説明

空調空気吹出しダクト装置

【課題】吹出口の構成が簡単であり、また、吹出量の調整も簡単な空調空気吹出しダクト装置を提供することを課題としている。
【解決手段】一端側に空調機からの空調空気を送風し、他端側を閉鎖したダクトの中間路に複数の空調空気の吹出口を設けた空調空気吹出しダクト装置において、前記ダクトは断面が矩形のダクトで構成し、前記各吹出口は前記ダクトの下側板に吹出用の孔を設け、該孔の下方から内側面に雌ネジを切った固定部材を該下側板の下面に固設し、該固定部材の雌ネジと螺号する雄ネジを外側面に切った筒状部材をダクト内方へ挿入可能に設け、該筒状部材は上側端部に水平な開口を有し、下端部に吹出口を設け、該水平な開口のダクト内方への差込長さを調節自在に設けたことを特徴としている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、ダクトの長さ方向に複数の空調空気吹出口を設け、各空調空気吹出口から吹出す空気量を均等にした空調空気吹出しダクト装置に関する。
【背景技術】
【0002】
例えば大空間やインテリアゾーンなどの空調対象空間に、複数個の空気吹出口を延長方向に所定のピッチで設けた空調用ダクトを使用して空調対象空間内を均一に空調するダクト装置においては、全ての空気吹出口からの空気量を均等に吹出すダクト装置を使用したいとするニーズがある。しかし、同じ開口面積の吹出口を、空調用ダクト下端に等間隔に配置し、各吹出口の形状等を全く同じ構成にしても吹出量を均等にするのは困難である。特に、長さ方向に直交する断面形状について、空調用ダクトの基から先端まで同じ形状・寸法とする空調ダクトの場合、吹き出し量を均等にするのは顕著に困難になる。
この主な原因として、以下の3点が考えられる。 その1)空調ダクトの元側に備わる空調機が内蔵する送風機から吐出される、全ての空気吹出口から吹き出す空気量の合算量を同じ断面積のダクト内を通過させるため、まだ空気吹出口から空気量が減少していないダクト元側は、ダクト末端と比較して高速となる。元側に設けた空気吹出口上方ダクト内のダクト延長方向速度が大、つまり動圧が大となり、そこまでの摩擦抵抗を無視すると、送風機で生じた全圧のうちのその位置における動圧が占める割合が大きく、トレードオフとしてダクトの周囲へ押し出す静圧は小さくなっている。よって、ダクト内静圧が小さいことにより元側の空気吹出口からの吹き出しが弱く、風量が小さくなる。 その2)ダクトの延長方向に配置される各空気吹出口から空調空気の一部が流出していくと、その後流の空調ダクト内を流れる空気量が減少し、空気の流速が減少するものの、ダクトの長さ方向直交断面形状が同じ、つまりダクト断面積が同じなので、動圧が小さくなっていくものの、全圧も空気量減少分小さくなっていくので、静圧が上昇しない。 その3)ダクトの元側から中間に掛けての空気吹出口から、期待している空気量が吹き出されないので、ダクト内に余分な空気が残存し、その後流にある空気吹出口の設計合計風量よりも大量の空気が、結局ダクトの終端近くまで持ち越され、風向延長に閉鎖されている終端で空気の動圧が失われると、全圧が静圧に急激に変換され、末端付近の空気吹出口から多量の空気が吹き出す。 というメカニズムを理由として、末端の風量が多い、ダクト延長にそって不均一な吹出し風量のダクト装置となってしまうと考えられる。そして、上記その1に派生して、空気がダクトに吹き込まれた直後においては、鉛直上方から水平に向きを変える際にダクト内延長直交断面で偏って速い流れが生じ、その水平方向へ向かう動圧の影響によりダクト内が近傍の環境より負圧となり、元側の空気吹出口からダクト内に吸い込む逆流が生じる場合もある。 これは、ベンチュリ管の絞り部分での圧力降下の現象(霧吹きが顕著に判る)が生じていると考えて良い。
【0003】
従って、吹出量を均等にするために、古くは、空調用ダクトの吹出口と吹出口の間にダンパを設けてダンパを調整すること(つまり、ダクトの途中に圧力調整可能な抵抗体を設けること)で、ダクト中間における動圧の一部を静圧に強制変換し、各吹出口から均等に吹出す方法も試みられた。しかし、この方法では、風速を調整するために各ダンパの開度調節を個別に行う必要があり手間が掛かること、更にダクトの振動や、ダクト内の空気風速起因の動圧により、調整されたダンパの羽根の角度が変化すること等の欠点があった。また、途中の空気吹出口からダクト内風量の一部が外へ導かれて減少する際、全圧が小さくならないようにベルヌーイの定理を利用してダクトの空気流れ直交断面積を小さくし、且つその後流のダクト内風速を少し遅くすることで、各空気吹出口位置の静圧を、ダクト延長にわたり一定に保つように、ダクトを逐次レジュースすることも古くから行われている。しかし、複雑なダクト加工できる熟練した職人減少によりダクト工費が高騰し、そのようなダクト装置を施工できる環境がなくなってきた。
