説明

船舶用舵

【課題】舵抵抗の増加をできるだけ小さく抑えた高揚力の舵形状を得る。
【解決手段】舵本体の水平断面形状において、前縁部形状が円弧状またはこれに類似する形状からなり、舵本体の後方に向かって徐々に断面幅が増加して最大幅に達し、外側に凸の形状から緩やかな外側に凹の形状に変化しながら断面幅が減少してゆき、その後、後端まで、ほぼ平行な直線で形成される直線状部分を有し、有限幅をもつ後端を有する舵形状とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、船舶用の舵に関し、特に高い舵力を発生することで船舶の操縦性能を向上させることができ、かつ、推進性能の劣化のない舵に関する。
【背景技術】
【0002】
従来技術の代表的な舵の断面形状として、NACA(National Advisory Committee for Aeronautics)の対称翼型がある。この舵の断面形状の一例として、最大舵厚位置から前方を5等分し、後方を7等分して、それら13点における舵厚を最大舵厚との比であらわし、前縁端から順に0.0,0.6,0.820,0.937,0.988,1.000,0.882,0.761,0.611,0.438,0.222,0.0となる舵形状がある。図12に、この舵本体10の翼長を1、最大舵厚Tmaxを翼長の18%、最大舵厚位置を前縁端10Aから翼長の36%とした形状を示す。以降、この技術を「従来技術1」と記述する。
【0003】
また、高揚力舵に関する従来技術としては、特許文献1がある。この舵は舵の水平断面形状をちょうど魚を横から見た形状にすることで、高揚力を得ようとするものである。この舵は図13に示すようなものであり、プロペラ直径をDとおいたとき、舵本体20の船首尾方向の全長Cが0.60〜0.62Dとされた舵であって、舵本体20の水平断面輪郭が魚を横から見たような形状をなし、魚体に相当する断面流線型をなす前方部20Aの、後方部20Bとの境界20Cより広がるスロープ角αが側角10〜12゜、魚尾部に相当する後方部20Bの、前方部20Aとの境界20Cより広がるテール角βが側角4〜6゜とされ、舵本体20の頂底端面に幅が0.4Cの端板21、22が取り付けられ、かつ底端板22の両側縁のみが15度の角度で下方へ折り曲げられてなり、魚体部に相当する断面流線型をなす前方部20Aの長さC1 が0.8C、魚尾部に相当する後方部20Bの長さC2 が0.2Cとされたものである。以降、この技術を「従来技術2」と記述する。
【0004】
この他に、従来技術としては特許文献2がある。この舵は図14に示すようなものであり、舵がプロペラ後流の加速流中にあることを考慮して、舵本体30の水平断面形状(実線で示す舵形状)を、従来の流線形状(点線で示す舵形状)に比較して頭部をより丸く、尾部をより細くすることに着目し、舵本体30の前縁端30Aからの長さXの全長Cに対する割合をX/Cとし、最大厚さTmaxに対する、X/Cの部位での水平断面における厚さTの割合をT/Tmaxとし、T/Tmaxの1/2をYとしたときに、0.25≦Y≦0.33(X/C=0.05)、0.35≦Y≦0.43(X/C=0.1)、0.11≦Y≦0.17(X/C=0.8)、0.03≦Y≦0.08(X/C=0.9)とするものである。以降、この技術を「従来技術3」と記述する。
【0005】
【特許文献1】特開平10−297593号公報
【特許文献2】特開2000−280984号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
2次元翼がある角度(迎角)をもって一様流中に置かれたとき、流れが当たる側をface面、その反対側をback面と一般的にいう。図15に、揚力Lと抗力Dとともにそれらの定義を示す。
【0007】
