも少なくすることにより、熱交換器上部及び熱交換器下部の着霜量の差を低減することができる。したがって、熱交換器の熱交換能力が著しく低下することを抑制するため、従来のデフロスト運転の作動条件においても、デフロスト運転を行う頻度を低減することができる。
【0020】
請求項5に記載の発明は、請求項1〜請求項4のいずれか1項に記載の空気調和機において、前記デフロスト装置は、当該空気調和機の暖房運転がなされていることを条件に、前記熱交換器上部に対するデフロスト運転のデフロスト能力を前記熱交換器下部に対するデフロスト運転のデフロスト能力よりも必ず小さくすることを要旨とする。
【0021】
請求項6に記載の発明は、請求項1に記載の空気調和機において、前記デフロスト装置は、前記熱交換器下部に対してのみデフロスト運転を行うことを要旨とする。
この発明によれば、着霜量の多い熱交換器下部のみに対して、デフロスト運転を行うため、熱交換器下部の霜の成長及び霜の形成を容易に抑制することができる。
【0022】
請求項7に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器を備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記熱交換器下部の熱交換性能が前記熱交換器上部の熱交換性能よりも小さく設定されることを要旨とする。
【0023】
この発明によれば、熱交換器下部の熱交換性能が熱交換器上部の熱交換性能よりも小さく設定されることにより、熱交換器下部に付着する水滴の量を低減することができる。したがって、熱交換器下部の着霜量を低減することができるため、熱交換器下部から熱交換器上部に向けて霜が成長するのを抑制することができる。その結果、熱交換器下部の着霜量の低減により、従来のデフロスト運転のデフロスト運転の動作条件においても、デフロスト運転が動作することを抑制することができるため、デフロスト運転の効率を高めることができる。
【0024】
請求項8に記載の発明は、請求項6または請求項7に記載の空気調和機において、前記室外側熱交換器は、前記熱交換器下部の熱交換面の面積の合計が前記熱交換器上部の熱交換面の面積の合計より小さいことを要旨とする。
この発明によれば、熱交換器下部の熱交換面の面積の合計が熱交換器上部の熱交換面の面積の合計より小さいことにより、熱交換器下部に付着する水滴の量を低減することができる。したがって、熱交換器下部の着霜量を低減することができる。その結果、熱交換器下部から熱交換器上部に向けて霜が成長するのを抑制することができる。
【0025】
請求項9に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器を備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記熱交換器下部の上下方向における前記第2チューブ同士の間隔が前記熱交換器上部の上下方向における前記第1チューブ同士の間隔よりも大きく設定されることを要旨とする。
【0026】
この発明によれば、熱交換器上部の第1チューブ同士の間隔と比較して、熱交換器下部の第2チューブ同士の間隔が大きくなるように形成されていることにより、熱交換器下部において、第2チューブ同士の間に霜が形成されるのを抑制することができるため、熱交換器下部から熱交換器上部に向けて霜が成長するのを抑制することができる。したがって、熱交換器下部の着霜量の低減により、従来のデフロスト運転のデフロスト運転の動作条件においても、デフロスト運転が動作することを抑制することができるため、デフロスト運転の効率を高めることができる。
【0027】
請求項10に記載の発明は、請求項7〜請求項9のいずれか1項に記載の空気調和機において、当該空気調和機は、前記室外側熱交換器に対してデフロスト運転を行うデフロスト装置をさらに備えるものであり、前記デフロスト装置は、前記熱交換器上部の冷媒制御と前記熱交換器下部の冷媒制御とを個別に行うものであることを要旨とする。
【0028】
この発明によれば、熱交換器上部の冷媒制御と熱交換器下部の冷媒制御とを個別に行うことにより、室外側熱交換器を効率的にデフロストすることができる。したがって、デフロスト運転の効率を高めることができる。
【0029】
請求項11に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしての第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記デフロスト装置は、前記第1熱交換器の冷媒制御と前記第2熱交換器の冷媒制御とを個別に行うとともに、前記第1熱交換器に対するデフロスト運転のデフロスト能力を前記第2熱交換器に対するデフロスト運転のデフロスト能力よりも小さくするものであることを要旨とする。
【0030】
この発明によれば、室外側熱交換器の上部及び下部、即ち、プレートフィンの第1フィン及び第2フィンのそれぞれにデフロストを行うことが可能となるため、室外側熱交換器に対して行うデフロスト運転の制御の自由度を向上させることができる。また、第1フィンと比較して着霜量が多い第2フィンについて、デフロスト運転のデフロスト能力が高いため、第1フィンと比較して、第2フィンを積極的にデフロストすることができる。したがって、第1フィン及び第2フィンに対して、デフロスト運転のデフロスト能力に差を付けることができるため、プレートフィンの全体に対して一律に、即ち、デフロスト運転のデフロスト能力に差を付けずにデフロスト運転を行う場合と比較して、デフロスト運転の効率を高めることができる。
【0031】
請求項12に記載の発明は、請求項11に記載の空気調和機において、前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転の実行回数を前記第2熱交換器に対するデフロスト運転の実行回数よりも少なくすることを要旨とする。
【0032】
この発明によれば、第2熱交換器と比較して、着霜量の少ない第1熱交換器のデフロスト運転の実行回数を少なくすることにより、第1熱交換器に着霜していない状態、もしくは、着霜量が非常に少ない状態において、第1熱交換器にデフロスト運転を行うことを抑制することができる。
【0033】
請求項13に記載の発明は、請求項11または請求項12に記載の空気調和機において、
前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転の1回当たりの実行時間を前記第2熱交換器に対するデフロスト運転の1回当たりの実行時間よりも短くすることを要旨とする。
【0034】
この発明によれば、第2熱交換器と比較して、着霜量の少ない第1熱交換器のデフロスト運転の1回当たりの実行時間を短くすることにより、第1熱交換器に着霜していない状態、もしくは、着霜量が非常に少ない状態においても第1熱交換器にデフロスト運転を行い続けることを抑制することができる。
【0035】
請求項14に記載の発明は、請求項11〜請求項13のいずれか1項に記載の空気調和機において、前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転時の前記第1熱交換器の冷媒流量を前記第2熱交換器に対するデフロスト運転時の前記第2熱交換器の冷媒流量よりも少なくすることを要旨とする。
【0036】
この発明によれば、第1熱交換器の冷媒流量を第2熱交換器の冷媒流量よりも少なくすることにより、第1熱交換器及び第2熱交換器の着霜量の差を低減することができる。したがって、熱交換器の熱交換能力が著しく低下することを抑制するため、従来のデフロスト運転の作動条件においても、デフロスト運転を行う頻度を低減することができる。
【0037】
請求項15に記載の発明は、請求項11〜請求項14のいずれか1項に記載の空気調和機において、前記デフロスト装置は、当該空気調和機の暖房運転がなされていることを条件に、前記第1熱交換器に対するデフロスト運転のデフロスト能力を前記第2熱交換器に対するデフロスト能力よりも必ず小さくすることを要旨とする。
【0038】
