説明

荷電粒子線照射装置

【課題】被照射体内で発生したガンマ線を検出する検出器を備えた荷電粒子線照射装置において、輸送ラインを照射室の背面側に配置して、荷電粒子照射装置の小型化を図ること。
【解決手段】荷電粒子線が照射される被照射体の回りに回転可能な荷電粒子線照射部11を有する照射室21を備えた荷電粒子線照射装置10において、被照射体内にて発生したガンマ線を検出する検出する検出部91と、検出部91を支持しながら荷電粒子線照射部11と一体的に回転移動可能であると共に、照射室21内で検出部91を移動可能とする支持機構92と、を備え、支持機構92は、荷電粒子線照射部11の回転軌道における径方向に検出部11を進退させる構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線を照射する荷電粒子線照射装置に関する。
【背景技術】
【0002】
陽子ビームなどの荷電粒子線を患者に照射してがん治療を行う設備が知られている。この種の設備は、荷電粒子を加速して荷電粒子線を出射するサイクロトロン(加速器)、患者に対して任意の方向から荷電粒子線を照射する回転自在の照射部が取り付けられた回転ガントリー(回転体)及びサイクロトロンから出射された荷電粒子線を照射部まで輸送する輸送ラインを備えている。
【0003】
また、下記特許文献1に記載の荷電粒子線照射装置は、荷電粒子線が照射される被照射体を挟んで両側に配置されて、被照射体にて生成された消滅ガンマ線を検出する一対の検出部を備えている。この荷電粒子線照射装置の回転ガントリー内には、被照射体が配置されて荷電粒子線の照射が行われる照射室が形成されている。この照射室は、背面側を仕切る背面パネル(背面壁)を備えている。
【0004】
そして、下記特許文献1に記載の荷電粒子線照射装置では、一対の検出部が、回転ガントリーの回転中心軸の延在する方向に移動可能とされ、照射室の背面パネルの背面側に収納可能な構成とされている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−173297号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
一般的に、荷電粒子線照射装置は、放射線遮蔽壁を有する建屋内に設置される。荷電粒子線を照射部まで輸送するための輸送ラインの配置を改善することで、回転ガントリーの回転軸線方向の長さを短縮し、荷電粒子線照射装置及び建屋を小型化することが求められている。このように荷電粒子照射装置及び建屋を小型化することで、建設コストの削減を図ることができる。
【0007】
しかしながら、特許文献1に記載の荷電粒子線照射装置では、検出部を回転ガントリーの回転軸線方向に移動させて、背面パネルの背面側に収容する構成であるため、照射室の背面パネル直近に輸送ラインを配置することができず、輸送ラインの配置を改善して装置の小型化を図ることが困難であった。
【0008】
本発明は、以上の課題を解決することを目的としており、被照射体内で発生したガンマ線を検出する検出器を備えた荷電粒子線照射装置において、輸送ラインを照射室の背面側に配置して、荷電粒子照射装置の小型化を図ることを目的とする。
【課題を解決するための手段】
【0009】
本発明は、荷電粒子線が照射される被照射体の回りに回転可能な荷電粒子線照射部を有する照射室を備えた荷電粒子線照射装置において、被照射体内にて発生したガンマ線を検出する検出部と、検出部を支持しながら荷電粒子線照射部と一体的に回転移動可能であると共に、照射室内で検出部を移動可能とする支持機構と、を備え、支持機構は、荷電粒子線照射部の回転軌道における径方向に前記検出部を退避可能であることを特徴とする。
【0010】
本発明に係る荷電粒子線照射装置は、被照射体回りに回転可能な荷電粒子線照射部を備え、被照射体から発生したガンマ線を検出する検出部が、荷電粒子線が照射される照射室内において、荷電粒子線照射部の回転軌道の径方向に進退可能な構成とされている。これにより、ガンマ線を検出しない場合には、径方向外側に検出部を退避させることができる。そして、ガンマ線を検出しない場合(不使用時)に退避していた検出部を、使用を開始する際に、被照射体近傍(回転中心付近)へ移動させ、使用後には再び径方向外側へ退避させることができる。これにより、照射室の背面側へ、回転中心軸に沿って検出部を退避させて収容する従来の構成を採用しなくてもよい。そのため、被照射体の直近の背面側にビーム輸送ラインの配置スペースを確保することができる。その結果、被照射体の直近の背面側のスペースを利用することで、ビーム輸送ラインの配置の自由度を向上させ、ガンマ線検出器とビーム輸送ラインとの干渉を回避し荷電粒子線照射装置の小型化を図ることができる。
【0011】
また、支持機構は、ガンマ線を検出しない状態の検出部を、荷電粒子線照射部の側方へ退避させてもよい。これにより、検出部を荷電粒子線照射部の横に退避させておくことができる。
【0012】
また、荷電粒子線の照射を受けて被照射体内にて発生した消滅ガンマ線を検出する一対の検出部であるPETカメラを備え、一対のPETカメラは、照射体を挟んで両側に配置され、一対のPETカメラを移動させるための駆動力を付与する一つの駆動源によって、一対のPETカメラが径方向に移動可能である構成としてもよい。このように一つの駆動源によって一対のPETカメラを駆動することで、装置構成を簡素化することができる。
【0013】