図12に示される従来技術1は、前縁端10Aから舵の断面幅が増加し最大舵厚Tmaxに達し、その後、舵厚(断面幅)は外側に凸の形状を保ちながら緩やかに減少し、後端で閉じる形状をなしている。このような水平断面形状をもつ一般的な舵では、舵の後半部で発生する揚力は小さい。それは、後半部が外側に凸の形状で緩やかに断面幅が減少するために、特にface面で見られる現象だが、最大舵厚以降での流速変化がほとんどないことに起因する。それを検証するために、図12に示す形状をもつ2次元翼に8゜の迎角で一様流が当たる場合について、CFD(数値流体力学)解析をフルーエント社製の汎用CFDコード、Fluent Ver.5のプログラムを用いて実施した。設定レイノルズ数は6.0×106である。このときの、翼断面の圧力分布とそれによって引き起こされる揚力分布を図16に示す。図16の横軸はX/C(但し、Xは舵の前縁端からの長さ、Cは舵の水平断面中心線上の全長)、縦軸は圧力分布と揚力分布の圧力係数である。また、同図の下側には参考のため図12の舵形状の半分を付記してある。
【0008】
流れの当たるface面では、前縁端付近で圧力が正のピーク値をもち最大幅の近くまで減少を続け、その後はほぼ一定の値をもつことが分かる。圧力は、その点の流速が速いほど低い値をもち、流速が遅いほど高い値となることから、face面の前縁端付近で流速が急激に低下し、その後最大幅付近まで増速するが最大幅位置を過ぎると流速変化がなくなり、ほぼ一定の速さで流れていくことが理解される。
一方、back面では、前縁端付近でface面からの流れ込みにより流速が非常に大きくなるため、圧力が大きな負のピーク値をもち、その後、後端まで徐々に流速が低下してゆき圧力が上がり続け、前縁端から85%(横軸で0.85)の付近でface面と同じ圧力になってしまう。
すなわち、face側で最大幅位置以降の流速変化がないため、face面の圧力の上昇がなく、その分back面との圧力差で生じる揚力が小さくなるのである。この現象は、一様流の代わりにプロペラ後流が当たった場合でも同様である。
【0009】
従来技術2では、舵水平断面の後方部を魚のヒレのように広がった形状とすることで高揚力を得ようとするものである。これはプロペラの後流が舵に当たって舵面に沿って流れる際、後方部のヒレにおいて流れが偏流させられるために、特に舵のface面(流れが当たる側)のヒレのくびれの部分で圧力が高くなり、結果として揚力が大きくなる。しかし、この揚力を高くするためのヒレの存在は、その後端部が大きな幅を有することで渦の放出量を大きくすることにつながり、舵が流体から受ける抵抗を過大なものとし、船舶の推進性能を悪化させる原因となっている。従来技術2の特許文献1に記載されたA舵は、推進性能への影響の改善を図るために、テール角を小さくすることでヒレの幅を小さくして渦抵抗を減少させたり、舵コード長/プロペラ直径比(C/D)を0.6程度と小さくすることで対応している。しかし、このような改善のための手段は、舵面積(舵本体の可動部分の側面投影面積のことであり、以下特に断らない限り「舵面積」と略記する。)がプロペラの大きさに制約を受けることと等価で、プロペラ直径で舵形状と舵面積が決定されてしまうため、船に必要な舵力を提供できない場合が発生する可能性があり、大きな問題を抱えていることになる。
【0010】
舵形状自体の性能を調べるためには、特許文献1に示されているように舵角対揚力係数と舵角対抗力係数の図を見ればよい。それらを、図17および図18に示す。これらの2つの係数は舵面積で無次元化されているため、舵の断面形状そのものの優劣を示す結果と同等である。図17の舵角10゜におけるA舵、B舵、E舵の揚力係数は、上述の従来技術1に相当するM舵の1.4倍と大きいが、反面、図18に示す舵の抗力係数も、M舵よりはるかに大きいことが分かり、上述の利点と欠点を物語っている。さらに、この技術には構造強度上の問題がある。すなわち、舵後端部の魚のヒレ部の直前に舵幅の非常に薄い部分があるが、この舵形状ではそのヒレ部分に大きな揚力が発生するため、この薄い部分には過大な曲げモーメントがかかる。従って、大型船舶への適用には構造強度上の問題がある。また、魚のヒレ部とその直前の幅の非常に薄い部分の製作には高度な製作技術が必要となる。
【0011】
従来技術3では、舵の水平断面形状を、従来技術1に比較して頭部をより丸く、尾部をより細くすることで高い揚力を得ようとするものである。これは舵の前部を外側に張り出した形状とすることで、この付近の舵のback面の流れをより加速して圧力を低下させ、さらに尾部を細くし、舵後半部の断面形状を外側に凹の形状に近づけることで、この付近のface面の流れをよどませて流速の加速を抑え、ひいては圧力の低下を抑える。この結果、揚力を従来技術1が属する従来のものと比較して大きくすることができると考えられる。また、舵はプロペラ後流の旋回流中にあることから、直進時においても舵には迎え角を持った流れが入る。このため前縁部で大きな揚力を発生するこの舵は、大きな前縁推力を発生し、結果として舵の抵抗を低減できるとしている。