請求項16に記載の発明は、請求項11に記載の空気調和機において、前記デフロスト装置は、前記第2熱交換器に対してのみデフロスト運転を行うことを要旨とする。
この発明によれば、この発明によれば、着霜量の多い第2熱交換器のみに対して、デフロスト運転を行うため、第2熱交換器の霜の成長及び霜の形成を容易に抑制することができる。
【0039】
請求項17に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしても第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記第2熱交換器の熱交換性能が前記第1熱交換器の熱交換性能よりも小さく設定されることを要旨とする。
【0040】
この発明によれば、第2熱交換器の熱交換性能が第1熱交換器の熱交換性能よりも小さく設定されることにより、第2熱交換器に付着する水滴の量を低減することができる。したがって、第2熱交換器の着霜量の低減により、従来のデフロスト運転のデフロスト運転の動作条件においても、デフロスト運転が動作することを抑制することができるため、デフロスト運転の効率を高めることができる。
【0041】
請求項18に記載の発明は、請求項17に記載の空気調和機において、前記室外側熱交換器は、前記第2熱交換器の熱交換面の面積の合計が前記第1熱交換器の熱交換面の面積の合計よりも小さいことを要旨とする。
【0042】
この発明によれば、第2熱交換器の熱交換面の面積の合計が第1熱交換器の熱交換面の面積の合計より小さいことにより、第2熱交換器に付着する水滴の量を低減することができる。したがって、第2熱交換器の着霜量を低減することができる。
【0043】
請求項19に記載の発明は、プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしての第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、前記第2熱交換器の上下方向における前記第2チューブ同士の間隔が前記第1熱交換器の上下方向における前記第1チューブ同士の間隔よりも大きく設定されることを要旨とする。
【0044】
この発明によれば、第1熱交換器の第1チューブ同士の間隔と比較して、第2熱交換器の第2チューブ同士の間隔が大きくなるように形成されていることにより、第2熱交換器において、第2チューブ同士の間に霜が形成されるのを抑制することができる。したがって、第2熱交換器の着霜量の低減により、従来のデフロスト運転のデフロスト運転の動作条件においても、デフロスト運転が動作することを抑制することができるため、デフロスト運転の効率を高めることができる。
【0045】
請求項20に記載の発明によれば、請求項17〜請求項19のいずれか1項に記載の空気調和機において、当該空気調和機は、前記室外側熱交換器に対してデフロスト運転を行うデフロスト装置をさらに備えるものであり、前記デフロスト装置は、前記第1熱交換器の冷媒制御と前記第2熱交換器の冷媒制御とを個別に行うものであることを要旨とする。
【0046】
この発明によれば、第1熱交換器の冷媒制御と第2熱交換器の冷媒制御とを個別に行うことにより、室外側熱交換器を効率的にデフロストすることができる。したがって、デフロスト運転の効率を高めることができる。
【発明の効果】
【0047】
本発明によれば、滑水性及び撥水性を有する塗膜により熱交換面への着霜を抑制しつつ、さらにデフロスト運転の効率を高めることのできる空気調和機を提供することができる。
【発明を実施するための最良の形態】
【0048】
(第1の実施形態)
図1〜図3を参照して、本発明の空気調和機を具体化した第1の実施形態について説明する。
【0049】
図1に示すように、空気調和機1では、室外側熱交換器2、膨張弁3、室内側熱交換器4、四路切換弁5及び圧縮機6が冷媒配管によって接続されることにより、冷媒回路が構成されている。また、空気調和機1には、膨張弁3、四路切換弁5、及び圧縮機6を制御する制御装置12が備えられる。より具体的には、空気調和機1は、互いに並列に接続された2つの室外側熱交換器2を備えるとともに、冷媒配管において、複数の位置に配設される膨張弁3が制御装置12により制御されることよって、それぞれの室外側熱交換器2が制御される。即ち、それぞれの室外側熱交換器2は、独立に運転される。
【0050】
室外側熱交換器2は、熱交換器上部2aと熱交換器下部2bとから構成される。熱交換器上部2a及び熱交換器下部2bのそれぞれの冷媒配管は、接続点GP1,GP2において、互いに接続されることにより、並列接続される。
【0051】
膨張弁3は、上部膨張弁31、第1下部膨張弁32、及び第2下部膨張弁33を備え、空気調和機1の冷媒回路の複数の位置にそれぞれ配設される。即ち、上部膨張弁31は、接続点GP1と熱交換器上部2aとの間に設けられ、第1下部膨張弁32は、接続点GP1と熱交換器下部2bとの間に設けられ、第2下部膨張弁33は、熱交換器下部2bと接続点GP2との間に設けられる。
【0052】
四路切換弁5は、室内側熱交換器4及び室外側熱交換器2、即ち、室内側熱交換器4及び接続点GP2とそれぞれ接続される。また、圧縮機6は、四路切換弁5と接続されることにより、圧縮機6から冷媒が吐出及び吸入される。また、熱交換器上部2aと熱交換器下部2bとが並列接続されるとともに、熱交換器上部2aには上部膨張弁31、熱交換器下部2bには第1下部膨張弁32がそれぞれ設けられることにより、熱交換器上部2a及び熱交換器下部2bは、それぞれ独立に運転される。即ち、制御装置12によって、上部膨張弁31、第1下部膨張弁32がそれぞれ制御されることによって、熱交換器上部2a及び熱交換器下部2bは、それぞれ独立に運転される。また、制御装置12は、膨張弁3、四路切換弁5、及び圧縮機6を制御することにより、空気調和機1の以下の運転動作を制御する。
【0053】
次に、空気調和機1の運転動作について説明する。空気調和機1は、暖房運転、冷房運転、正サイクルデフロスト運転、及び逆サイクルデフロスト運転を行う。
暖房運転では、四路切換弁5は、図1中の破線側に設定される。この四路切換弁5の状態において、圧縮機6から吐出した冷媒は、四路切換弁5の破線側、室内側熱交換器4、上部膨張弁31及び第1下部膨張弁32、室外側熱交換器2、第2下部膨張弁33、四路切換弁5の破線側の順番で循環して圧縮機6に吸入される。このような冷媒の循環によって、室内側熱交換器4は、凝縮器として動作し、室外側熱交換器2は、蒸発器として動作する。ここで、凝縮器として動作する室内側熱交換器4では、冷媒が室内空気と熱交換を行って凝縮することによって、冷媒は室内空気に対して放熱する。また、蒸発器として動作する室外側熱交換器2では、冷媒は室外空気と熱交換を行って蒸発することによって、冷媒は室外空気から吸熱する。
【0054】
冷房運転では、四路切換弁5は、図1中の実線側に設定される。この四路切換弁5の状態において、圧縮機6から吐出した熱媒体である冷媒は、四路切換弁5の実線側、第2下部膨張弁33、室外側熱交換器2、上部膨張弁31及び第1下部膨張弁32、室内側熱交換器4、四路切換弁5の実線側の順番で循環して圧縮機6に吸入される。このような冷媒の循環によって、室外側熱交換器2は、凝縮器として動作し、室内側熱交換器4は、蒸発器として動作する。ここで、室外側熱交換器2では、冷媒が室外空気と熱交換を行って凝縮することによって、冷媒は室外空気に対して放熱する。また、室内側熱交換器4では、冷媒が室内空気と熱交換を行って蒸発することによって、室内空気は冷媒によって吸熱されて冷却される。
【0055】
正サイクルデフロスト運転では、四路切換弁5は、図1中の破線側に設定される。この四路切換弁5の状態において、圧縮機6の出力を小さくするとともに、膨張弁3である上部膨張弁31及び第1下部膨張弁32を全開にする。そして、室内ファンは、低速回転に制御される。一方、室外ファンは、暖房運転時と同様に運転される。ここで、制御装置12が四路切換弁5、圧縮機6、上部膨張弁31、及び第1下部膨張弁32を制御することにより、空気調和機1に室外側熱交換器2をデフロストするデフロスト装置が構成される。