また、支持機構は、荷電粒子線照射部の幅方向に延在する所定の軸線回りに、検出部を揺動可能に支持する支持アームと、荷電粒子線照射部の幅方向において、検出部を前記被照射体に対して接近または離間させる駆動部と、を備える構成としてもよい。このように、荷電粒子線照射部の幅方向に延在する所定の軸を基点として、支持アームを揺動させることで、支持機構の移動範囲を抑制することができる。すなわち、省スペース化を図りながら、支持機構を照射室内に配置して、検出部を移動可能に支持することができる。例えば、従来技術のように回転ガントリーの回転中心軸方向に沿って直線的に支持機構が移動する構成の場合には、支持機構が照射室外に張り出していたが、本発明に係る支持機構では、支持アームが揺動するため、支持機構が照射室外に張り出さないように設置することが可能である。なお、「荷電粒子線照射部の幅方向」とは、荷電粒子線照射部の回転軸線方向から見て、荷電粒子線の照射方向を基準としたときの左右方向である。
【0014】
また、支持機構は、荷電粒子線照射部の幅方向に延在する所定の軸線回りに、検出部を揺動可能に支持する支持アームと、荷電粒子線照射部の幅方向において、検出部を被照射体に対して接近または離間させる駆動部と、を備える構成としてもよい。このように、支持アームを荷電粒子線照射部の幅方向に延在する所定の軸回りに、揺動させることで、検出部を径方向に進退させてもよい。また、検出部を被照射体に対して接近または離間させる駆動部を備えているため、検出部を被照射体に接近させて、ガンマ線の検出を行うことができる。
【0015】
また、支持機構は、直線運動を回転運動に変換する機構を有し、支持アームは、前記機構によって伝達された駆動力が付与され揺動する構成とすることができる。これにより、従前のように比較的長い距離を往復動する部材によって駆動力する付与する必要がないため、支持アームを揺動させるための駆動機構をコンパクトにすることができる。
【0016】
また、支持機構は、荷電粒子線照射部に支持され、荷電粒子線照射部に対して支持アームを揺動させるトラニオン機構を備える構成としてもよい。このように、荷電粒子線照射部に支持されたトラニオン機構を用いて、支持アームを荷電粒子線照射部に対して揺動させることができる。
【0017】
また、支持機構は、一対の検出部であるPETカメラを、荷電粒子線照射部の幅方向に被照射体に対して1つの駆動源で接近または離間させる駆動機構を有することが好適である。これにより、一対のPETカメラを、被照射体に対して接近させることで、ガンマ線の検出精度を向上させることができる。
【発明の効果】
【0018】
本発明によれば、被照射体内で発生したガンマ線を検出する検出器を備えた荷電粒子線照射装置において、荷電粒子線照射部の回転軌道の径方向の外側へ検出部を退避させる構成であるため、照射室の背面側にビーム輸送ラインの配置スペースを確保することができる。従って、ガンマ線の検出器を備えた荷電粒子線照射装置の小型化を図ることができる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施形態に係る陽子線治療装置を備えた陽子線治療システムの概略構成図である。
【図2】本発明の実施形態に係る陽子線治療装置の正面図である。
【図3】本発明の実施形態に係る陽子線治療装置の斜視図である。
【図4】本発明の実施形態に係る陽子線治療装置の回転ガントリーを回転軸線に沿って水平方向に切った概略断面図である。
【図5】本発明の実施形態に係る陽子線治療装置のビーム照射ノズルの正面図である。
【図6】本発明の実施形態に係る陽子線治療装置のビーム照射ノズルの側面図である。
【図7】回転ガントリーに取り付けられたビーム輸送ライン及びビーム照射ノズルを示す斜視図である。
【図8】照射ノズル内に配置された各要素を示す図である。
【図9】被照射体の側方に配置された一対のPETカメラ及び支持アームを示す側面図である。
【図10】被照射体の側方に配置された一対のPETカメラ及び支持アームを示す斜視図である。
【図11】本発明の実施形態に係る陽子線照射方法の工程を示すフロー図である。
【図12】他の実施形態に係るPETカメラを示す側面図である。
【発明を実施するための形態】
【0020】
以下、本発明に係る荷電粒子線照射装置の好適な実施形態について図面を参照しながら説明する。本実施形態では、陽子線治療装置(荷電粒子線照射装置)を備えた陽子線治療システムについて説明する。陽子線治療装置は、例えばがん治療に適用されるものであり、患者の体内の腫瘍(被照射体)に対して、陽子ビーム(荷電粒子線)を照射する装置である。
【0021】
図1に示すように、陽子線治療システム1は、陽子ビームを生成するサイクロトロン(粒子加速器)2、サイクロトロン2から出射された陽子ビームを輸送するビーム輸送ライン3、ビーム輸送ライン3によって輸送された陽子ビームを被照射体へ照射する陽子線治療装置10を有する。そして、陽子線治療システム1の各機器は、建屋5内に収容されている。
【0022】
サイクロトロン2で加速された陽子ビームは、ビーム輸送ライン3に沿って経路が変更され、陽子線治療装置10に輸送される。ビーム輸送ライン3には、陽子ビームを偏向させるための偏向磁石や、ビーム成形を行う四重極電磁石等が設けられている。
【0023】
陽子線治療装置10は、図2〜図5に示すように、ビーム輸送ライン3によって導入され陽子ビームをビーム照射ノズル11まで輸送するビーム導入ライン31と、ビーム導入ライン31によって輸送された陽子ビームを被照射体(患者61、図2及び図3参照)へ照射するビーム照射ノズル11と、ビーム導入ライン31及びビーム照射ノズル11を支持すると共に所定の回転軸線P回りに回転可能な回転ガントリー12を備えている。
【0024】
回転ガントリー12は、図4に示すように、回転軸線P方向に配置された円筒本体部13、コーン部14及び第2円筒部15を有する。これらの円筒本体部13、コーン部14及び第2円筒部15は、同軸(回転軸線P)上に配置されて連結されている。なお、円筒本体部13が配置されている方を回転ガントリー12の正面側、第2円筒部15が配置されている方を回転ガントリー12の背面側とする。