しかしながら、図19(特許文献2からの引用)に示されるように、揚力の増大効果は従来の舵に比べて約10%に過ぎず決して十分なものとはいえない。その原因として、舵の尾部付近に関する技術的方策が舵幅を小さくすることのみであることがあげられる。
【0012】
本発明は、上述の従来技術1ないし従来技術3の問題点を解決するためになされたもので、舵抵抗をできるだけ小さく抑えた高揚力の舵形状を提供するものであり、操縦性能の悪い船舶に対しては大きな舵力を提供し、操縦性能に問題のない船舶に対しては舵力が増大した分を舵面積の減少に当てて製造コストの低減を可能にし、推進性能に対して悪影響を与えない舵断面形状をもつ船舶用舵を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明に係る船舶用舵は、舵本体の水平断面形状において、断面形状の最大幅をTmaxとおくとき、前縁部の半径が最大幅Tmaxの14%以上22%以下であって、前縁部形状が円弧状またはこれに類似する形状からなり、舵本体の後方に向かって徐々に断面幅が増加して最大幅に達し、外側に凸の形状から緩やかな外側に凹の形状に変化しながら断面幅が減少してゆき、その後、後端まで、ほぼ平行な直線で形成される直線状部分を有し、有限幅をもつ後端を有する舵形状をするものである。
【0014】
また、本発明に係る船舶用舵は、前記ほぼ平行な直線状部分の長さを、後端から全長Cの3%以上10%以下の範囲とするものである。
【0015】
また、本発明に係る船舶用舵は、前記ほぼ平行な直線状部分の断面幅Tを、最大幅Tmaxの4%以上11%以下の範囲とするものである。
【0016】
また、本発明においては、以下のような舵形状または構造を有する船舶用舵とすることが好ましい。
(手段1)
断面の前縁端から後端までの全長をC、前縁端からの距離を後端に向かってX、Xにおける断面幅をT、断面形状の最大幅をTmaxとおくとき、X/C=0.05の位置においては、0.42<T/Tmax<0.62、X/C=0.1の位置においては、0.64<T/Tmax<0.81、X/C=0.15の位置においては、0.78<T/Tmax<0.92、X/C=0.7の位置においては、0.26<T/Tmax<0.42、X/C=0.8の位置においては、0.13<T/Tmax<0.22、X/C=0.9の位置においては、0.04<T/Tmax<0.11、X/C=0.98の位置においては、0.02<T/Tmax<0.11の断面幅を有する舵形状とする。
(手段2)
最大幅Tmaxの位置を、前縁端から全長Cの26%以上32.5%以下の範囲とする。
(手段3)
舵本体の水平断面形状を船舶用の吊り型舵に適用する。
(手段4)
ラダーホーンを有する船舶用舵に適用する場合においては、可動舵本体のラダーホーンより下方の下部可動部は、任意の水平断面において、前記のいずれかに記載の水平断面形状を有するものとする。なお、ラダーホーンから後方の上部可動部は、任意の断面形状でよい。
【発明の効果】
【0017】
本発明は、舵の水平断面における最大舵厚位置より後半の舵形状を、全体的に外側に凹の形状に近づけることでface面の流れをよどませて流速低下を招き、結果として圧力上昇を起こして揚力を増大させることを意図した舵にし、舵後端から数%程度の範囲にほぼ平行な直線状の部分を設けるものである。これは、舵後半部の緩やかに減少していく断面形状に沿って流れてきた流体の流れがその直線状部分にくると断面形状の傾きが不連続な点を通過することになり、流れに偏流が生じよどむことになる。その結果として揚力を増加させる効果が生じるからである。また、このような直線状部分を設けることによって、緩やかに舵幅が減少する舵後半部の断面形状の外側に凹である傾向を僅かに強めることも同時になされるため更なる揚力の増大が期待される。
【0018】