【0056】
この正サイクルデフロスト運転は、暖房機能を継続しながらデフロストが行われる。即ち、暖房運転時と比較して、低圧の状態で、圧縮機6から吐出した冷媒は、室内側熱交換器4において、室内空気と熱交換させることにより、室内の暖房を行うとともに、冷媒を凝縮させる。そして、室内側熱交換器4を通過した冷媒は、上部膨張弁31及び第1下部膨張弁をそれぞれ介して、室外側熱交換器2の熱交換器上部2a及び熱交換器下部2bにそれぞれ流れる。このとき、熱交換器上部2a及び熱交換器下部2bにそれぞれ流れる冷媒により、室外側熱交換器2の熱交換面であるプレートフィンの表面に付着した水滴が氷結して氷及び霜の形成が抑制されるとともに、プレートフィンの表面に既に形成された氷及び霜が融解される。
【0057】
逆サイクルデフロスト運転では、四路切換弁5は、図1中の実線側に設定される。この四路切換弁5の状態において、圧縮機6の出力を向上させるとともに、膨張弁3である第2下部膨張弁33を全開にする。そして、室外ファン及び室内ファンはそれぞれ停止する。ここで、制御装置12が四路切換弁5、圧縮機6、第2下部膨張弁33を制御することにより、空気調和機1に室外側熱交換器2をデフロストするデフロスト装置が構成される。
【0058】
この逆サイクルデフロスト運転では、暖房運転時の冷媒の循環方向と比較して、冷媒の循環方向が逆転する。即ち、圧縮機6から吐出した冷媒は、四路切換弁5の実線側、室外側熱交換器2、膨張弁3(第2下部熱膨張弁33)、室内側熱交換器4、四路切換弁5の実線側の順番で循環して圧縮機6に吸入される。
【0059】
より具体的には、圧縮機6から吐出した高温の冷媒は、室外側熱交換器2に流れる。そして、高温の冷媒により、室外側熱交換器2の熱交換面であるプレートフィンの表面に付着した氷及び霜が融解される。そして、室外側熱交換器2を通過した冷媒は、室内側熱交換器4に流れた後、四路切換弁5の実線側を介して、圧縮機6に吸入される。また、逆サイクルデフロスト運転時では、暖房運転が停止されている。
【0060】
次に、本実施形態の空気調和機の室外側熱交換器の構造について説明する。
図2に示すように、空気調和機の室外側熱交換器2は、いわゆるクロスフィンチューブ型熱交換器として構成されている。具体的には、室外側熱交換器2は、外気との熱交換を行う熱交換面21が互いに対向して配置される複数のプレートフィン22、即ち、熱交換面21間に一定の間隔が形成される状態で並列に配置される複数のプレートフィン22と、このプレートフィン22の配列方向において、複数のプレートフィン22を貫通する熱交換チューブ24とにより構成されている。プレートフィン22同士の間に形成された空間は、空気を流通させる通路をなし、この通路を通過する空気により熱交換面21にて空気と冷媒との間で熱交換が行われる。以降では、プレートフィン22間における空気の流通方向を空気流通方向Vとする。また、熱交換チューブ24は、プレートフィン22のフィン上部221に設けられた第1チューブ241と、プレートフィン22のフィン下部222に設けられた第2チューブ242とから構成されている。ここで、フィン上部221及び第1チューブ241により、熱交換器上部2aが構成される。また、フィン下部222及び第2チューブ242により、熱交換器下部2bが構成される。なお、本実施形態では、熱交換面21としては、各プレートフィン22の面のうち、熱交換チューブ24を挿入する孔が形成された面をいう。
【0061】
室外側熱交換器2では、各プレートフィン22は、長手方向が上下方向に平行になるように配置されている。また、プレートフィン22は、プレートフィン22の配列方向に沿って配列されるフィン列が、空気流通方向Vに沿って1列配列されている。また、プレートフィン22の表面には、滑水性及び撥水性を有する塗膜が形成されているため、表面処理を施していない熱交換面と比較して滑水性及び撥水性が大きくなっている。また、プレートフィン22の表面に形成された滑水性及び撥水性を有する塗膜は、シリコーン樹脂である特定のオルガノポリシロキサンの100重量部に対して、シラノール基を有するシリコーンオイルである特定のオルガノポリシロキサンを3〜70重量部の割合にて含有する組成物により構成される。なお、プレートフィン22としては、フラットフィン、スリットフィン、ワッフルフィンなど、板状のフィンであればいずれのタイプのフィンであってもよい。
【0062】
次に、図1及び図3を参照して、空気調和機1の室外側熱交換器2におけるデフロスト運転の制御について説明する。以下のデフロスト運転の制御は、空気調和機1の暖房運転時において実行される。
【0063】
図3に示すように、ステップS1において、熱交換器上部2aの温度TH1(℃)(以下、単に「温度TH1」という。)及び熱交換器下部2bの温度TH2(℃)(以下、単に「温度TH2」という。)を測定し、所定のフロスト開始温度Z(℃)以下か否かを判定する。ここで、フロスト開始温度Z(℃)は、熱交換面21であるプレートフィン22の表面に着霜し始める温度である。また、温度TH1及び温度TH2は、熱交換器上部2a及び熱交換器下部2bのそれぞれに温度センサを取り付けることにより測定される。また、空気調和機1には、正サイクルデフロスト運転の回数をカウントするカウンタが備えられている。
【0064】
ステップS1において、温度TH1、もしくは温度TH2の少なくともどちらか一方がフロスト開始温度Z以下である場合(図3のステップS1のYes)、カウンタを初期化する(図3のステップS2)。その後、熱交換器下部2bのみについて、正サイクルデフロスト運転を行う(図3のステップS3)。熱交換器下部2bのみ正サイクルデフロスト運転を行う場合、図1に示す上部膨張弁31を全閉とすることにより、室内側熱交換器4から室外側熱交換器2に供給される冷媒は、熱交換器下部2bのみに供給される。その結果、熱交換器下部2b、即ち、フィン下部222(図2参照)に付着した氷及び霜を融解される。そして、熱交換器下部2bを通過した冷媒は、第2下部膨張弁33により、ガス冷媒となり、圧縮機6に吸入される。
【0065】
一方、ステップS1において、温度TH1、もしくは温度TH2の少なくともどちらか一方がフロスト開始温度Zより高い場合(図3のステップS1のNo)、室外側熱交換器2に着霜されていない、もしくは、室外側熱交換器2の着霜が熱交換能力の低下に大きな影響はないと判断し、デフロスト運転を行わない。
【0066】
ステップS3において、熱交換器下部2bに正サイクルデフロスト運転を行った後、温度TH2を再度測定し、温度TH2がフロスト開始温度Z以下か否かを判定する(図3のステップS4)。
【0067】
ステップS4において、温度TH2がフロスト開始温度Zより高い場合(図3のステップS4のNo)、室外側熱交換器2に着霜されていない、もしくは、室外側熱交換器2の着霜が熱交換能力の低下に大きな影響はないと判断し、再度のデフロスト運転を行わない。
【0068】
一方、ステップS4において、温度TH2がフロスト開始温度Z以下の場合(図3のステップS4のYes)、カウンタがカウントする(図3のステップS5)。そして、カウンタのカウント数が所定のカウント数(以下、「所定値」という。)か否かを判定する(図3のステップS6)。即ち、正サイクルデフロスト運転を所定回数行ったか否かを判定する。なお、本実施形態のカウント数は3である。
【0069】
ステップS6において、カウンタのカウント数が所定値より小さい場合(図3のステップS6のNo)、ステップS3に戻り、再度、熱交換器下部2bに正サイクルデフロスト運転を行う。
【0070】