【0025】
円筒本体部13及び第2円筒部15は、薄肉構造の円筒体であり、剛性を保ちつつ軽量化できるよう構成されている。第2円筒部15は、円筒本体部13より小径とされ、コーン部14は、円筒本体部13及び第2円筒部15を連結するように円錐状に形成されている。コーン部14は、正面側から背面側へ向かうにつれて、内径が小さくなるように形成されている。また、回転ガントリー12の回転軸線P方向の長さL(円筒本体部13の正面側の端部から第2円筒部15の背面側の端部までの長さ)は、例えば4.6m程度とされている。
【0026】
円筒本体部13の回転軸線P方向の両端部には、断面形状が例えば矩形の中空部材であるリング部13a,13bが設けられている。なお、リング部13a,13bは中実部材でも構わない。円筒本体部13は、図2に示すように、円筒本体部13の下方に配置されたローラー装置20によって、回転可能に支持されている。ローラー装置20は、回転ガントリー12を回転させるための駆動装置として機能する。
【0027】
円筒本体部13の正面側は開放され、円筒本体部13内への進入が可能な構成とされている。一方、円筒本体部13の背面側には、背面パネル(隔壁)16が設けられている。そして、円筒本体部13及び背面パネル16によって囲まれた領域が、照射室21として構成されている。寝台22は、ロボットアーム23によって移動可能とされている。治療を実施していない通常時には、寝台22は回転ガントリー12(照射室21)の外に配置され、治療を実施する際に寝台22は照射室21内に配置される。なお、図4〜図6では、寝台22の図示を省略している。
【0028】
照射ノズル(陽子線照射部)11は、円筒本体部13の内面側に固定され、円筒本体部13と共に回転軸線P回りに回転する。照射ノズル11は、円筒本体部13の回転と共に移動し、陽子ビームの出射方向が変更される。照射ノズル11は、照射室21において、被照射体に対して陽子ビームを出射する部分である。照射ノズル11は、ビーム導入ライン31に連続するビームラインが内部に形成される筐体11aを有する。また、筐体11a内には、ビーム調整を行うための各種部品(後述する)が配列されている。
【0029】
陽子線治療装置10のビーム輸送ラインであるビーム導入ライン31は、サイクロトロン2から出射された陽子ビームを輸送するビーム輸送ライン3と接続され、ビーム輸送ライン3によって輸送された陽子ビームを照射ノズル11に導入する。
【0030】
図7は、回転ガントリーに取り付けられたビーム導入ライン及びビーム照射ノズルを示す斜視図である。図7に示すように、ビーム導入ライン31は、回転ガントリー12の回転軸線P方向に進行する陽子ビームを偏向する第1ベント部32と、第1ベント部32の下流に設けられ、陽子ビームBを回転軸線P方向に対して傾斜させて進行させる傾斜部33と、傾斜部33の下流に設けられ、回転軸線Pと直交する方向へ陽子ビームBを偏向する第2ベント部34と、第2ベント部34の下流に設けられ、陽子ビームBの進行方向を回転軸線Pの回転方向へ旋回させる第3ベント部35と、第3ベント部35の下流に設けられ、陽子ビームBを照射ノズル11の上方(図2に示す状態における上方)へ進行させる直線部36と、直線部36の下流に設けられ、陽子ビームBを軸心側(回転軸線P側)へ湾曲させる第4ベント部37と、第4ベント部37の下流に設けられ、陽子ビームBを照射ノズル11へ進行させる直線部38と、を備える。
【0031】
第1ベント部32は、陽子ビームBを湾曲させて進行方向を45度分偏向させる45度偏向電磁石によって構成されている。傾斜部33は、四重極電磁石41、ステアリング電磁石42、及びプロファイルモニター43などの光学要素を有する構成とされている。四重極電磁石41は、陽子ビームBの照射位置でのサイズや光学上の焦点位置を調整する機能を有する。ステアリング電磁石42は、ビーム軸を平行移動する機能を有する。プロファイルモニター43は、通過する陽子ビームBの形状と位置を検出する機能を有する。
【0032】
第2ベント部34は、陽子ビームBを湾曲させて進行方向を45度分偏向させる45度偏向電磁石によって構成されている。また、第2ベント部34と第3ベント部35と間には、プロファイルモニター43が配置されている。第3ベント部35は、陽子ビームBを湾曲させて進行方向を135度分偏向させる135度偏向電磁石によって構成されている。
【0033】
直線部36は、四重極電磁石41、ステアリング電磁石42、及びプロファイルモニター43を有する。第4ベント部37は、陽子ビームBを湾曲させて進行方向を135度分偏向させる135度偏向電磁石によって構成されている。直線部38は、四重極電磁石41及びプロファイルモニター43を有する。
【0034】
本実施形態の陽子線治療装置10では、回転ガントリー12に取り付けられたビーム導入ライン31の一部が、回転ガントリー12の筒体(円筒本体部13、コーン部14、第2円筒部15)内を通過して配置されている。ビーム輸送ライン3によって輸送された陽子ビームBは、第2円筒部15の背面側から内部へ導入され、第2円筒部15内、コーン部14内、及び円筒本体部13内を通過して、円筒本体部13を貫通して、円筒本体部13の外部へ導出される。
【0035】
ビーム導入ライン31は、図4に示すように、背面パネル16を貫通して円筒本体部13内へ進入し、照射室21内を通過するように配置されている。また、照射室21内において、ビーム導入ライン31の周囲に、中性子線など放射線の透過を遮蔽する遮蔽材(例えば、ポリエチレンや鉛、ステンレス等など)を備える構成としてもよい。