【0004】
近年は更に改良された多くの考案が提案されている。例えば、特許文献1に開示されているように、空調ダクトの外側に複数の吹出口を設けた空調通路を設けてダクト構造を2重にし、内側空調ダクトと外側空調通路との間に空気量を調整するガイドを設けて吹出口からの吹出量の均一化を図った空調ダクト装置の考案が提案されている。
また、特許文献2には、ダクト内の各吹出口の間に抵抗値の異なる複数種類の抵抗体を設けて空気量の調整を図ったもの、即ち、ダクトの空気送風側に近いものほど大きな抵抗値を持った抵抗体を設けたダクト装置も提案されている。
更に、特許文献3には、空調ダクトの下側板に開口を設け、この開口の内側に上端に開口面が傾斜した開口部を有する吹出用筒体を突出させて取り付けて、傾斜開口部の向きを変えることにより空調空気の吹出し量と向きを調整できるようにした装置が開示されている。
【特許文献1】特許公報、特許第3271875号「クリーンルームの空調空気吹出し用ダクト」
【特許文献2】公開特許公報、特開平5−5554号「ダクト装置」
【特許文献3】公開特許公報、特開2010−255873「空気吹出口装置」
【発明の開示】
【発明が解決しようとする課題】
【0005】
従来装置の空調空気吹出しダクト装置はダクト構造を2重に設けたりして構造の複雑なダクトが多かった。例えば、特許文献1に開示されているように2重ダクト構造が採用されている。また、特許文献2に開示されているように、ダクト内に抵抗値の異なる複数の抵抗体を設けたダクトでは抵抗値の値を論理的に決定する作業や抵抗体をダクト内に固設する複雑な作業が必要であり、また、吹出風量の微調節も困難である。これら特許文献1も特許文献2も、空調用ダクトの吹出口と吹出口の間にダンパを設けてダンパを調整すること(つまり、ダクトの途中に圧力調整可能な抵抗体を設けること)で、ダクト中間における動圧の一部を静圧に強制変換し、各吹出口から均等に吹出す方法の亜流である。
また、特許文献3に記載のダクト装置では、傾斜開口部のダクト内気流への動圧回収度合いに依存しているので、吹出用の筒の取付作業が煩雑であるだけでなく、取付後においては風量を調整する傾斜部がダクト外部から見えないこと、更に風量を調整すると風向き方向も変化するために風量の調節作業が複雑になるという問題点があった。
本願発明は構造も簡単で風量の調整も簡単な、ダクトの長さ方向に複数の空調空気吹出口を設け各空調空気吹出口から吹出す空気量を均等にした空調空気吹出しダクト装置を提供することを課題としている。
【課題を解決するための手段】
【0006】
上記課題を解決するために本発明は以下の手段を採用している。即ち、
請求項1記載の発明は、
一端側に空調機が有する送風機からの空調空気を吹込んで送風し他端側を閉鎖したダクトの中間側面に、前記空調空気を吹き出す複数の空気吹出口を設けた長尺の空調空気吹出しダクト装置において、
前記空調空気吹出しダクトは、断面が矩形をなす四面のダクト板からなり、前記各空気吹出口は前記空調空気吹出しダクトの所定の一面のダクト板に吹出用の孔を設け、内面に雌ネジを切った短管形状でダクト板外側から前記吹出用の孔に挿通する固定部材を前記所定の一面のダクト板に固設し、前記固定部材の雌ネジと螺合する雄ネジを外面に切った円筒状部材をダクト内方へ挿入可能に設け、該円筒状部材はダクト内端部に前記空調空気吹出しダクトの中心軸と平行な開口を有し、他端部に吹出口を設け、該空調空気吹出しダクトの中心軸と平行な開口のダクト内方への差込長さを調節自在に設けたことを特徴としている。
【0007】
請求項2記載の発明は、請求項1に記載の発明において、前記所定の一面のダクト板は、前記空調空気吹出しダクトの下面をなし、前記円筒状部材のダクト内端部は、水平な開口を有することを特徴としている。
【0008】
請求項3記載の発明は、請求項1〜請求項2の何れか1に記載の発明において、前記円筒状部材の差込長さを、矩形である前記空調空気吹出しダクトの中心軸に直交する断面高さの1/6〜1/2としたことを特徴としている。
【0009】