舵後半部のスロープ形状と舵後端部に設けられる直線状部分の長さの範囲を決定するために、表1に示すA00舵、A05舵、A10舵、B05舵の4種類の舵断面形状を作成し、フルーエント社製の汎用CFDコード、Fluent Ver.5のプログラムを用いて、2次元翼に流れが8゜の迎角で当たる場合の計算を実施し、揚力の変化を調べた。図1に各舵の断面形状とX/C=0.8における舵幅T/Tmax =0.22の位置を示す。図1は、横軸にX/Cを、縦軸にY/C(但し、Yは舵幅Tの半分、Xは舵の前縁端からの距離、Cは舵の水平断面中心線上の全長(翼長あるいは舵コード長))をとって示してある。また、舵断面形状の違いを明確にするため縦軸を拡大して示してある。図1において、1は舵本体、1Aは舵の水平断面中心線上の前縁端、1Bは舵の水平断面中心線上の後端、1Cは舵後端部における直線状部分を示す。
【0019】
【表1】

【0020】
A00舵は舵後半部がなだらかな凹形状であるが、後端部の直線状部分1Cがない舵、A05舵はA00舵の後端部に5%翼長の平行な直線部1Cを設けることでスロープ部分を全体的に舵前方に縮小し凹形状を強めた舵、同様にA10舵は平行な直線部1Cを10%翼長に設定した舵である。B05舵は、最大舵厚位置から若干の間続く外側に凸の形状を長めにとり、その後凹の形状になって最後に5%翼長の平行な直線部分1Cを持つ舵形状であり、A05舵と比べてX/C=0.6以降のスロープがきつくなり凹形状の傾向は舵後端付近で強まっている。
【0021】
表2にA00舵の揚力の計算結果を基準として各舵の揚力の比を示す。A05舵は1.04倍、A10舵は1.05倍と大きくなっている。平行な直線部1Cを舵後端部に設けることにより、舵後半部の形状が同じ傾向のスロープを持つものでも若干の直線部をつけることで凹傾向を僅かに強めることと、後端付近まで緩やかに減少してきた断面形状の傾きと不連続な傾きを持つ直線部1Cの存在により流れが偏流させられよどむという2つの効果が相乗して揚力を増大させていることが分かる。直線部1Cが5%翼長の場合は、0%の場合と比べて明らかに効果があるが、10%になっても5%の場合より僅かな効果しかない。従って、揚力増加効果は5%より短い長さから始まると考え、3%以上の長さを有することが望ましい。但し、直線部1Cの長さの上限は主に構造強度上の理由からの制限であるが、好ましくは10%翼長とするのがよい。また、舵後半部形状の傾向が異なるB05舵の揚力はA05舵と同等である。このことは、後端部の直線部1Cが同じならば後半部のスロープ傾向が多少異なっていても同等な揚力特性をもつということを意味する。一方、後端部に直線部のないA00舵の揚力は直線部をもつA05舵、A10舵より小さい。A00舵のX/C=0.8における舵幅はT/Tmax=0.243であり、前記(手段1)に記載の0.22より大きい。
【0022】
【表2】

【0023】
このような断面形状をもつ舵の圧力分布および揚力分布と、従来技術1のそれらとの違いを見るため、図2にB05舵の圧力分布と揚力分布を示し(なお、図2の下側には図1のB05舵の舵形状が参考のため付記してある。)、図16の従来技術1と比較する。最も異なる点は、舵後半部のface面の圧力である。従来技術1の舵では最大舵厚位置(X/C=0.36)から後方の圧力は一定であるが、B05舵では最大舵厚位置(X/C=0.325)のあとX/C=0.5あたりから圧力が上昇し始め、凸面から凹面に変わる付近で正の圧力になり、後端付近まで正の圧力を保持し続ける。後端付近でface面とback面の圧力差が消滅しないで続いている。これらは、舵後端付近にほぼ平行な直線部を設け有限な幅の後端をもたせ、あえてクッタ・ジュウコフスキーの定理を満足させないことによる効果である。しかし、この定理を満足しないことは舵抵抗の増加に直結するため、その揚力増大と抵抗増加の調和を図ることが必要である。また、B05舵の舵前半部では、最大舵厚位置の手前(X/C=0.2)から、back面の圧力が負の側に盛り下がっているが、この付近の流体の加速が従来技術1の舵より大きいために圧力低下を招くのが原因である。図16と図2の比較より、本発明の舵断面形状が従来技術1に比べて揚力特性をはるかに向上させる形状であることが分かる。
【0024】