【0036】
また、円筒本体部13の外周面には、円筒本体部13より外方に張り出したビーム導入ライン31を支持するための架台17が設けられている。なお、円筒本体部13より外方に張り出したビーム導入ライン31を、ビーム導入ライン張出部31aと称する。第3ベント部35、直線部36、及び第4ベント部37は、導入ライン張出部31aに含まれる。架台17は、円筒本体部13の外面に固定され、径方向の外側へ張り出している。架台17は、径方向の内側から、ビーム導入ライン張出部31aを支持している。これにより、電磁石(四重極電磁石41、135度偏向電磁石)などの荷重を円筒本体部13によって受けることができる。
【0037】
円筒本体部13の外周面には、回転軸線Pを挟んで対向配置されたカウンタウェイト18が設けられている。カウンタウェイト18を設置することで、円筒本体部13の外面に配置された第3ベント部35、直線部36、第4ベント部37、及び架台17に対する重量バランスが確保されている。
【0038】
そして、回転ガントリー12は、図示されていないモーターによって回転駆動され、図示されていないブレーキ装置によって回転が停止される。
【0039】
次に、照射ノズル11について説明する。陽子線治療装置10は、回転ガントリー12に取り付けられて寝台22の回りに回転可能とされた照射ノズル11を備えている。
【0040】
図8は、照射ノズル内に配置された各要素を示す図である。照射ノズル11は、図8に示すように、陽子ビームの照射方向Aに順に配列され、陽子ビームを順に通過させてビームを整形する散乱体71、リッジフィルタ部72、ファインディグレーダ73、ブロックコリメータ74、ボーラス75、マルチリーフコリメータ76、装置各部の駆動を制御する照射制御部77を備えている。
【0041】
この照射ノズル11には、サイクロトロン2で発生した陽子ビームがビーム輸送ライン3,31を通じて送り込まれる。そして、送り込まれた細い陽子ビームを、例えば厚さ数mmの鉛からなる散乱体(ビーム拡大部)71を通過させることによって、照射方向Aに直交する方向に広がりを持たせて、幅広いビームに拡大する。
【0042】
上記散乱体71からの陽子ビームは、患者61体内の腫瘍62の厚み(照射方向Aの長さ)に対応して陽子ビームのエネルギー深さに分布を持たせるためのリッジフィルタ部(ピーク調整フィルタ部)72に入射される。このリッジフィルタ部72は、階段状に厚みの変化する金属棒が簾状に並べられてなるフィルタ72aを複数有しており、それら複数のフィルタ72aは、金属棒の形状の相違により互いに異なる陽子線の拡大ブラッグピーク(以下「SOBP」という)を形成させる。そして、リッジフィルタ部72は、照射制御部77の制御により駆動され、上記複数のフィルタ72aの中から適宜選択されたフィルタを陽子ビームの通過位置に挿入する機構を有している。この構成により、リッジフィルタ部72は、陽子ビームを通過させるフィルタ72aを選択的に変更可能であり、陽子ビームのSOBPのピークの幅を調整することができる。
【0043】
このリッジフィルタ部72を通過した陽子ビームは、治療対象である患者61体内の腫瘍62の深さに応じて陽子ビームのエネルギーを調整し、最大到達深さを調整するためのファインディグレーダ(ビームエネルギー調整部)73に入射される。このファインディグレーダ73は、例えば2個の楔型をした対向するアクリルブロック73a、73bから構成され、照射制御部77の制御により上記ブロック73a、73bの重なり方を調節することによって、陽子ビームが通過する部分の厚みを連続的に変化させることができる。陽子ビームは、通過した物質の厚みに応じてエネルギーを失い、患者61体内において到達する深さが変わるので、このファインディグレーダ73の調節により、陽子ビームのSOBPの位置を、患者61体内における腫瘍62の深さ方向(照射方向A)の位置に合わせることができる。
【0044】
このファインディグレーダ73を通過した陽子ビームは、陽子ビームの平面形状(照射方向Aから見た形状)を粗く整形するためのブロックコリメータ74に入射される。後述するマルチリーフコリメータ76に加えて、ここで、ブロックコリメータ74による整形を行っているのは、患者の近くでブロックコリメータ74による2次放射線が発生しないようにするためである。
【0045】
このブロックコリメータ74を通過した陽子ビームは、例えば樹脂製の不整形フィルタであるボーラス(補償フィルタ)75に入力され、腫瘍62の最大深さの断面形状と組織の不均一性に関する補正が行われる。このボーラス75の形状は、腫瘍62の輪郭線と、例えばX線CTのデータから求められる周辺組織の電子密度とに基づいて、算出される。このようなボーラス75を用いることにより、陽子ビームの最遠部(最大到達深さの部分)の立体形状が、腫瘍62の最大深さ部分の形状に合わせて整形されるので腫瘍62に対する線量集中性を更に高めることができる。
【0046】
このボーラス75を通過した陽子ビームは、マルチリーフコリメータ(形状可変コリメータ)76に入射される。マルチリーフコリメータ76は、真鍮製で幅数mmの多数の櫛歯をもつ2つの遮線部76a,76bが、上記櫛歯の先端を中心で突き合わせるように配列されて構成されている。そして、照射制御部77の制御により、遮線部76a,76bが、多数の上記櫛歯のそれぞれを長手方向に進退させることで、マルチリーフコリメータ76は、陽子ビームが通過する開口76cの位置及び形状を変化させることができる。
【0047】