請求項4記載の発明は、請求項1から請求項3の何れか1に記載の発明において、前記各円筒状部材の吹出抵抗を、0.07(Pa・時間/立方m)以上2.0(Pa・時間/立方m)以下の間の何れかに設定して構成して、前記ダクト内端部の開口部における前記円筒状部材内静圧が略均一な圧力となり、且つ前記各吹出口の吹出量が均一であることを特徴としている。
請求項5記載の発明は、請求項1から請求項3の何れか1に記載の発明において、前記各円筒状部材の断面積を、同一面積、且つ断面における空調空気の風速を2(m/s)から8(m/s)の間の何れかに設定して構成し、前記円筒状部材の差込長さを調節することで、前記ダクト内端部の開口部における前記円筒状部材内静圧が略均一な圧力となり、且つ前記各吹出口の吹出量が均一であることを特徴としている。
【0010】
請求項6記載の発明は、請求項5に記載の発明において、前記各円筒状部材内静圧を略均一な圧力とするために、前記空調空気吹出しダクトの中心軸に直交する断面の風速分布上、ダクト延長に亘って所定の風速範囲にある断面高さ位置まで、前記円筒状部材の前記開口部を差込むことを特徴としている。
請求項7記載の発明は、請求項6に記載の発明において、前記円筒状部材の前記開口部を差込む差し込み長さを、同一寸法としたことを特徴とする。
【0011】
請求項8記載の発明は、請求項1から請求項4の何れか1に記載の発明において、前記空調空気吹出しダクト内の空調空気の温度が、流れ方向に対して一様でなく且つ下流が空調対象空間の温度に近い温度分布であり、前記各吹出口からの吹出空気の熱量が同一となるように前記空調空気吹出しダクト延長に沿って、前記各吹出口の吹出量を変えて供給するよう、前記各円筒状部材の差込長さをそれぞれ調節したことを特徴としている。

【発明の効果】
【0012】
以上説明したように、この発明の構成によれば、ダクト内の風速分布を把握して動圧を静圧再取得することを最適化することで、ダクト内に加工することなく、吹出口の構成が簡単であり、また、吹出量の調整も簡単であり、ダクトの製造及び調節が安価で容易になるという効果が得られる。また、吹出用の孔を開設し、固定部材を固着し、螺合する円筒状部材をねじ込むだけですむので、吹出口の取付工事はダクトの取付後にも可能であるために工事費用が一層安価にできるという効果が得られる。また、吹出量の均一化の調整機構を応用して、ダクトから逃げる熱量を換算考慮することで、吹出熱量の均一化も可能であるために適用範囲が広いという効果も得られる。

【発明を実施するための最良の形態】
【0013】
<予備実験>
本願の発明者は、空調空気吹出しダクト装置内の空調空気の流れ状態を検証するために以下の予備実験を行った。図10は予備実験に使用したダクト装置を示し、図11は予備実験のダクト装置に利用した空気吹出口の開口の3種類の例を示す。図12は実験結果を示す。図10において、(A)は斜視図、(B)は側面図、(C)は下平面図を示す。ダクト101の基端側は送風機102に接続され、終端側は閉鎖されている。ダクト101は高さが40cm、幅70cm、長さ10mの矩形断面の直方体からなり、下側板に10個の吹出口104が設けられている。吹出口104は図11(A)〜(C)に示す3種類の開口104a、104b、104cの各開口から構成されている。吹出口104aは30cmx30cmの大きな正方形の開口で形成され、吹出口104bは10cmx10cmの小さな正方形の開口で形成され、吹出口104cは10cmx10cmの小さな開口の上側に断面が同型の短管を10cmだけ突き出した突出部105を有する開口から形成されている。
【0014】
図12、図13は予備実験結果を示す。図12は各吹出口種104a,104b,104cごとに、ダクト内静圧とダクト基端側送風機102からの距離との関係を示す。即ち、図12は3種類の開口の各場合についてダクトの基端側からの距離とダクト内の静圧の関係を示す。また、図13はダクトの基端側からの距離と各吹出口からの空気吹出量との関係を示す。図12,図13で、(a)大きな開口の場合は◇印で示し、(b)小さな開口の場合は△印で示し、(c)小さな開口の上側に短管を設けた場合は○印で示す。
【0015】