舵前半部では、前縁端付近の幅を小さくし、最大舵厚位置まで連続的に増大していく形状とすると、前縁部を小さくしたことで整流効果が高まり、舵に当たる流れをスムーズに後方に流すことができる。それにより、舵前縁端付近で流れを乱すために発生する抵抗増加を小さくすることが可能である。しかしながら、舵前縁部では、back側に流れ込む流速の加速が小さくなるため前縁端付近の揚力のピーク値は小さくなる傾向がある。一方、舵前縁端付近の幅を大きくすると前縁部でのピーク値が上がり揚力は大きくなるが、舵抵抗も大きくなる。このような相反する事象の影響を確かめ、かつ本発明の舵幅を確定するために模型試験を実施した。
【0025】
表3に示す側面が矩形の模型舵と、それと同サイズで従来技術1による側面矩形の模型舵を作成し、全長8.5m、喫水0.472m、直径0.240mのプロペラを付けた肥大船の模型船に取り付け、プロペラを作動させながら船速1.28m/sの速さで曳航し、舵角を取り舵直圧力(舵面と垂直に働く力)と舵抵抗力(舵長手方向に働く力)を測定する試験をNKK船型試験水槽にて実施した。図3に、舵角δ、舵直圧力Fry、および、舵抵抗力Frxの定義を示す。図3において、1は舵本体、2は舵軸、3はプロペラである。
【0026】
【表3】

【0027】
また、推進性能に及ぼす影響を調べるため、推進性能試験(すなわち抵抗試験および自航試験)を行い、本船の計画速力における実船相当の主機馬力推定も実施した。図4、図5に左舵角8゜の時の舵直圧力と舵抵抗力の係数を、従来技術1の舵のそれらとの比を示す。
舵前縁部半径(あるいは舵先端部半径)Rを最大舵厚Tmaxの15%とした舵(B05A15、B05B15、B05C15)の揚力比の変化から最大舵厚位置が32.5%コード長より長くなると揚力増大の効果が薄れることが分かる。最大舵厚位置が下がることで舵前縁部が細くなり前縁揚力が減少することが原因である。図5の舵抵抗係数を見ても抵抗の減少は最大舵厚位置/コード長の37.5%の舵(B05C15)は最大舵厚位置/コード長32.5%の舵(B05B15)より僅かに下がるだけである。従って、最大舵厚位置/コード長を32.5%に止めておけば十分で、それ以上後方に下げても意味がない。最大舵厚位置/コード長37.5%の舵(B05C15)のX/C=0.8の舵幅は表3よりT/Tmax=0.233で手段1に記載の0.22より大きい。同じ最大舵厚位置をもつ3個の舵(B05B15、B05B22、B05B30)の結果から前縁部の円半径の大きさの影響が分かる。図4と図5より、前縁部半径を大きくすれば舵直圧力は大きくなるが、舵抵抗力も増加する。なお、舵前縁部の形状は円弧状に限られるものではない。これに類似する形状、例えば楕円、放物線等でも構わない。
【0028】
推進性能への影響は舵角を取ったときの舵力では評価できない。また、舵角ゼロの時の舵抵抗だけでも評価は完全ではない。それは、プロペラ後流が舵に当たると、舵の形状の違いにより異なる流れ場がプロペラや舵のある船尾付近に発生し、その流れが、プロペラに及ぼす影響や、舵近傍の船体部分に及ぼす影響などいくつかの要素が複雑に絡み合って推進性能が決定されるからである。そのため、舵が推進性能へ及ぼす影響の把握には船型試験水槽で推進性能試験を行い実船の推定馬力で比較することが最も望ましい。
【0029】
舵揚力計測試験と同じ舵を用いて行った試験から実船の馬力を推定し、従来技術1の舵を搭載したときの馬力からの増加量で比較を行い、その結果を図6に示す。一般的にこのような推進性能試験においては、馬力の1%以下の増減は水槽試験の計測誤差範囲とみなすことができ同等の性能と判断できる。舵前縁部半径を最大舵厚の15%とした3個の舵のうち、B05A15舵とB05B15舵は、従来技術1と同等な推進性能を持つといえる。最大舵厚位置の大きなB05C15舵と、前縁部半径を大きくした2個の舵(B05B22、B05B30)は、先の2個の舵に比べて馬力増加量が大きく1%を超しているため、推進性能はやや劣化する。
従って、前縁部半径を最大舵厚の15%以上30%以下の範囲では、推進性能に及ぼす影響は小さいものの、22%を超すと推進性能に悪影響を与え出す。したがって、前縁部半径は22%を上限とした。