一方、ステップS6において、カウンタのカウント数が所定値である場合(図3のステップS6のYes)、室外側熱交換器2に逆サイクルデフロスト運転を行う(図3のステップS7)。即ち、カウンタのカウント数が所定値となると、熱交換器下部2bのみを正サイクルデフロスト運転するのみでは、室外側熱交換器2を効率よくデフロストすることができないと判断し、熱交換器上部2a及び熱交換器下部2bに対して、逆サイクルデフロスト運転を行う。正サイクルデフロスト運転と比較して、逆サイクルデフロスト運転は、室外側熱交換器2に供給される冷媒の温度が高いため、プレートフィン22の表面の着霜量を確実に低減することができる。なお、このデフロスト運転の制御は、一定の周期にて繰り返し実行される。また、上記の制御構成により、逆サイクルデフロスト運転は、熱交換器上部2a及び熱交換器下部2bのともに行うが、熱交換器上部2aには、正サイクルデフロスト運転を行わず、熱交換器下部2bにのみ正サイクルデフロスト運転を行うため、熱交換器下部2bに対するデフロスト運転のデフロスト能力と比較して、熱交換器上部2aに対するデフロスト運転のデフロスト能力は高くなる。
【0071】
本実施形態の空気調和機1によれば、以下の効果を奏することができる。
(1)本実施形態の空気調和機1では、熱交換器上部2aと熱交換器下部2bとが互いに独立した系統であり、第1チューブの冷媒制御と第2チューブの冷媒制御とを別個に行うとともに、熱交換器上部2aに対するデフロスト運転のデフロスト能力を熱交換器下部2bに対するデフロスト運転のデフロスト能力よりも小さくする構成とする。この構成によれば、室外側熱交換器2の上部及び下部、即ち、プレートフィン22のフィン上部221及びフィン下部222のそれぞれにデフロスト運転を行うことが可能となるため、室外側熱交換器2に対して行うデフロスト運転の制御の自由度を向上させることができる。したがって、熱交換器上部2aと比較して、着霜量の多い熱交換器下部2bのみをデフロスト運転することが可能となり、フィン下部222において、氷及び霜の形成の抑制を行うことができる。したがって、フィン下部222のみについて、デフロスト運転を行うことができるため、フィン上部221及びフィン下部222の両方にデフロスト運転を実行する場合と比較して、1回当たりのデフロスト運転の時間を短縮することができる。その結果、デフロスト運転に伴う空気調和機の能力の低下度合を抑制することができる。
【0072】
(2)また、本実施形態の空気調和機1では、熱交換器下部2bの正サイクルデフロスト運転が所定回数に達するまで、室外側熱交換器2、即ち、熱交換器上部2a及び熱交換器下部2bに逆サイクルデフロスト運転を行わない制御構成としている。この構成によれば、熱交換器下部2bのデフロスト運転の実行回数と比較して、熱交換器上部2aのデフロスト運転の実行回数が少なくなるため、即ち、熱交換器下部2bと比較して、着霜量の少ない熱交換器上部2aのデフロスト運転の実行回数を減らすことができるため、デフロスト運転の効率を高めることができる。言い換えれば、フィン下部222に位置しているため熱交換器上部2aと比較して霜の形成されやすい熱交換器下部2bに多くデフロスト運転を行うことにより、熱交換器下部2bの霜の成長及び霜の形成を抑制することができる。特に、熱交換器下部2bに正サイクルデフロスト運転を繰り返すことにより、室外側熱交換器2の全体において逆サイクルデフロスト運転を行うことを抑制することができる。その結果、正サイクルデフロスト運転と比較して空気調和機1の能力の低下度合が著しい逆サイクルデフロスト運転を行うことを抑制できるため、デフロスト運転に伴う空気調和機1の能力の低下度合を抑制することができる。
【0073】
(3)本実施形態の空気調和機1では、熱交換器下部2bのみに対してデフロスト運転、即ち、正サイクルデフロスト運転を行う制御構成とする。この構成によれば、熱交換器上部2aと比較して、着霜量の多い熱交換器下部2bのみに対して、デフロスト運転、即ち、正サイクルデフロスト運転を行うため、熱交換器下部2bの霜の成長及び霜の形成を容易に抑制することができる。したがって、熱交換器上部2a及び熱交換器下部2bの両方に正サイクルデフロスト運転を行う場合と比較して、デフロスト運転の効率を高めることができる。また、熱交換器下部2bのみの正サイクルデフロスト運転のみによって、室外側熱交換器2のデフロストが確実にできる場合もあるため、室外側熱交換器2の全体において逆サイクルデフロスト運転を行うことを抑制することができる。即ち、室外側熱交換器2の全体において逆サイクルデフロスト運転の実行回数を低減することができる。その結果、正サイクルデフロスト運転と比較して空気調和機1の能力の低下度合が著しい逆サイクルデフロスト運転を行うことを抑制できるため、デフロスト運転に伴う空気調和機1の能力の低下度合を抑制することができる。また、熱交換器上部2aに着霜されていない状態、もしくは、熱交換器上部2aの着霜量が非常に少ない状態において、熱交換器上部2aに正サイクルデフロスト運転、もしくは、逆サイクルデフロスト運転を行うことが抑制されるため、デフロスト運転の効率を高めることができる。
【0074】
(第2の実施形態)
図4を参照して、本発明の空気調和機を具体化した第2の実施形態について説明する。なお、本実施形態の空気調和機と第1の実施形態の空気調和機とは、デフロスト運転の制御のみが相違しているため、同一の構成要素には同一符号を用いてその説明は省略する。
【0075】
図4に示すように、ステップS10において、まず室外側熱交換器2の熱交換器下部2bの温度TH2(t)(℃)を測定するとともに、熱交換器下部2bを一定の周期毎に測定された温度TH2(t−1)(℃)と温度TH2(t)との差を計算する。そして、温度TH2(t−1)と温度TH2(t)との差が閾値X(℃)以上か否かを判定する。ここで、温度TH2(t−1)は、一定の周期において、温度TH2(t)が測定される直前に測定された温度である。
【0076】
このとき、温度TH2(t−1)と温度TH2(t)との差の値が閾値Xより小さい場合(図4のステップS10のNo)、熱交換器下部2bに霜が形成されていないと判定する。なお、本実施形態では、閾値Xを約2℃としている。一方、温度TH2(t−1)と温度TH2(t)との差の値が閾値X以上である場合(図4のステップS10のYes)、熱交換器下部2bに霜が形成されていると判定する。そして、ステップS11に移行する。
【0077】
ステップS11において、室外側熱交換器2の熱交換器上部aの温度TH1(t)(℃)を測定するとともに熱交換器上部2aを一定の周期毎に測定された温度TH1(t−1)(℃)と温度TH1(t)との差を計算する。そして、温度TH1(t−1)と温度TH1(t)との差が閾値Y(℃)以上か否かを判定する。ここで、温度TH1(t−1)は、一定の周期において、温度TH1(t)が測定される直前に測定された温度である。
【0078】
このとき、温度TH1(t−1)と温度TH1(t)との差の値が閾値Yより小さい場合(図4のステップS11におけるNo)、熱交換器上部2aに霜が形成されていないと判定する。なお、本実施形態では、閾値Yを約5℃としている。この場合、ステップS10及びステップS11より、熱交換器下部2bのみ霜が形成されていると判定されるため、熱交換器下部2bのみに正サイクルデフロスト運転が行われる(図4のステップS12)。
【0079】
熱交換器下部2bに正サイクルデフロスト運転が行われた後、熱交換器下部2bの温度TH2を測定する。そして、温度TH2がフロスト開始温度Z(℃)以上か否かを判定する(図4のステップS13)。
【0080】
ステップS13において、温度TH2がフロスト開始温度Z(℃)以上である場合(図4のステップS13におけるYes)、デフロスト運転は行われない。一方、温度TH2がフロスト開始温度Zより低い場合(図4のステップS13におけるNo)、再度、熱交換器下部2bに正サイクルデフロスト運転が行われる。
【0081】
ステップS11において、温度TH1(t−1)と温度TH1(t)との差の値が閾値Y以上である場合(図4のステップS11におけるYes)、ステップS10及びステップS11より、熱交換器上部2a及び熱交換器下部2bのともに霜が形成されていると判定されるため、熱交換器上部2a及び熱交換器下部2bに逆サイクルデフロスト運転が行われる(図4のステップS14)。なお、このデフロスト運転の制御は、一定の周期にて繰り返し実行される。また、上記の制御構成により、逆サイクルデフロスト運転は、熱交換器上部2a及び熱交換器下部2bのともに行うが、熱交換器上部2aには、正サイクルデフロスト運転を行わず、熱交換器下部2bにのみ正サイクルデフロスト運転を行うため、熱交換器下部2bに対するデフロスト運転のデフロスト能力と比較して、熱交換器上部2aに対するデフロスト運転のデフロスト能力は高くなる。