図12に示すように、ダクト内部の静圧は(a)大きな開口の場合が一番小さく2〜7パスカル(Pa)で、(b)小さな開口のみの場合は12〜14パスカルである。また、(c)小さな開口に更に上側に短管を設けた場合はダクト内の静圧は53〜56パスカルと大きくなっている。何れの場合もダクト101の基端部から終端部に向かって静圧は上昇している。更に、(b)と(c)の場合は静圧の変化の差は小さく2パスカル前後である。そして静圧変化の割合としてみると、(b)が14%程度であるのに対し、(c)では4%程度で静圧変化割合がとても小さいことが判る。これに反して(a)の場合は静圧の変化が5パスカルと大きく変化している。又、図13に示すように、(a)大きな開口の場合は吹出し風量は大きく変化している。即ち、−100(立方m/時間)〜380(立方m/時間)と変化している。これに対して、(b)と(c)の小さな開口の場合は180(立方m/時間)〜210(立方m/時間)と変化は小さい。
【0016】
これらの実験結果を考察すると、(a)の場合は開口の大きさに対して送風機102からの送風量が少ないために、送風された空気がダクト101内部に滞留されずに吹出口から抜けていくので静圧は全般に低い。特に、ダクト101の基端部付近では静圧が(b)や(c)の場合と比較すると、殆どゼロであるといっても良い。これは、ダクトの終端部まで流れる空気量が少ないために終端部の圧力上昇の影響が基端部まで戻らないことが、その主な原因と考えられる。また、(b)、(c)の場合は開口104b、104cからの空気の流出する抵抗が大きいために終端部の圧力上昇が大きく、その影響が基端部まで伝わり、ダクト101内部の静圧がほぼ一様に充分高い静圧を生じさせている。これは以下の理由による。即ち、ダクト101内部を流れていた空気流れがどの吹出口においても直上の点に到達すると、一部の空気が吹出口から吹き出され、残りはダクト内部を流れる。この残りの空気流れがダクト内の下流を流れている遅い速度の空気流れに追いついて衝突、混合し、速度を減少させる。この際に失われた速度エネルギが圧力エネルギに変換され、静圧を上昇させる。このプロセスが繰り返し行われるためである。その結果、ダクト内部には略一様な高い静圧が生じ、この静圧により、開口104b、104cから流出する空気量もほぼ一様になっていると考えられる。以上の考察から開口から流出する際の空気抵抗をある値以上にすればダクト101内部が略一様な高い静圧となり、流出する空気量を略均一にすることができると考えられる。
【0017】
また、(b)の場合は静圧が12〜14パスカルと低いのに反して(c)の場合の静圧は53〜56パスカルと高い。従って、開口面積の大きさが同一であることから考えれば(c)の場合の吹出口104cから流出する空気量はもっと大きくなるべきと考えられる。しかしながら、(b)の場合は開口104bがダクト101の底面板と同じ高さ位置に設けられている(差込長さが0cm)であるのに対して、(c)の場合は開口104cが底面板から10cm(差込長さが10cm)の位置に設けられている。ところで、ダクトに垂直に分岐管を設けたT字管ダクトの場合の分岐管内への流れに対しては局部抵抗ΔPが生じる事が知られている(文献6)。
局部抵抗ΔPは、ΔP=ζ・(V**2/2・g)・γ である。ここで、ζは局部抵抗係数、**はべき乗を意味し、速度Vは開口に接するダクト内の流速、γは空気密度で、gは重力加速度である。
この局部抵抗ΔPはダクト内を直線的に速度Vで流れる流体の慣性に対して、これを分岐管の方向に流れを曲げる際には渦が生じ、この渦を発生させるに必要なエネルギと考えられる。
【非特許文献6】空気調和ハンドブック、丸善株式会社、改訂第4版、第8章ダクト設備、320頁ダクト内の風速分布は、空気が進行する方向に直行する断面では、ダクトを構成する側板に近い箇所では内面の摩擦抵抗により低速であり、ダクト内面直近でほぼ速度ゼロになり、ダクトの内部のある箇所までは風速が増加する分布となっている。図11(c)の場合は吹出口104cの突出部105のダクト内開口が底面板から10cmの位置にあり、この場合のダクト内の流速V(10)はかなり大きい。一方、図11(b)の吹出口104bのダクト内開口は底面板の表面にあり、ダクト内の流速V(0)は小さい。これを考察するに、図11(c)の場合は、高速で吹出口104cの突出部105のダクト内開口に角度を変えながら渦を発生して突入する気流を内部に流す、分岐管を有する開口となっており、更に、分岐管部の流路抵抗だけでなくダクト内開口への向きを変更しながらの突入抵抗が大きいことで急激に圧力エネルギを消費することから、分岐管(突出部)内の流速は小さくなり、開口104cからの吹出風量が、図11(b)の開口104bからの吹出風量と略一致したものと考えられる。しかし、上述した局部抵抗による数式を適用して吹出口からの吹出量を求めると手続が複雑・困難になる。そこで、本発明では差込長さと分岐管からの吹出風量との関係を実験的に求めて、実験式を適用し、吹き出し風量の調節を行う。