マルチリーフコリメータ76を通過した陽子ビームは、上記開口76cの形状に対応する輪郭に切り取られるので、マルチリーフコリメータ76は、開口76cの形状を変化させることで、入射する陽子ビームの所望の平面位置及び平面形状を切り出すことができる。このように所望の平面位置において所望の平面形状に切り出された陽子ビームは、治療用陽子ビームとして患者61に照射される。そして、マルチリーフコリメータ76の開口76cの平面位置及び平面形状を変化させて照射野の位置を順次水平方向(照射方向Aに直交する方向)に移動しながら照射を繰り返すことで、腫瘍62全体に陽子ビームを照射する。
【0048】
更に、この照射ノズル11は、照射野に照射された照射線量をモニタする手段として、線量モニタ78を備えている。線量モニタ78は、ファインディグレーダ73とブロックコリメータ74との間に設けられ、通過する陽子ビームの線量を検知する。線量モニタ78は、検知した線量をモニタ信号s1として照射制御部77に送信し、照射制御部77はモニタ信号s1に基づいて照射野に照射された照射線量を認識することができる。
【0049】
また、陽子線治療装置10には、図6に示すように、患者61のX線透視画像取得するX線撮影装置(X線透視画像取得手段)80が設けられている。このX線撮影装置80は、X線発生器81、患者61を透過したX線を検出するX線検出器82を備えている。これらのX線発生器81及びX線検出器82は、回転ガントリー12に固定され、患者61回りに回転可能とされている。本実施形態では、二つのX線発生器81を備え、これらのX線発生器81は、回転軸線Pを中心とする回転角が90度異なる位置に配置されている。また、回転軸線Pを挟んでX線発生器81に対向する位置に、X線検出器82が配置されている。X線撮影装置80は、X線検出器82によって検出されたデータに基づいて、患者61のX線透視画像を作成し、骨、金属マーカーを検出して患者61の位置を測定することができる。
【0050】
ここで、陽子線治療装置10は、回転ガントリー12に取り付けられて寝台22の回りに回転可能とされた一対のPETカメラ(検出器)91を有するPET装置90を備えている。すなわち、PETカメラ91は、回転ガントリー12に取付けられた照射ノズル11と一体として回転軸線P回りに回転可能とされている。PET装置90は、PETカメラ91の他に、図示していない画像処理部、記録部、表示部等を備えている。画像処理部は、PETカメラ91によって取得された画像情報に基づいて画像処理を行いPET画像を生成する。記録部は、生成されたPET画像等を記録する。生成されたPET画像は、表示部により表示される。
【0051】
このPETカメラ91は、寝台22上の患者61の両側に配置され、消滅γ線を検出するものである。具体的には、患者61には腫瘍62に集積する放射性薬剤(例えば、11Cメチオニン)が投与(注入)され、PETカメラ91は、腫瘍62(放射性薬剤の到達位置)から発生する消滅γ線を検出する。PET装置90は、PETカメラ91による消滅γ線の検出結果に基づいて腫瘍62の位置を検出する照射目標位置検出手段として機能する。
【0052】
また、PETカメラ91は、患者61に照射された陽子ビームの入射陽子核と腫瘍62内の原子核との核反応によって生成されたポジトロン放出核からの消滅γ線(ガンマ線)を検出することができる。更に、PET装置90は、PETカメラ91による消滅ガンマ線の検出結果に基づいて実際に照射された陽子ビームの患者61の体内における到達位置を検出する陽子ビーム(荷電粒子線)到達位置検出手段として機能するものである。すなわち、PET装置90は、治療で用いられる陽子ビームの入射陽子核と患者61の体内中の原子核との相互核反応により体内中で生成されるポジトロン放出核種から消滅ガンマ線を計測し生成核種ごとの強度分布を測定することで、患者61体内における実際の陽子線到達位置を検出することができる。
【0053】
また、陽子線治療装置10は、照射室21内において、陽子ビームの照射方向AにPETカメラ91を移動可能とする支持機構92を備えている。なお、回転軸線Pが延在する方向(第1の方向)及び陽子ビームの照射方向A(第2の方向)に交差(直交)する方向をC方向(第3の方向、荷電粒子線照射部の幅方向)として説明する。支持機構92は、PETカメラ91を照射ノズル11に対して揺動させることで、PETカメラ91を陽子ビームの照射方向Aに移動(進退)させている。具体的には、正面視において(回転軸線P方向から見て)、照射方向Aと平行に、PETカメラ91を移動させる。なお、支持機構92は、正面視において照射方向Aと平行にPETカメラ91を移動させるものに限定されない。例えば、PETカメラ91の移動方向は、照射方向Aに対して傾斜してもよい。また、直線的に移動するものに限定されず、移動方向が曲線的なものでもよい。
【0054】
図9及び図10は、一対のPETカメラ及び支持機構を示す図である。支持機構92は、図9に示すように、照射ノズル11に固定されたブラケット(固定部)93と、ブラケット93に支持されPETカメラ91を揺動させるためのトラニオン機構部94と、トラニオン機構部94を介してブラケット93に連結され、PETカメラ91を図示C方向に移動させるための駆動部(第3方向駆動部)95と、PETカメラ91を支持すると共に、駆動部95によって駆動されC方向に移動する一対の支持アーム96とを備える。
【0055】
ブラケット93は、C方向に離間して2つ設けられている。ブラケット93は、例えば、照射ノズル11の筐体11aの背面側に固定されている。トラニオン機構部94は、回転運動を直線運動に変換するボールねじ(移動用ねじ機構)97、ボールねじ97により変換された直線運動に連動して揺動する揺動ブラケット98を備えている。なお、トラニオン機構94は、直線運動を回転運動に変換する機構の一例である。
【0056】