【0082】
なお、本発明の第2の実施形態の空気調和機1によれば、第1の実施形態の効果(1)に加え、以下の効果を奏することができる。
(4)滑水性及び撥水性を有した塗膜を熱交換面21に設けた室外側熱交換器2では、熱交換器上部2aと比較して熱交換器下部2bの着霜量が多いため、熱交換器上部2aには着霜されていないが、熱交換器下部2bのみに着霜されている状態が考えられる。このような熱交換器下部2bのみ着霜されている場合、本実施形態の空気調和機1では、熱交換器上部2aの温度差にかかわらず、熱交換器下部2bの温度差が所定条件(閾値X以上)の場合に、熱交換器下部2bのみを正サイクルデフロスト運転を行うため、熱交換器下部2bのみデフロストすることができる。したがって、熱交換器下部2bのみの正サイクルデフロスト運転のみによって、室外側熱交換器2のデフロストが確実にできる場合もあるため、室外側熱交換器2の全体において逆サイクルデフロスト運転を行うことを抑制することができる。即ち、室外側熱交換器2の全体において逆サイクルデフロスト運転の実行回数を低減することができる。その結果、正サイクルデフロスト運転に伴う空気調和機1の能力の低下度合を抑制することができる。また、熱交換器上部2aに着霜されていない状態、もしくは、熱交換器上部2aの着霜量が非常に少ない状態において、熱交換器上部2aに正サイクルデフロスト運転、もしくは、逆サイクルデフロスト運転を行うことが抑制されるため、デフロスト運転の効率を高めることができる。
【0083】
(第3の実施形態)
図5を参照して、本発明の空気調和機を具体化した第3の実施形態について説明する。なお、本実施形態の空気調和機と第1の実施形態の空気調和機とは、室外側熱交換器2の構造のみが相違しているため、同一の構成要素には同一符号を用いてその説明を省略する。
【0084】
図5に示すように、室外側熱交換器2の熱交換器下部2bのプレートフィン22の一部は、切断されている。即ち、プレートフィン22のフィン上部221のプレートフィン22のフィンピッチP1と比較して、プレートフィン22のフィン下部222のプレートフィン22のフィンピッチP2が大きく形成されている。ここで、プレートフィン22のフィンピッチとは、プレートフィン22の配列方向において、隣り合うプレートフィン22の間の距離をいう。また、言い換えると、プレートフィン22は、熱交換器下部2bの熱交換面であるフィン下部222の面積の合計が、熱交換器上部2aの熱交換面であるフィン上部221の面積の合計よりも小さくなるように形成される。
【0085】
本発明の第3の実施形態の空気調和機1によれば、以下の効果を奏することができる。
(1)本実施形態の空気調和機1では、室外側熱交換器2のプレートフィン22のフィン上部221のプレートフィン22のフィンピッチP1と比較して、プレートフィン22のフィン下部222のプレートフィン22のフィンピッチP2が大きく形成される構成とする。この構成によれば、プレートフィン22の配列方向において、隣り合うフィン上部221の距離が隣り合うフィン下部222の距離よりも大きいため、フィン上部221の熱交換能力と比較して、フィン下部222の熱交換能力が小さくなる。したがって、フィン上部221に付着する水滴の量と比較して、フィン下部222に付着する水滴の量が低減されるため、フィン下部222の着霜量を低減することができる。
【0086】
(2)特に、プレートフィン22の配列方向において、隣り合うフィン上部221の距離が隣り合うフィン下部222の距離よりも大きいため、フィン下部222に霜が形成された場合、プレートフィン22の配列方向において、隣り合うフィン下部222の間に霜が連結するのを抑制することができる。したがって、フィン下部222からフィン上部221へ成長する霜の量を抑制することができる。
【0087】
(3)また、プレートフィン22は、フィン下部222の面積の合計が、フィン上部221の面積の合計よりも小さくなるように形成されるため、フィン上部221に付着する水滴の量と比較して、フィン下部222に付着する水滴の量を低減することができる。したがって、フィン上部221と比較して、フィン下部222の着霜量を低減することができる。
【0088】
(第4の実施形態)
図6を参照して、本発明の空気調和機を具体化した第4の実施形態について説明する。なお、本実施形態の空気調和機と第1の実施形態の空気調和機とは、室外側熱交換器2の構造のみ相違するため、同一構成要素には同一符号を用いてその説明を省略する。
【0089】
図6に示すように、室外側熱交換器2において、熱交換器上部2aの第1チューブ241のピッチP3と比較して、熱交換器下部2bの第2チューブ242のピッチP4が大きくなるように形成されている。ここで、熱交換チューブのピッチとは、図6に示す室外側熱交換器2の上下方向において、隣り合う熱交換チューブのプレートフィン22を通過する部分の距離をいう。
【0090】
本実施形態の空気調和機によれば、第3の実施形態の空気調和機の効果(1)と同様の効果を奏することに加え、以下の効果を奏することができる。
(4)本実施形態の空気調和機1では、第1チューブ241のピッチP3と比較して、第2チューブ242のピッチP4が大きくなる構成とする。この構成によれば、フィン下部222に霜が形成された場合、図6に示す室外側熱交換器2の上下方向において、第1チューブ241のピッチP3と比較して、第2チューブ242のピッチP4の間に対して霜が連結するのを抑制することができる。したがって、フィン下部222からフィン上部221へ成長する霜の量を抑制することができる。
【0091】
(第5の実施形態)
図7を参照して、本発明の空気調和機を具体化した第5の実施形態について説明する。なお、本実施形態の空気調和機と第1の実施形態の空気調和機とは、冷媒回路の構成のみが相違し、室外側熱交換器の構造は同一であるため、同一構成要素には同一符号を用いて、その説明を省略する。また、空気調和機の冷媒回路についても同一構成要素には同一符号を用いてその説明を省略し、第1の実施形態の冷媒回路と異なる点についてのみ説明する。
【0092】
図7に示すように、空気調和機1では、四路切換弁5と室内側熱交換器4との間の接続点GP3、及び熱交換器下部2bと第1下部膨張弁32との間の接続点GP4を結ぶバイパス回路7が形成されている。このバイパス回路7には、電磁弁71が設けられる。また、熱交換器下部2bと接続点GP2と間には、熱交換器下部2bと接続点GP2とを結ぶ冷媒配管と並列接続するように逆止弁8及びキャピラリーチューブ9が設けられる。これら逆止弁8及びキャピラリーチューブ9により、熱交換器下部2bを通過した冷媒は減圧される。また、制御装置12は、上部膨張弁31、第1下部膨張弁32、四路切換弁5、圧縮機6、及び電磁弁71を制御することにより、空気調和機1の以下の運転動作を制御する。
【0093】
次に空気調和機1の各運転について説明する。
暖房運転では、空気調和機1は電磁弁71及び逆止弁8を全閉にする。これにより、圧縮機6から吐出した高圧の冷媒は、バイパス回路7を通らず、室内側熱交換器4へ供給されるとともに、熱交換器下部2bを通過した冷媒が、キャピラリーチューブ9を通らず、接続点GP2へ供給される。これにより、第1の実施形態の冷媒回路と同様の暖房運転が行われる。
【0094】
冷房運転では、空気調和機1は、電磁弁71を全閉にする。また、逆止弁8が設けられることにより、圧縮機6から吐出された冷媒は、キャピラリーチューブ9を介して熱交換器下部2bに供給されることはない、即ち、圧縮機6から吐出された冷媒は、直接、熱交換器下部2bに供給される。これにより、第1の実施形態の冷媒回路と同様の冷房運転が行われる。
【0095】