【0018】
また、上記実験から理解できるように、吹出風量が略均一状態になっている領域ではダクト内静圧(静止圧)が略一定であることが解る。この事を明確にするために、静止圧と吹出風量との比(静止圧/吹出風量)を吹出抵抗と定義して上記各場合、図11(a)〜(c)の場合の吹出抵抗について検討を行う。なお、図11(a)の場合では図12の静圧の変化から、ダクトの距離が6.5m〜9.5mの範囲で吹出風量が略一定になっていると考えられ、この範囲を対象としている。図11(b)及び(c)の場合はダクト距離の全範囲を対象とする。吹出抵抗の数値範囲について各吹出口を用いた場合の数値範囲と平均値を図14に示す。図11(b)の平均値0.068(Pa・時間/立方m)が作れれば十分に均一な吹出風量が得られるので、均一な吹出風量を得るためには吹出抵抗を0.07(Pa・時間/立方m)以上にするのが好ましい。また、吹出口部位での実用上許される圧力損失は、例えば100(立方m/時間)の吹出口ごとの風量では、せいぜい200(Pa)(略20mmAq)程度までに抑えておかないと送風機動力がいたずらに大きくなりすぎる。よって、均一な吹出風量を得るためには吹出抵抗を2.0(Pa・時間/立方m)以下にするのが好ましい。
【0019】
吹出抵抗を生じさせる手段として、(イ)吹出開口の面積を小さくする方法と、(ロ)短管を設けて吹き出開口の位置をダクトの底辺から中心線の位置に近づける方法がある。しかし、(イ)の方法は簡単に風量を調節できないという欠点があり、(ロ)の方法は風量の調節が容易であるという特徴がある。従って、(イ)の方法だけでは十分に均一な風量を得ることができない場合や風量の調節、調整を必要とする場合は(ロ)の方法を採用するのが好ましい。例えば、ダクト長さが長くて複雑な形状にした場合(例えば、100mの場合)や、吹出口の開口の面積が同一でもダクトの断面積を小さくした場合(即ち、ダクトの面積に対して吹出口の開口面積の比を大きくした場合)等において吹出風量を十分に均一にできない場合でも差込長さを調節することによって吹出し風量の調節が容易に可能になる。
図15(A)は差込長さSをゼロにした場合の空気流れを示し、図15(B)は差込長さが大きい場合の空気流れを示す。尚、左図は中心線を通る側断面図で、右図は中心線を通る上平面図を示す。差込長さがゼロの場合は、空気流れはダクトの下板に近い部分の空気流れが吹出口(分岐管)に流れ、それより上の流れは殆ど影響を受けずに通過する。一方、差込長さが大きい場合は短管の差込部による影響を受け、上流側の流れが持ち上げられて分岐管に流れ込み、下流側に渦が発生し、これが大きな吹出抵抗を生じさせる。
これは、ダクト内の風速分布は、空気が進行する方向に直行する断面では、ダクトを構成する側板に近い箇所では内面の摩擦抵抗により低速であって、ダクト内面直近でほぼ速度ゼロになり、ダクトの内部のある箇所までは風速が増加する分布であることを利用し、さらに、高速で突出部105のダクト内開口に角度を変えながら渦を発生して突入する気流を内部に流す、分岐管を有する開口を擁することで、分岐管部の流路抵抗だけでなくダクト内開口への向きを変更しながらの突入抵抗が大きいことで急激に圧力エネルギを消費することをうまく利用しているのである。
以上の予備実験より得られた知見を利用した本発明の実施形態を以下に説明する。
【0020】
<実施形態1>
実施形態1は各吹出口からの吹出量を均一にしたい場合の実施例である。
図1は本発明を実施した吹出装置12の実施形態である。図1(A)はダクト装置の一部分(切り欠き付)の斜視図を示し、図1(B)は矢視X−Xから見た断面図を示す。図1において、ダクト10は空調空気送風用のダクトで、断面が矩形に構成され、好ましくは厚さが1mm以下の鋼板で形成されて、長さ方向に直交する断面形状について、空調用ダクトの基から先端まで同じ形状・寸法とする。ダクト10の底辺の適宜な位置に所定間隔で複数の吹出装置12が配設される。吹出装置12はダクト底辺(下板)10aに設けられた取付用の孔10bに装着する固定部材13を孔10bの下側からダクト下板10aの下面に接着剤又はスポット溶接等で固着する。固定部材13は内側に小さなピッチの雌ねじが切られている。吹出筒14aは上部にダクト内端部に当たる端部に、組み付けるとダクト10の中心軸と平行になる開口を有し、外側面には固定部材13のネジと螺合する雄ねじが切られており、下部に吹出口14bが設けられている。