ボールねじ97は、ブラケット93に揺動自在に支持されている。ボールねじ97は、回転駆動されて回転運動するねじ軸99と、ねじ軸99に回転駆動力を付与するモーター100とを備える。ボールねじ97は、図9に示すように、ガンマ線を検出しない状態(退避状態)において、下端側が上端側より後方(背面パネル16側)に位置するように配置されている。ブラケット93には、後方に張り出す張り出し部93aが設けられている。この張り出し部93aは、C方向に延在するピン93bを支持している。そして、ボールねじ97は、ピン93bによって支持され、ブラケット93に対して揺動可能な構成とされている。ボールねじ97は、ピン93bを基準として揺動し、後述する連結部98c(ナット)は、ピン93bを基準として、その軸線方向に進退する。
【0057】
揺動ブラケット98は、ブラケット93に対して揺動自在に支持されている。揺動ブラケット98には、後方(背面パネル側)に張り出す張り出し部98aが設けられている。この張り出し部98aは、C方向に延在するピン98bを支持している。ねじ軸99には、連結部(ナット)98cが連結されており、この連結部98Cにピン98bが支持されている。また、ブラケット93には、下方に張り出す張り出し部93cが設けられている。この張り出し部93cは、C方向に延在するピン93dを支持している。そして、揺動ブラケット98は、ピン93dによって支持され、ブラケット93に対して揺動可能な構成とされている。揺動ブラケット98は、ピン93dを基準として揺動する。ねじ軸99の回転運動に連動して連結部98cがねじ軸99に対して進退し、この連結部98cに連動して張り出し部98aがピン93dを回転中心として揺動する。これにより、ボールねじ97によって、揺動ブラケット98が揺動する。連結部98cが直線運動し、この直線運動による駆動力が支持アーム96を揺動させる。
【0058】
駆動部95は、一対のPETカメラ91を接近または離間させるための駆動機構を有する。駆動部95は、C方向に延在するボールねじ(不図示)、ボールねじに回転駆動力を付与するための駆動源(例えばモーター、不図示)、及び、これらのボールねじ及び駆動源を収容する筐体95aを備えている。例えば、ボールねじのねじ軸が、軸線方向の両側において互いに異なる方向にねじが切られている構成であると、ねじ軸を回転させることで、一対のPETカメラ91を接近又は離間させることができる。これにより、1つの駆動源を用いて、一対のPETカメラ91をC方向に移動させることができる。なお、複数の駆動源によって一対のPETカメラ91を移動させる構成でもよい。
【0059】
筐体95aは、一対の揺動ブラケット98によって支持され、ブラケット93に対して揺動可能な構成とされている。また、筐体95aには、一対の支持アーム96のC方向の移動を案内するガイド部95bが設けられている。そして、駆動部95では、駆動源から伝達された回転運動がボールねじによって直線運動に変換され、一対のアーム96,96がガイド部95bに沿って移動する。これにより、一対のアーム96,96がC方向に移動し、互いに接近または離間する。PETカメラ91を患者61に対して接近させることができる。患者61に接近させてPETカメラ91を配置することで、消滅ガンマ線の検出精度が向上される。
【0060】
また、陽子線治療装置10は、寝台22の位置調整を行う寝台位置制御部(不図示)を有している。そして、この治療台位置制御部は、PET装置31によって取得されたPET画像、X線撮影装置によって取得されたX線透視画像に基づいて、寝台22の位置を制御するものであり、寝台22上の患者61の腫瘍62に陽子ビームが照射されるように、ロボットアーム23により寝台22の位置を調整する。
【0061】
照射制御部77は、患者61の腫瘍62の立体形状に基づいて作成された腫瘍マップ(目標物マップ)79に格納された情報を参照しながら、特に、リッジフィルタ部72、ファインディグレーダ73、及びマルチリーフコリメータ76の動作を制御する。また、ここでは、照射野の最遠部の形状が、腫瘍の最大深さ部分の複雑な形状に対応して整形されるように、予め準備されたボーラス75が、所定の位置にセットされている。
【0062】
さらに、照射制御部77は、PET装置90によって検出された陽子ビームの到達位置に応じて、ビーム調整を行う。すなわち、照射制御部77は、患者61体内における陽子ビームの実際の到達位置と腫瘍62の位置とが一致するように、リッジフィルタ部72、ファインディグレーダ73、及びマルチリーフコリメータ76の動作を制御して陽子ビームを調整する。
【0063】
次に、このように構成された陽子線治療装置10を用いた陽子ビーム照射方法(荷電粒子線照射方法)について説明する。
【0064】
陽子線治療装置10を使用していないときには、一対のPETカメラ91は、照射ノズル11の側方に退避した状態となっている(図2参照)。ここでは、一例として、脳腫瘍の患者に対する陽子線治療について説明する。まず、回転ガントリー13内の寝台22上に患者61を寝かせる。患者61の長手方向が、回転軸線Pが延在する方向に沿うように配置されている。次に、患者61に11Cメチオニンを投与し(S1)、脳腫瘍に11Cメチオニンが集積するのを待つ(S2)。続いて、脳腫瘍に集積した11Cメチオニンから放出される消滅ガンマ線をPETカメラ91によって測定する(第1の検出工程、S3)。このとき、トラニオン機構部94のモーター100を駆動して、PETカメラ91を揺動させ、照射ノズル11横の退避位置から照射方向A(図示下方)へ移動させる。すなわち、PETカメラ91を患者61の両側に配置する。そして、駆動部95のモーターを駆動して、PETカメラ91をC方向に移動させて、PETカメラ91同士の間隔を調節する。例えば、3次元画像測定を行う場合には、回転ガントリー12を回転させて、消滅ガンマ線の計測を行う。