また、最大舵厚位置は、前縁部半径が最大舵厚の15%の場合の図4の揚力特性から判断して、舵コード長の27.5%から32.5%の範囲を基準に考えるのが妥当である。
【0030】
以上のことから、舵前半部の舵幅を最大にし、後半部の舵幅を最小にする第1の舵形状を、前縁部半径を最大舵厚の30%、最大舵厚位置を舵コード長の26%、舵後半部の形状を表1に示したA10舵の後半部のスロープ傾向を最大舵厚位置から後端から舵コード長10%の位置まで適用し、後端平行部長さを舵コード長の10%とした舵の形状とする。また、舵前半部の舵幅を最小にし、後半部の舵幅を最大にする第2の舵形状を、前縁部半径を最大舵厚の15%、最大舵厚位置から後端から舵コード長5%の位置まで適用し、後端平行部長さを舵コード長の5%とした舵の形状とする。これら2つの舵形状を基にして(手段1)に記載した舵幅の範囲を決定する。この2つの舵形状と舵幅の関係を図7に示す。
【0031】
図7は上記第1および第2の舵形状を舵中心線より半分の形状で示すもので、図中の□印は各X/Cの位置における断面幅の上限と下限を示している。
X/C=0.98の位置における舵幅範囲の上限は大きいが、船舶用舵に適用した場合、舵幅が舵高さ方向の位置で変更されることが多い。このとき舵後端部の幅を高さ方向に一定幅で舵を製作すれば、最大舵幅が舵高さ方向で変化するので、舵幅の小さい断面では必然的に後端付近の幅が大きくなるためである。
【0032】
船舶用舵を、さらに大きな揚力を発生せしめる舵に改良するために、舵後端部付近の平行に近い直線部1Cは流体の流れを偏流しよどませることで流体の加速を抑え圧力上昇をもたらす働きがあったが、舵後端にその点の舵幅より大きい幅の断面をもつ柱状物を付加すれば、流れを偏流させる効果が大きくなり、さらに揚力は増加する。従来技術2における舵後端部の魚のヒレ部も同様な働きをする。しかし、前述のように直前に非常に薄い部分があり構造強度上の問題で、大型船舶への適用が不向きな点や、製作が難しいという問題点がある。本発明では、これらの問題を解決することができる。
【0033】
まず、舵製作時の舵後端部の処理は、図8(a)に示すように比較的小さな円形断面をもつ柱状体4aに舵の両側から舵板5を溶接する手法で行われることが多い。従って、図8(b)に示すように、小さな円柱体4aの代わりに径の大きな中実あるいは中空の柱状物4bを用いるだけでよいことになる。なお、本図では円柱状の場合を示しているが他の形状でも同じ効果を生む。その際、柱状物4bを舵高さ全体に取り付けてもよいが、部分的に取り付けることで揚力の調整や、舵抵抗の増加を調整することも可能になる。この場合、柱状物4bの取付位置等は特に限定するものではないが、より好ましくは、プロペラ径と同程度の長さをもつ柱状物をプロペラに正対するごとく取り付けた方がよく、より効率が向上する。また、舵後端部の幅が薄い場合でも、柱状物4bとの距離が非常に近いため大きなモーメントを受けることはなく、構造強度上の問題も解決される。
【発明を実施するための最良の形態】
【0034】
本発明の実施例としては、表1および図1に示すA05舵、A10舵、B05舵および、表3に示すB05A15舵、B05B15舵、B05B22舵、B05B30舵等がある。但し、実際の船舶に装備する舵の後端は、その端部処理のため必ずしも有限幅をもつものではない。従って、請求項1にある有限幅の後端をもつという記述は、このような製作上の端部処理を考慮から外したものであり、端部処理直前の断面形状に対して適用される(端部処理後の断面形状は有限幅をもつと否とを問わない)ものであることを付記しておく。
【0035】
図9は吊り型舵の実施例であり、図10はラダーホーン付きの半吊り型舵の実施例を示すものである。図9、図10において、1は舵本体、2は舵軸、3はプロペラ、6はラダーホーン、7は船体である。
図9の吊り型舵においては、舵本体1の任意の位置における水平断面形状が本発明を満足するものであり、図10のラダーホーン付きの半吊り型舵においては、可動舵本体1のラダーホーン6より下方の下部可動部11は、任意の水平断面において、すなわち上部可動部11の高さ全体にわたって、本発明を満足する水平断面形状を有するものとし、ラダーホーン6から後方の上部可動部12は、任意の水平断面において、すなわち上部可動部12の高さ全体にわたって、下部可動部11の対応する部分の形状とほぼ相似形の水平断面形状を有するものである。ここで、ラダーホーン6の断面形状は、特に限定されるものではない。