正サイクルデフロスト運転、特に熱交換器下部2bのみの正サイクルデフロスト運転では、電磁弁71を全開にする。これにより、圧縮機6から吐出する高圧の冷媒は、室内側熱交換器4及びバイパス回路7に供給される。ここで、上部膨張弁31は、スーパーヒート制御が行われ、室内側熱交換器4を通過した冷媒を減圧する。
【0096】
そして、室内側熱交換器4を通過した冷媒は、上部膨張弁31により減圧された状態にて、熱交換器上部2aに供給される。また、バイパス回路7に供給された冷媒は、電磁弁71を通過して、熱交換器下部2bに供給される。したがって、熱交換器下部2bには、圧縮機6から吐出した高圧の冷媒の状態にて、供給される。これにより、熱交換器下部2bに付着した氷及び霜は融解される。これにより、室内側熱交換器4を通過した冷媒を減圧することなく、熱交換器上部2aに供給されるため、熱交換器上部2aに付着した氷及び霜は融解される。また、制御装置12が四路切換弁5、圧縮機6、上部膨張弁31、第1下部膨張弁32、及び電磁弁71を制御することにより、空気調和機1の室外側熱交換器2に正サイクルデフロスト運転を行うデフロスト装置が構成される。
【0097】
ここで、正サイクルデフロスト運転は、暖房運転中において、圧縮機6から室内側熱交換器4に供給される高圧の冷媒の一部をバイパス回路7に供給することによって行われる。即ち、暖房運転と同時に、正サイクルデフロスト運転が行われる。
【0098】
逆サイクルデフロスト運転では、空気調和機1は電磁弁71を全閉にする。また、逆止弁8が設けられることにより、圧縮機6から吐出された冷媒は、キャピラリーチューブ9を介して熱交換器下部2bに供給されることはない、即ち、圧縮機6から吐出された冷媒は、直接、熱交換器下部2bに供給される。これにより、第1の実施形態の冷媒回路と同様の逆サイクルデフロスト運転が行われる。また、制御装置12が四路切換弁5、圧縮機6、上部膨張弁31、第1下部膨張弁32、及び電磁弁71を制御することにより、空気調和機1の室外側熱交換器2に逆サイクルデフロスト運転を行うデフロスト装置が構成される。
【0099】
本実施形態の空気調和機1によれば、第1の実施形態の効果(1)〜(3)に加え、以下の効果を奏することができる。
(4)本実施形態の空気調和機1では、四路切換弁5と室内側熱交換器4との間の接続点GP3、及び熱交換器下部2bと第1下部膨張弁32との間の接続点GP4を結ぶバイパス回路7が形成されている構成とする。この構成によれば、空気調和機1が暖房運転している間においても、バイパス回路7により、熱交換器下部2bに対して正サイクルデフロスト運転を行うことができる。即ち、空気調和機1は、暖房運転と正サイクルデフロスト運転とを同時に行うことができる。したがって、室内の暖房快感度の低下を抑制するとともに、室外側熱交換器2をデフロストすることができる。
【0100】
(5)特に、本実施形態のデフロスト運転の制御構成は、第1の実施形態のデフロスト運転の制御構成と同じであるため、熱交換器上部2aに対するデフロスト運転のデフロスト能力は、熱交換器下部2bに対するデフロスト運転のデフロスト能力よりも小さくなるように設定される。したがって、逆サイクルデフロスト運転を行われる頻度が低いため、暖房運転を継続しつつも、室外側熱交換器2のデフロストを行うことができる。
【0101】
(第6の実施形態)
図8を参照して、本発明の空気調和機を具体化した第6の実施形態について説明する。なお、本実施形態の空気調和機と第1の実施形態の空気調和機とは、冷媒回路の構成のみが相違し、室外側熱交換器の構造は同一であるため、同一構成要素には同一符号を用いて、その説明を省略する。また、空気調和機の冷媒回路についても同一構成要素には同一符号を用いてその説明を省略し、第1の実施形態の冷媒回路と異なる点についてのみ説明する。
【0102】
図8に示すように、空気調和機1では、熱交換器下部2bと接続点GP2との間の接続点GP5、及び上部膨張弁31と熱交換器上部2aとの間の接続点GP6を接続するバイパス回路10が設けられる。そして、バイパス回路10には、中間膨張弁11が設けられる。また、接続点GP5と接続点GP2との間には、第1の実施形態の第2下部膨張弁33に替わり、電磁弁34が設けられる。また、制御装置12は、中間膨張弁11、上部膨張弁31、第1下部膨張弁32、四路切換弁5、圧縮機6、及び電磁弁34を制御することにより、空気調和機1の以下の運転動作を制御する。
【0103】
次に、空気調和機1の各運転について説明する。
暖房運転では、空気調和機1は、中間膨張弁11を閉じるとともに、電磁弁34を所定量開いた状態とする。これにより、熱交換器下部2bを通過した冷媒が、バイパス回路10を介して、熱交換器上部2aに供給されることはない、即ち、熱交換器下部2bを通過した冷媒は、接続点GP2において、熱交換器上部2aを通過した冷媒と合流する。これにより、第1の実施形態の冷媒回路と同様の暖房運転が行われる。
【0104】
冷房運転では、空気調和機1は、中間膨張弁11を閉じる。これにより、圧縮機6から吐出された冷媒は、バイパス回路10を介して、上部膨張弁31に供給されることはない。即ち、電磁弁34を通過した冷媒は、熱交換器下部2b及び第1下部膨張弁32を介して接続点GP1において、熱交換器上部2a及び上部膨張弁31を通過した冷媒と合流する。これにより、第1の実施形態の冷媒回路と同様の冷房運転が行われる。
【0105】
正サイクルデフロスト運転、特に熱交換器下部2bのみの正サイクルデフロスト運転では、空気調和機1は、電磁弁34を全閉するとともに、中間膨張弁11をスーパーヒート制御を行う。また、第1下部膨張弁32及び中間膨張弁11は、接続点GP6において、第1下部膨張弁32を通過した冷媒の圧力と中間膨張弁11を通過した冷媒の圧力とが略等しくなるように制御される。
【0106】
そして、室内側熱交換器4を通過した冷媒は、上部膨張弁31及び第1下部膨張弁32を介して、熱交換器上部2a及び熱交換器下部2bにそれぞれ供給される。また、熱交換器下部2bを通過した冷媒は、バイパス回路10の中間膨張弁11を介して接続点GP6に供給されるとともに、上部膨張弁31を通過した冷媒と合流して、熱交換器上部2aに供給される。これにより、熱交換器下部2bに付着した氷及び霜は融解される。なお、熱交換器上部2aを同時に正サイクルデフロスト運転を行う場合、空気調和機1は、中間膨張弁11を全閉とするとともに、上部膨張弁31及び電磁弁34を全開とする。これにより、熱交換器上部2aに付着した氷及び霜は融解される。また、制御装置12が四路切換弁5、圧縮機6、中間膨張弁11、上部膨張弁31、第1下部膨張弁32、及び電磁弁34を制御することにより、空気調和機1の室外側熱交換器2に正サイクルデフロスト運転を行うデフロスト装置が構成される。
【0107】
逆サイクルデフロスト運転では、空気調和機1は、電磁弁34を全開とするとともに、中間膨張弁11を全閉とする。これにより、電磁弁34を通過した冷媒が、バイパス回路10を介して、上部膨張弁31に供給されることがない、即ち、電磁弁34を通過した冷媒は、熱交換器下部2b及び第1下部膨張弁32を介して接続点GP1に供給される。これにより、第1の実施形態の冷媒回路と同様の逆サイクルデフロスト運転が行われる。また、制御装置12が四路切換弁5、圧縮機6、中間膨張弁11、上部膨張弁31、第1下部膨張弁32、及び電磁弁34を制御することにより、空気調和機1の室外側熱交換器2に逆サイクルデフロスト運転を行うデフロスト装置が構成される。なお、本実施形態によれば、第1の実施形態と同様の効果を奏することができる。
【0108】
(その他の変形例)
なお、本発明の実施態様は、上記各実施形態に例示した態様に限られるものではなく、これを例えば、以下のように変更することもできる。
【0109】
・本発明の空気調和機1では、プレートフィン22のフィン上部221及びフィン下部222が連結した、即ち、フィン上部221及びフィン下部222が単一に構成されたが、本発明は、これに限定されることはない。例えば、フィン上部221及びフィン下部222が図2(b)、図5及び図6における一点鎖線にて切り離された、即ち、フィン上部221及びフィン下部222が別部材であってもよい。この場合、フィン上部221、第1チューブにて構成された熱交換器上部が第1熱交換器となる。また、フィン下部222、第2チューブにて構成された熱交換器下部が第2熱交換器となる。