【0065】
次に、PETカメラ91による測定結果に基づいて、PET画像を作成して脳腫瘍の位置を検出する(照射目標位置検出工程、S4)。続いて、X線撮影装置によって透視撮影を行い患者61のX線画像を作成して(X線透視画像取得工程)、骨及び金属マーカーの位置を確認する。なお、PET撮影及びX線撮影の順序を入れ替えてもよく、交互に複数回撮影を行っても良い。また、必要に応じて、回転ガントリー12を回転させて、X線発生器81、X線検出器82の位置を変える。
【0066】
次に、PET画像とX線画像に基づいて、照射計画を立案する(S6)。ここでは、照射計画として、例えば、絶対線量、線量分布、患者61の位置等を決定する。続いて、決定された照射計画に基づいて、寝台22の位置調整を行い(載置台位置調整工程、S7)、患者61を適切な位置に配置する。
【0067】
次に、決定された照射計画に従ってビーム調整を行い、必要に応じて回転ガントリー12を回転させて、照射ノズル11の位置を変更し、腫瘍に向けて陽子ビームを1回照射する(S8)。そして、照射された陽子ビームと患者61体内の原子核との核反応によって生成されたポジトロン放出核からの消滅ガンマ線をPETカメラ91で測定する(第2の検出工程、S9)。このとき、PETカメラ91同士が互いに接近するようにC方向に移動させ、PETカメラ91を患者61に近づけて、消滅ガンマ線の検出を行う。また、PETカメラ91を照射ノズル11に対して揺動させて、または回転軸線P回りに回転させて測定を行ってもよい。続いて、PETカメラ91による測定結果に基づいて、PET画像を作成し患者61の体内における陽子ビームの到達位置を検出し、実際の照射野を確認する(荷電粒子線到達位置検出工程、S10)。
【0068】
このような陽子線治療装置10によれば、回転ガントリー12にPETカメラ91が設けられ、このPETカメラ91によって、照射された陽子ビームの入射陽子核と腫瘍内の原子核との核反応により生成されるポジトロン放出核からの消滅ガンマ線を計測することができるので、実際に照射された陽子ビームの到達位置を確認することができる。すなわち、治療中に陽子ビームを照射しながら陽子ビームの到達位置を検出することができる。また、回転ガントリー12の照射ノズル11にPETカメラ91が固定されているので、回転ガントリ12及び照射ノズル11の回転に合わせて、PETカメラ91を患者61回りに回転させることができ、陽子ビームを照射した直後に消滅ガンマ線の測定を行うことができる。また、PETカメラ91の移動の自由度が向上されると共に、小型化されたPETカメラ91を用いて3次元測定を行うことができ、PETカメラ91用の別の回転駆動部を設ける必要もない。また、PETカメラ91が照射ノズル11に同期して回転するので、PETカメラ91と照射ノズル11との回転方向における位置関係を維持しながら、消滅ガンマ線の検出を行うことが可能とされている。
【0069】
PETカメラ91は、C方向に移動可能であると共に、照射ノズル11の側方(C方向の両側)に退避可能とされている。また、PETカメラ91を適宜移動させることで、PETカメラ91が照射ノズル11の回転の妨げになることがない。さらに、患者61の回転ガントリー12内への搬入、搬出の際にPETカメラ91が邪魔にならない。また、被照射体の大きさに合わせて、PETカメラ91を移動させることもできるので、所望の部位の照射位置の確認が容易になる。
【0070】
また、一対のPETカメラ91は、患者61を挟んでC方向に移動可能であり、互いの距離を任意に変えることができるため、PETカメラ91をC方向に患者61に接近させることで、消滅ガンマ線の検出精度を向上させることができる。
【0071】
また、従来、例えば脳腫瘍の放射線治療では、患者61の位置決めを高精度で実現すべく、患者61の頭部を、固定具を用いて固定していたため、患者61にとって大きな負担となっていた。本発明による陽子線照射装置10及び陽子線照射方法では、照射室21内において、患者61を寝台22に寝かせた状態でPETカメラ91を用いて腫瘍62の位置確認を行うことができ、腫瘍位置と実際に照射された陽子ビームの到達位置との位置ずれを修正し、適切な位置に患者61を位置決めすることができる。これにより、患者61の位置決めを高い精度で行うことができるため、患者の固定の簡素化が図られ、患者への負担を軽減することができる。
【0072】
また、本実施形態に係る陽子線治療装置10、被照射体回りに回転可能な照射ノズル11を備え、被照射体から発生したガンマ線を検出するPETカメラ91が、照射室21内において、径方向の外側へ(照射方向Aと平行に)退避可能な構成とされている。陽子線治療装置10では、PETカメラ91検出部を、使用時には被照射体近傍(回転中心付近)へ移動させ、使用後には径方向の外側へ退避させる。これにより、照射室21の背面側へ、回転中心軸Pに沿って検出部を退避させて収容する従来の構成を採用しなくてもよい。そのため、被照射体の直近の背面側にビーム導入ライン31の配置スペースを確保することができる。その結果、陽子線治療装置10では、被照射体の直近の背面側のスペースに、ビーム導入ライン31が配置されているため、PETカメラ91とビーム導入ライン31との干渉を回避し陽子線治療装置10の小型化を図ることができる。
【0073】