【0021】
図2は吹出筒14aの差込長さ「S」の説明図である。図2(A)は差込長さSがゼロ(S=0)の場合を示し、図2(B)は差込長さSが正(S>0)の場合を示す。即ち、差込長さSはダクト10の下板10aの上側表面から吹出筒14aがダクト10の内方に突出している長さを示している。一般に差込長さSはゼロ(0)〜ダクトの内部高さの2分の1(中心線までまでの距離)が有れば十分である。それは、ダクト内の風速分布は、空気が進行する方向に直行する断面では、ダクトを構成する側板に近い箇所では内面の摩擦抵抗により低速であって、ダクト内面直近でほぼ速度ゼロになり、ダクトの内部のある箇所までは風速が増加する分布であるからである。そして中心線を境に上下でシンメトリーとなるはずだからである。本実施形態1では、例えば、吹き出筒14aのネジ部の外径を7cm、長さ(最大差込長さ)を20cmとしており、その下側の吹出口14bの大きさは適宜に定める。
【0022】
図3は実施形態1に使用したダクト装置20の概略を示す図である。図3において、建屋19内に図示の閉ループのダクト20が配置されている。ダクト20は断面が幅70cm、高さ40cmの矩形をした全長が略70mのダクトである。送風口21は、図示省略の空調機に接続された空調空気の供給口である。送風口21の両側にダンパ22,23が設けられており、ダンパ22は全開で、ダンパ23は完全に閉鎖されている。ダクト20の始点24から反時計回りに空調空気が流れ(図の矢印方向)、終端点がダンパ23により完全封鎖されている。また、始点24から終端点23までの距離は70mである。ループダクト20の複数の箇所に吹出装置12と圧力測定装置(図示省略)が設けられている。
【0023】
実験結果を図4、図5に示す。図4は差込長さを10cmにした場合と0cmにした場合の、送風口21から離れていく始点24から終端点23までの距離までに所定のピッチで設けられた各吹出装置12ごとの吹出量の比較データを示し、図5は送風機の送風量を9800(立方m/時)にした場合と4900(立方m/時)にした場合の、送風口21から離れていく始点24から終端点23までの距離までに所定のピッチで設けられた各吹出装置12ごとの吹出量、またはダクト内所定のポイントでの静圧の比較データを示す。図4において、横軸は始点24からのダクトの距離(m)を示し、縦軸は差込長さSが0cmの場合の各吹出口からの吹出し量を△で示し、差込長さSが10cmの場合の各吹出口からの吹出し量を◇印で示す。図4から理解できるように、差込長さSが0の場合は各吹出口からの吹出風量にややばらつきが見られるが、差込長さSが10cmの場合は吹出し風量は略200(立方m/時間)と一定値に落ち着いている。
【0024】
図5は差込長さSが10cmの場合で、送風機の送風量を変化させた場合の吹出し風量とダクト内の静圧を計測した結果を示す。上側の黒丸印と白丸印は送風機の送風量が9800(立方m/時間)の場合の吹出し量と静圧(吹出抵抗は略0.75(Pa・時間/立方m)の値)を示し、下側の黒丸印と白丸印は送風機の送風量が4900(立方m/時間)の場合の吹出風量と静圧(吹出抵抗は略0.35(Pa・時間/立方m)の値)を示す。図5から理解できるように、差込長さSを10cm程度にした場合に、送風機の送風量の変化に対して各吹出口からの吹出風量は送風機の送風量に比例して増大し、静圧も増大している。しかし、送風量が一定であれば、各吹出口からの吹出風量はダクトの始点24からの距離に拘わらず、送風量により絶対値は異なるものの静圧も吹出風量も一定値に落ち着いている。
後述する図7は、ループダクト20の始点から任意の距離における吹出装置12の差込長さと吹出し量の関係を示したグラフである。上側の曲線は吹出し量を200(立方m/時間)にした場合で、下側の曲線は100(立方m/時間)にした場合を示す。図7に示すように、送風機の送風量が多いほど差込長さSによる吹出量の変化は多少増大するが、傾向は同じである。