【0110】
・本発明の空気調和機1では、熱交換器下部2bのみに正サイクルデフロスト運転を行ったが、本発明は、これに限定されることはなく、次のように変更が可能である。即ち、熱交換器下部2bのみに正サイクルデフロスト運転を行うことに替えて、熱交換器下部2bのみに逆サイクルデフロスト運転を行ってもよい。また、熱交換器下部2bのみではなく、熱交換器上部2aにも正サイクルデフロスト運転を行ってもよい。この場合、次のようにデフロスト運転を設定してもよい。即ち、熱交換器上部2aに対してデフロスト運転を行う際の冷媒流量(即ち、単位時間当たりに流す冷媒の量)を熱交換器下部2bに対してデフロスト運転を行う際の冷媒流量よりも少なくすることにより、熱交換器上部2aのデフロスト能力は、熱交換器下部2bのデフロスト能力よりも小さく設定されてもよい。また、熱交換器下部2bのデフロスト運転の実行回数と比較して、熱交換器上部2aのデフロスト運転の実行回数を低減してもよい。また、熱交換器上部2aに対するデフロスト運転の1回当たりの実行時間を熱交換器下部2bに対するデフロスト運転の1回当たりの実行時間よりも短くしてもよい。
【0111】
・本発明の空気調和機1では、室外側熱交換器2として、クロスフィンアンドチューブ型を用いたが、本発明はこれに限定されることはない。プレートフィン22を貫通する熱交換チューブにより冷媒を循環させる構造であれば、他の態様であってもよい。
【0112】
・本発明の第3の実施形態の空気調和機1では、熱交換器下部2bの熱交換能力を低下させる手段として、第3の実施形態に示すように、熱交換器上部2aのプレートフィン22のフィンピッチP1と比較して、熱交換器下部2bのプレートフィン22のフィンピッチP2を大きくしたり、第4の実施形態に示すように、熱交換器上部2aの第1チューブ241のピッチP3と比較して、熱交換器下部2bの第2チューブ242のピッチP4を大きくしたりしたが、例えば、次ぎのように変形してもよい。即ち、熱交換器下部2bの熱交換能力を低下させる手段として、これらフィンピッチP1及びフィンピッチP2と、ピッチP3及びピッチP4とをそれぞれ等しくするとともに、第1チューブ241に流れる冷媒の流量と比較して、第2チューブ242に流れる冷媒の流量を小さくしてもよい。
【0113】
・本発明の第3の実施形態の空気調和機1では、熱交換器上部2aのプレートフィン22のフィンピッチP1と比較して、熱交換器下部2bのプレートフィン22のフィンピッチP2を大きくさせるため、プレートフィン22の配列方向において、フィン下部222を交互に切断したが、本発明はこれに限られることはなく、次のように変更してもよい。例えば、第3の実施形態のフィン下部222の切断する数に対して、より多く切断しても、より少なく切断してもよい。また、第3の実施形態では、フィン下部222の全体を切断したが、これに限られることなく、フィン下部222の一部のみを切断してもよい。上記の変更した構成においても、第3の実施形態の効果(1)〜(3)と同様の効果は得られる。
【0114】
・本発明の第4の実施形態の空気調和機1では、第1チューブ241のピッチP3と比較して、第2チューブ242の各ピッチP4を全て大きく形成したが、本発明はこれに限られることはなく、次のような変更でもよい。即ち、第2チューブ242のピッチP4の一部を大きく形成してもよい。上記の変更した構造においても、第4の実施形態の効果(6)と同様の効果は得られる。また、第4の実施形態の空気調和機1では、プレートフィン22の上下方向において、第1チューブ241がフィン上部221を貫通する部位の本数、即ち、プレートフィン22の配列方向に沿って延びる第1チューブ241の部位の数が4本であり、第2チューブ242がフィン下部222を貫通する部位の本数も4本であったが、これに変えて、第2チューブ242がフィン下部222を貫通する部位の本数を第1チューブ241がフィン上部221を貫通する部位の本数よりも少なく設定してもよい。例えば、第2チューブ242がフィン下部222を貫通する部位の本数を2本としてもよい。上記の変更した構造においても、第4の実施形態の効果(4)と同様の効果は得られる。
【0115】
・本発明の第5の実施形態の空気調和機1では、熱交換器下部2b及び接続点GP2との間において、逆止弁8及びキャピラリーチューブ9が設けられたが、例えば、逆止弁8及びキャピラリーチューブ9に替えて膨張弁を設けてもよい。
【0116】
・本発明の第5の実施形態の空気調和機1では、バイパス回路7に、電磁弁71が設けられたが、例えば、図9に示すように、電磁弁71に替えて逆止弁72及びキャピラリーチューブ73を設けてもよい。図9の冷媒回路において、暖房運転では、キャピラリーチューブ73から通過した冷媒の圧力が、第1下部膨張弁32を通過した冷媒の圧力より小さくなるように、キャピラリーチューブ73の減圧量及び第1下部膨張弁32の開度を調整する。これにより、圧縮機6から吐出した冷媒は、バイパス回路7を介して、熱交換器下部2bに供給されることを防ぐ。なお、冷房運転、正サイクルデフロスト運転、及び逆サイクルデフロスト運転は、空気調和機1の第5の実施形態と同様に行われる。
【0117】
・本発明の第6の実施形態の空気調和機1では、熱交換器下部2bと接続点GP2との間に電磁弁34が設けられたが、例えば、電磁弁34に替えて三方弁を設けてもよい。
【図面の簡単な説明】
【0118】
【図1】本発明の空気調和機を具体化した第1の実施形態について、空気調和機の冷媒回路を示す回路図。
【図2】(a)同実施形態の空気調和機について、室外側熱交換器を熱交換面に沿った平面にて切った断面構造を示す断面図。(b)同実施形態について、室外側熱交換器の正面構造を示す正面図。
【図3】同実施形態の空気調和機のデフロスト運転について、その処理手順を示すフローチャート。
【図4】本発明の空気調和機を具体化した第2の実施形態について、空気調和機のデフロスト運転の処理手順を示すフローチャート。
【図5】本発明の空気調和機を具体化した第3の実施形態について、室外側熱交換器の正面構造を示す正面図。
【図6】本発明の空気調和機を具体化した第4の実施形態について、室外側熱交換器の正面構造を示す正面図。
【図7】本発明の空気調和機を具体化した第5の実施形態について、空気調和機の冷媒回路を示す回路図。
【図8】本発明の空気調和機を具体化した第6の実施形態について、空気調和機の冷媒回路を示す回路図。
【図9】本発明の空気調和機にかかるその他の実施形態について、空気調和機の冷媒回路を示す回路図。
【図10】従来の空気調和機について、プレートフィンの熱交換面に沿う断面構造を示す断面図。
【符号の説明】
【0119】
1…空気調和機、2…室外側熱交換器、2a…熱交換器上部、2b…熱交換器下部、8…逆止弁、9…キャピラリーチューブ、10…バイパス回路、11…中間膨張弁、12…制御装置、21…熱交換面、22…プレートフィン、24…熱交換チューブ、3…膨張弁、31…上部膨張弁、32…第1下部膨張弁、33…第2下部膨張弁、34…電磁弁、4…室内側熱交換器、5…四路切換弁、6…圧縮機、7…バイパス回路、71…電磁弁、72…逆止弁、73…キャピラリーチューブ、221…上部、222…下部、241…第1チューブ、242…第2チューブ。

【特許請求の範囲】
【請求項1】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記デフロスト装置は、前記熱交換器上部の冷媒制御と前記熱交換器下部の冷媒制御とを個別に行うとともに、前記熱交換器上部に対するデフロスト運転のデフロスト能力を前記熱交換器下部に対するデフロスト運転のデフロスト能力よりも小さくするものである
ことを特徴とする空気調和機。
【請求項2】
請求項1に記載の空気調和機において、