【0036】
図11(a)は表3に示したB05A15舵の水平断面形状を示すものであり、図11(b)はこの水平断面形状をもつB05A15舵の後端に、その後端の幅より大きい幅の断面形状をもつ柱状物4bを取り付けた場合の舵形状を示すものである。柱状物4bは船舶用舵の後端の上下方向の一部あるいは全体に取り付ける。また、柱状物4bの断面形状は、円形、楕円形、正四角形、ひし形等があり、特に限定はない。そして、楕円形の場合は長径方向が、正四角形の場合は対角線が、ひし形の場合は長い方の対角線が、それぞれ舵の中心線の延長線上になるように取り付ける。
【実施例】
【0037】
本発明の実施例としては、表3に示したB05A15舵、B05B15舵、B05B22舵、B05B30舵があり、その模型を作成した。また、それらと同サイズの従来技術1の側面矩形の模型舵を作成し、全長8.5m、喫水0.472m、直径0.240mのプロペラを付けた肥大船の模型船に取り付け、プロペラを作動させながら船速1.28m/sの速さで曳航し、舵角を取り舵に働く流体力を測定する試験をNKK船型試験水槽にて実施した。
舵直圧力の結果を図4に、推進性能試験により推定した実船相当の馬力推定の結果を図6に従来技術1との比較で示している。その結果、本実施例の舵は従来技術1に比べて推進性能は同等であり、舵直圧力は効果の小さい順に、9%、17%、20%、24%の増大がそれぞれ確認できた。これらは、従来技術3の特開平2000−280984号公報中にある従来舵(従来技術1と同等)より約10%増(図19参照)という舵力増大効果に比べると大きい範囲にあり、本発明の舵形状が舵直圧力の増大に有効であることを示している。
【0038】
舵直圧力の増大による舵面積の減少効果を算定する。船舶のプロペラ後流に置かれた舵の舵直圧力Fryの算定には、従来技術1の舵に対しては、数1が用いられてきた。
【0039】
【数1】

【0040】
従来技術1の舵よりも直圧力係数が大きな舵の場合は、その比Rをf(λ)に乗じたものを新たに直圧力係数として取り扱うことで近似的に舵直圧力の算定ができる。舵を矩形舵とし、舵高さHを同一とした場合、舵直圧力の増加率がRなる舵と、従来技術1の舵が同じ直圧力を出す場合の舵面積比は次式(数2)で計算できる。
【0041】
【数2】

【0042】
表3の舵形状(H=364.9mm,C0=211.3mm)を用いてλ0=H/C0=1.73とし、B05A15舵、B05B15舵、B05B22舵、B05B30舵の舵角δ=8゜の場合の舵直圧力係数の比率を用いると、上式より各舵の舵面積の減少率が算出される。表4にその結果を示す。
【0043】
【表4】

【0044】
表4から、請求項1〜3の範囲内で最も舵面積の減少率の大きなB05A15舵の場合、従来技術1に比べて68%の舵面積となる。従来技術3の舵は、従来技術1に対する直圧力係数の増加率を図19より約1.10とすると、舵面積は従来技術1の82%になるが、B05A15舵はそれより更に17%(従来技術3が基準)小さな舵面積となる。但し、これは矩形舵を仮定し、直圧力が上述のような式で表され、アスペクト比で表される直圧力係数勾配の式が本発明の舵の場合でも成り立つとした場合の算定結果であることを付記する。
【0045】
舵の断面形状として、図11に示すように、B05A15舵の舵断面形状をもつ矩形舵の後端に、舵コード長の約3%(模型舵で6mm)の直径を持つ円形断面の柱状物4bを、可動舵本体(図10参照)の下端から上端まで取り付けた。図11(b)に示す本実施例の舵について、舵力計測試験と推進性能試験を実施した。その結果、従来技術1に比べ舵角8゜の時の舵直圧力は1.36倍増加、舵抵抗力は1.47倍増加し、実船相当馬力の増加量は3.3%となった。
本実施例の舵は、推進性能が3%程度の劣化を招くものの直圧力の増大はきわめて大きく、従来技術1の舵と同じ直圧力を得るために必要な舵面積を上と同様にして求めると、従来技術1の舵の舵面積の55%で良いことになり、舵を極めて小型化することが可能になる。そのため、舵抵抗が半減するだけでなく、プロペラ後流への悪影響も少なくなることは容易に想像でき、推進性能への悪影響も問題のない程度に小さくなって一般船舶への適用も可能になる。