ダクト内の風速分布は、空気が進行する方向に直行する断面では、ダクトを構成する側板に近い箇所では内面の摩擦抵抗により低速であって、ダクト内面直近でほぼ速度ゼロになり、ダクトの内部のある箇所までは風速が増加する分布となる。ところで、ダクト断面積が同一のダクトで、送風量を倍にすると、ダクト内風速(平均した風速)も各部位で倍になる。よって、ダクト内の風速分布は送風量を倍にすると急峻となることは自明である。この図7の最小自乗法で近似処理をおこなった近似線を見ると、ダクト高さ400mmの1/6である67mmの差込長さよりも長く差し込めば、ほぼ傾きが寝ているところに該当し、風量が他と変わらなくなることが判る。これは、前記ダクト高さの1/6より中心軸側の風速分布がほぼ一定になっていることを表しており、そこにダクト内開口を備えておけば、ダクト長のどの部位の吹出装置12においても、同様な分岐管部の流路抵抗だけでなくダクト内開口への向きを変更しながらの突入抵抗の状態を得ることができることを示している。
そして、ダクト内開口がダクトの中心軸と平行な開口を有しているので、固定部材13の雌ねじと雄ネジを外面に切った吹出筒14aとを相対位置を微調整しても、突入抵抗の状態が変化することがない。
【0025】
<実施形態2>
図3に示したダクト20内の空調空気の温度分布が放熱等により一定温度でない場合に各吹出口からの吹出し熱量を均一にする場合の制御についての実施形態である。図6は各吹出口からの吹出し量を200(立方m/時間)にした場合と100(立方m/時間)にした場合のダクト内の温度分布を示す。図6に示すように、ダクトの始点24からの距離が長くなるにつれて、ダクト面と外部の冷えた空気との伝熱により熱が逃げるので、暖房のために加熱した空気を搬送するダクト内部の空気温度は下がる。しかし、風量が大きくなるにつれてダクト内風速が上がり、伝熱機会が減少することで、温度の落ち幅は少なくなる。
図7はループダクト20の始点から任意の距離における吹出装置12の差込長さと吹出し量の関係を示したグラフである。上側の曲線は吹出し量を200(立方m/時間)にした場合で、下側の曲線は100(立方m/時間)にした場合を示す。図7に示すように、送風機の送風量が多いほど差込長さSによる吹出量の変化は多少増大するが、傾向は同じである。
ダクト内の風速分布は、空気が進行する方向に直行する断面では、ダクトを構成する側板に近い箇所では内面の摩擦抵抗により低速であって、ダクト内面直近でほぼ速度ゼロになり、ダクトの内部のある箇所までは風速が増加する分布となる。ところで、ダクト断面積が同一のダクトで、送風量を倍にすると、ダクト内風速(平均した風速)も各部位で倍になる。よって、ダクト内の風速分布は送風量を倍にすると急峻となることは自明である。
【0026】
図8は各吹出口からの熱量が1600W、800Wになるように差込長さSを図6と図7のデータを利用して求めた数値を示すグラフである。即ち、図3に示すダクト20で吹出口から供給される熱量を均一に800W程度にしたい場合は、ダクトの始点24側の吹出口はダクト内に150mm程度挿入する。それ以後は差込長さを短くしていく。同様に、吹出口から供給される熱量を1600Wに均一にしたい場合は、ダクトの始点側の吹出内に75mm程度挿入し、ダクトの距離が長くなるほど差込長さを短くして行う。図9は各場合について吹出し量と吹出し熱量の計測データを示すグラフである。図9に示すように、温度分布に従って、差込長さSを調節すれば、各吹き出し装置からの吹出し熱量を均一にすることができる。
【0027】
以上説明したように、この発明の構成によれば、ダクト内の風速分布を把握して動圧を静圧再取得することを最適化することで、ダクト内に加工することなく、吹出口の構成が簡単であり、また、吹出量の調整も簡単であり、ダクトの製造及び調節が安価で容易になるという効果が得られる。また、吹出用の孔を開設し、固定部材を固着し、螺合する円筒状部材をねじ込むだけですむので、吹出口の取付工事はダクトの取付後にも可能であるために工事費用が一層安価にできるという効果が得られる。また、吹出量の均一化の調整機構を応用して、ダクトから逃げる熱量を換算考慮することで、吹出熱量の均一化も可能であるために適用範囲が広いという効果も得られる。
【図面の簡単な説明】
【0028】
【図1】(A)ダクト装置の斜視図、(B)組立分解図を示す。
【図2】(A)差込長さゼロの場合、(B)差込長さが正の場合の図を示す。
【図3】ダクト装置の全体平面図を示す。
【図4】差込長さゼロの場合と差込長さ10cmの場合の、始点からの距離と各吹き出し装置ごとの吹出量を示す。
【図5】ダクトの距離と吹出風量、静圧との、送風量を変更した場合の関係を示す。
【図6】ダクトの距離とダクト内温度の関係を示す。
【図7】差込長さと吹出風量の変化を示す。
【図8】吹出熱量を均一にした場合のダクト長さと差込長さとの関係を示す。