前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転の実行回数を前記熱交換器下部に対するデフロスト運転の実行回数よりも少なくする
ことを特徴とする空気調和機。
【請求項3】
請求項1または請求項2に記載の空気調和機において、
前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転の1回当たりの実行時間を前記熱交換器下部に対するデフロスト運転の1回当たりの実行時間よりも短くする
ことを特徴とする空気調和機。
【請求項4】
請求項1〜請求項3のいずれか1項に記載の空気調和機において、
前記デフロスト装置は、前記熱交換器上部に対するデフロスト運転時の前記熱交換器上部の冷媒流量を前記熱交換器下部に対するデフロスト運転時の前記熱交換器下部の冷媒流量よりも少なくする
ことを特徴とする空気調和機。
【請求項5】
請求項1〜請求項4のいずれか1項に記載の空気調和機において、
前記デフロスト装置は、当該空気調和機の暖房運転がなされていることを条件に、前記熱交換器上部に対するデフロスト運転のデフロスト能力を前記熱交換器下部に対するデフロスト運転のデフロスト能力よりも必ず小さくする
ことを特徴とする空気調和機。
【請求項6】
請求項1に記載の空気調和機において、
前記デフロスト装置は、前記熱交換器下部に対してのみデフロスト運転を行う
ことを特徴とする空気調和機。
【請求項7】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器を備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記熱交換器下部の熱交換性能が前記熱交換器上部の熱交換性能よりも小さく設定される
ことを特徴とする空気調和機。
【請求項8】
請求項6または請求項7に記載の空気調和機において、
前記室外側熱交換器は、前記熱交換器下部の熱交換面の面積の合計が前記熱交換器上部の熱交換面の面積の合計より小さい
ことを特徴とする空気調和機。
【請求項9】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器を備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部としてその上部に位置するフィン上部、及び前記フィン上部を貫通する前記熱交換チューブとしての第1チューブとを含む熱交換器上部と、この熱交換器上部の下方に位置するものであって、前記プレートフィンの一部としてその下部に位置するフィン下部、及び前記フィン下部を貫通する前記熱交換チューブとしての第2チューブとを含む熱交換器下部とに区分され、これら熱交換器上部及び熱交換器下部を含めて単一の熱交換器をなすとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記熱交換器下部の上下方向における前記第2チューブ同士の間隔が前記熱交換器上部の上下方向における前記第1チューブ同士の間隔よりも大きく設定される
ことを特徴とする空気調和機。
【請求項10】
請求項7〜請求項9のいずれか1項に記載の空気調和機において、
当該空気調和機は、前記室外側熱交換器に対してデフロスト運転を行うデフロスト装置をさらに備えるものであり、
前記デフロスト装置は、前記熱交換器上部の冷媒制御と前記熱交換器下部の冷媒制御とを個別に行うものである
ことを特徴とする空気調和機。
【請求項11】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしての第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記デフロスト装置は、前記第1熱交換器の冷媒制御と前記第2熱交換器の冷媒制御とを個別に行うとともに、前記第1熱交換器に対するデフロスト運転のデフロスト能力を前記第2熱交換器に対するデフロスト運転のデフロスト能力よりも小さくするものである
ことを特徴とする空気調和機。
【請求項12】
請求項11に記載の空気調和機において、
前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転の実行回数を前記第2熱交換器に対するデフロスト運転の実行回数よりも少なくする
ことを特徴とする空気調和機。
【請求項13】
請求項11または請求項12に記載の空気調和機において、
前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転の1回当たりの実行時間を前記第2熱交換器に対するデフロスト運転の1回当たりの実行時間よりも短くする
ことを特徴とする空気調和機。
【請求項14】
請求項11〜請求項13のいずれか1項に記載の空気調和機において、
前記デフロスト装置は、前記第1熱交換器に対するデフロスト運転時の前記第1熱交換器の冷媒流量を前記第2熱交換器に対するデフロスト運転時の前記第2熱交換器の冷媒流量よりも少なくする
ことを特徴とする空気調和機。
【請求項15】
請求項11〜請求項14のいずれか1項に記載の空気調和機において、
前記デフロスト装置は、当該空気調和機の暖房運転がなされていることを条件に、前記第1熱交換器に対するデフロスト運転のデフロスト能力を前記第2熱交換器に対するデフロスト能力よりも必ず小さくする
ことを特徴とする空気調和機。
【請求項16】
請求項11に記載の空気調和機において、
前記デフロスト装置は、前記第2熱交換器に対してのみデフロスト運転を行う
ことを特徴とする空気調和機。
【請求項17】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしても第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記第2熱交換器の熱交換性能が前記第1熱交換器の熱交換性能よりも小さく設定される
ことを特徴とする空気調和機。
【請求項18】
請求項17に記載の空気調和機において、
前記室外側熱交換器は、前記第2熱交換器の熱交換面の面積の合計が前記第1熱交換器の熱交換面の面積の合計よりも小さい
ことを特徴とする空気調和機。
【請求項19】
プレートフィンを貫通する熱交換チューブにより冷媒を循環させるとともに滑水性及び撥水性を有する塗膜が前記プレートフィンの熱交換面に設けられる室外側熱交換器と、この室外側熱交換器に対してデフロスト運転を行うデフロスト装置とを備える空気調和機において、
前記室外側熱交換器は、前記プレートフィンの一部として上方に設けられる第1フィン、及び前記第1フィンを貫通する前記熱交換チューブとしての第1チューブとを含めて構成される第1熱交換器と、この第1熱交換器の下方に設けられるものであって、前記プレートフィンの一部として下方に設けられる第2フィン、及び前記第2フィンを貫通する前記熱交換チューブとしての第2チューブとを含めて構成される第2熱交換器とを備えるとともに、前記第1チューブと前記第2チューブとが互いに独立した系統として構成されるものであり、
前記第2熱交換器の上下方向における前記第2チューブ同士の間隔が前記第1熱交換器の上下方向における前記第1チューブ同士の間隔よりも大きく設定される
ことを特徴とする空気調和機。
【請求項20】
請求項17〜請求項19のいずれか1項に記載の空気調和機において、
当該空気調和機は、前記室外側熱交換器に対してデフロスト運転を行うデフロスト装置をさらに備えるものであり、
前記デフロスト装置は、前記第1熱交換器の冷媒制御と前記第2熱交換器の冷媒制御とを個別に行うものである
ことを特徴とする空気調和機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−60183(P2010−60183A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2008−225100(P2008−225100)
【出願日】平成20年9月2日(2008.9.2)
【出願人】(000002853)ダイキン工業株式会社 (7,604)
【Fターム(参考)】