【0046】
以上のように、本発明によれば、舵後半部の形状を大きな揚力を得るために有効な外側に凹の形状と、舵後端部付近にほぼ平行な直線状部分を組み合わせることにより、揚力性能に優れ、推進性能の劣化のない船舶用舵が実現できるため、比較的小さい主機馬力の相対的に大きな内航船への適用はいうまでもなく、外洋を航海する運行採算の難しい大型船舶に装備しても、その運行採算性を悪くすることなく、操縦性、操船性の大幅な向上が達成できるほか、舵の小型化による舵製作費用の削減と操舵装置の小型化による機器調達費の削減という船主側と建造側の双方にとってメリットを生み出すことが可能になった。
【図面の簡単な説明】
【0047】
【図1】本発明の船舶用舵の水平断面形状を決定するために用いた舵形状(但し、半分の形状)図である。
【図2】本発明の船舶用舵の2次元断面に対するCFD計算による圧力分布と揚力分を示す図である。
【図3】模型試験における舵直圧力、舵抵抗力、舵角の定義を示す図である。
【図4】舵力計測試験により得られた舵の直圧力を従来技術1の舵直圧力との比率で比較した図である。
【図5】舵力計測試験により得られた舵の抵抗力を従来技術1の舵抵抗力との比率で比較した図である。
【図6】推進性能試験により舵形状が実船の馬力に及ぼす影響を調べた結果で、従来技術1の舵を装着したときの馬力からの増減をパーセントで表した図である。
【図7】本発明の船舶用舵における舵幅の範囲を決定するために用いた舵形状(但し、半分の形状)図である。
【図8】舵後端部に柱状物を取り付ける場合の製作方法を簡単に示した図である。
【図9】吊り型舵の実施例を示す図である。
【図10】ラダーホーン付きの半吊り型舵の実施例を示す図である。
【図11】(a)は本発明の実施例を示す舵形状図、(b)はその舵の後端部に柱状物を取り付けた場合の舵形状図である。
【図12】従来技術1(NACA対称翼)の舵形状を示す図である。
【図13】従来技術2(特開平10−297593号公報)の舵形状を示す図である。
【図14】従来技術3(特開2000−280984号公報)の舵形状を示す図である。
【図15】2次元翼に当たる流れと揚力および抗力の定義を示す図である。
【図16】従来技術1の2次元断面に対するCFD計算による圧力分布と揚力分布を示す図である。
【図17】従来技術2の揚力係数を示す図である。
【図18】従来技術2の舵の抗力を示す図である。
【図19】従来技術3の揚力係数を示す図である。
【符号の説明】
【0048】
1 舵本体、1A 前縁端、1B 後端、1C 直線状部分、6 ラダーホーン。

【特許請求の範囲】
【請求項1】
舵本体の水平断面形状において、断面形状の最大幅をTmaxとおくとき、前縁部の半径が最大幅Tmaxの14%以上22%以下であって、前縁部形状が円弧状またはこれに類似する形状からなり、舵本体の後方に向かって徐々に断面幅が増加して最大幅に達し、外側に凸の形状から緩やかな外側に凹の形状に変化しながら断面幅が減少してゆき、その後、後端まで、ほぼ平行な直線で形成される直線状部分を有し、有限幅をもつ後端を有することを特徴とする船舶用舵。
【請求項2】
前記ほぼ平行な直線状部分の長さは、後端から全長Cの3%以上10%以下の範囲であることを特徴とする請求項1記載の船舶用舵。
【請求項3】
前記ほぼ平行な直線状部分の断面幅Tは、最大幅Tmaxの4%以上11%以下の範囲であることを特徴とする請求項1または2記載の船舶用舵。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2007−186204(P2007−186204A)
【公開日】平成19年7月26日(2007.7.26)
【国際特許分類】
【出願番号】特願2007−69025(P2007−69025)
【出願日】平成19年3月16日(2007.3.16)
【分割の表示】特願2001−378075(P2001−378075)の分割
【原出願日】平成13年12月12日(2001.12.12)
【出願人】(502116922)ユニバーサル造船株式会社 (172)