【図9】ダクトの距離と吹出熱量、吹出風量との比較を示す。
【図10】予備実験モデルの斜視図(A)、側面図(B)、下平面図(C)を示す。
【図11】予備実験モデルに使用した3種類の吹出口を示す(A)〜(C)。
【図12】予備実験における、吹出口の形状変化と静圧の変化の比較を示す。
【図13】予備実験における、吹出口の形状変化によるダクトの距離と各吹出風量との関係を示す。
【図14】予備実験における、吹出抵抗の範囲を示す。
【図15】差込長さによる流れ状態の変化を示す。
【符号の説明】
【0029】
10 ダクト
10a ダクト底辺
10b 取付用の孔
12 吹出装置
13 固定部材
14a 吹出筒
14b 吹出口
20 ダクト
21 送風口
22 送風側ダンパ(全開)
23 終端側ダンパ(閉鎖)
100 予備実験用ダクト装置
101 ダクト
102 送風機
104 吹出口


【特許請求の範囲】
【請求項1】
一端側に空調機が有する送風機からの空調空気を吹込んで送風し他端側を閉鎖したダクトの中間側面に、前記空調空気を吹き出す複数の空気吹出口を設けた長尺の空調空気吹出しダクト装置において、
前記空調空気吹出しダクトは、断面が矩形をなす四面のダクト板からなり、前記各空気吹出口は前記空調空気吹出しダクトの所定の一面のダクト板に吹出用の孔を設け、内面に雌ネジを切った短管形状でダクト板外側から前記吹出用の孔に挿通する固定部材を前記所定の一面のダクト板に固設し、前記固定部材の雌ネジと螺合する雄ネジを外面に切った円筒状部材をダクト内方へ挿入可能に設け、該円筒状部材はダクト内端部に前記空調空気吹出しダクトの中心軸と平行な開口を有し、他端部に吹出口を設け、該空調空気吹出しダクトの中心軸と平行な開口のダクト内方への差込長さを調節自在に設けたことを特徴とする空調空気吹出しダクト装置。
【請求項2】
前記所定の一面のダクト板は、前記空調空気吹出しダクトの下面をなし、前記円筒状部材のダクト内端部は、水平な開口を有することを特徴とする請求項1に記載の空調空気吹出しダクト装置。
【請求項3】
前記円筒状部材の差込長さを、矩形である前記空調空気吹出しダクトの中心軸に直交する断面高さの1/6〜1/2としたことを特徴とする請求項1又は請求項2の何れか1に記載の空調空気吹出しダクト装置。
【請求項4】
前記各円筒状部材の吹出抵抗を、0.07(Pa・時間/立方m)以上2.0(Pa・時間/立方m)以下の間の何れかに設定して構成して、前記ダクト内端部の開口部における前記円筒状部材内静圧が略均一な圧力となり、且つ前記各吹出口の吹出量が均一であることを特徴とする請求項1から請求項3の何れか1に記載の空調空気吹出しダクト装置。
【請求項5】
前記各円筒状部材の断面積を、同一面積、且つ断面における空調空気の風速を2(m/s)から8(m/s)の間の何れかに設定して構成し、前記円筒状部材の差込長さを調節することで、前記ダクト内端部の開口部における前記円筒状部材内静圧が略均一な圧力となり、且つ前記各吹出口の吹出量が均一であることを特徴とする請求項1から請求項3の何れか1に記載の空調空気吹出しダクト装置。
【請求項6】
前記各円筒状部材内静圧を略均一な圧力とするために、前記空調空気吹出しダクトの中心軸に直交する断面の風速分布上、ダクト延長に亘って所定の風速範囲にある断面高さ位置まで、前記円筒状部材の前記開口部を差込むことを特徴とする請求項5に記載の空調空気吹出しダクト装置。
【請求項7】
前記円筒状部材の前記開口部を差込む差し込み長さを、同一寸法としたことを特徴とする請求項6に記載の空調空気吹出しダクト装置。
【請求項8】
前記空調空気吹出しダクト内の空調空気の温度が、流れ方向に対して一様でなく且つ下流が空調対象空間の温度に近い温度分布であり、前記各吹出口からの吹出空気の熱量が同一となるように前記空調空気吹出しダクト延長に沿って、前記各吹出口の吹出量を変えて供給するよう、前記各円筒状部材の差込長さをそれぞれ調節したことを特徴とする請求項1から請求項4の何れか1に記載の空調空気吹出しダクト装置。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2013−29248(P2013−29248A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−165672(P2011−165672)
【出願日】平成23年7月28日(2011.7.28)
【出願人】(000001834)三機工業株式会社 (316)
【Fターム(参考)】