また、陽子線治療装置10では、陽子ビームを輸送するビーム導入ライン31の一部が、回転ガントリー12の第2円筒部15、コーン部14及び円筒本体部13内を通過するように形成されている。特に、ビーム導入ライン31の傾斜部33が、照射室21(円筒本体部13)内を通過するように斜めに配置され、回転ガントリー12の背面側から導入されたビーム導入ライン31を、回転ガントリー12の側部から導出することができる。そのため、照射室21内にビーム輸送ラインを配置していない従来の装置と比較して、ビームラインの張り出し量(軸心からの最大外径)を小さくすることができる。これにより、陽子線治療装置10の小型化を図り、陽子線治療装置10が設置される設置スペースを小さくすることができる。その結果、陽子線治療装置10を収容する建屋5の小型化を図ることができる。建屋を小型化することで、例えば、建屋の放射線遮蔽壁に用いられるコンクリートの使用量を削減することができるので、建屋の建設コストを低減することが可能である。なお、図2に示すように、陽子線治療装置10の最大回転外径は、10.6m(L×2)とすることができる。
【0074】
本発明は、上記実施形態に限定されるものではない。上記実施形態では、ボールねじを用いて支持アーム96を揺動させているが、その他の駆動装置を用いて揺動させてもよい。例えば、図12に示すように、エアシリンダ101によって、揺動ブラケット95を揺動させて、支持アーム96及びPETカメラ91を揺動させてもよい。
【0075】
また、陽子線治療装置10は、図10に示すように、二つのモーター100によって、PETカメラ91を揺動させる構成としているが、例えば、PETカメラ91を径方向に移動させるための駆動源として一つのモーター100を備える構成としてもよい。これにより、装置構成の簡素化を図ることができる。
【0076】
また、支持機構92は、支持アーム96を揺動させることで、PETカメラ91を照射方向Aに移動させるものに限定されず、PETカメラ91を揺動させずに直線運動させることで移動させる構成でもよい。支持機構92は、PETカメラ91(検出部)を支持しながら照射ノズル11(荷電粒子線照射部)と一体的に回転中心軸P回りに回転移動可能である共に、照射室21内で照射ノズル11を移動可能とするものであり、照射ノズル11の回転軌道における径方向にPETカメラ91を進退可能であればよい。
【0077】
また、ガンマ線を検出する検出部は、PETカメラ91に限定されず、その他の検出器でもよい。また、検出器の設置数量は、2つに限定されず、1つでもよく3つ以上でもよい。
【0078】
また、上記実施形態では、X線装置を備え、X線撮影を実施しているが、X線撮影を省略してもよい。また、上記実施形態では、放射性薬剤をメチオニンとしているが、照射目標物に応じて、その他の放射性薬剤を適用してもよい。また、上記実施形態では、照射室において放射性薬剤を用いたPET検査を実施しているが、他の場所で実施されたデータを用いて、被照射体の位置決めを行っても良い。また、上記実施形態では、脳腫瘍について、説明しているが、その他の腫瘍に対して適用してもよい。
【0079】
また、照射ノズル11内に配置される各要素は、所望のビーム設計に応じて、その配置や個数を適宜変更することができる。
【0080】
また、粒子加速器はサイクロトロンに限定されず、シンクロトロンやシンクロサイクロトロンでも良い。また、荷電粒子腺は陽子ビームに限定されず、炭素ビーム(重粒子ビーム)などでも良い。また、回転ガントリー12の筒体は、円筒に限らず他の筒状でもよい。また、回転ガントリー12の筒体は、回転軸線P方向において、同一の形状でもよい。
【0081】
回転ガントリー12は、360°回転(揺動)するものに限定されず、360°未満の揺動を行うものでもよい。
【0082】
また、一対の検出部であるPETカメラを、荷電粒子線照射部の幅方向(図示C方向)に、被照射体に対して接近または離間させる駆動機構は、ボールねじを備える機構に限定されず、その他の、台形ねじ、メートルねじなどを用いたその他の移動用ねじ機構でもよい。このような移動用ねじ機構を備える構成とすることで、一つの駆動源によって、一対のPETカメラを接近または離間させることができる。
【0083】
また、直線運動を回転運動に変換する機構として、上記実施形態では、トラニオン機構を例示しているが、その他の構成の機構でもよい。要は、直線運動を回転運動に変換し、変換された回転運動により、支持アームを揺動可能な構成であればよい。例えば、図12に示すように、シリンダー101の出力軸102の先端に設けられたピン103を有する機構を用いて、出力軸102の伸縮運動(直線運動)をブラケット95に伝達して、ブラケット93に対して支持アーム96を揺動(回転運動)させてもよい。
【符号の説明】
【0084】
1…陽子線治療システム、2…サイクロトロン、3…ビーム輸送ライン、5…建屋、10…陽子線治療装置(荷電粒子線照射装置)、11…照射ノズル(照射部)、12…回転ガントリー、13…円筒本体部、14…コーン部、15…第2円筒部、16…背面パネル、21…照射室、31…ビーム導入ライン(回転ガントリーのビーム輸送ライン)、61…患者、62…腫瘍(被照射体)、91…PETカメラ(検出器)、92…PETカメラの支持機構、95…駆動部(第3方向駆動部)、96…支持アーム、A…照射方向(第2の方向)、B…陽子ビーム、C…C方向(第3の方向)、P…回転中心軸(第1の方向)。

【特許請求の範囲】
【請求項1】
荷電粒子線が照射される被照射体の回りに回転可能な荷電粒子線照射部を有する照射室を備えた荷電粒子線照射装置において、
前記被照射体内にて発生したガンマ線を検出する検出部と、
前記検出部を支持しながら前記荷電粒子線照射部と一体的に回転移動可能であると共に、前記照射室内で前記検出部を移動可能とする支持機構と、を備え、
前記支持機構は、前記荷電粒子線照射部の回転軌道における径方向に前記検出部を進退可能であることを特徴とする荷電粒子線照射装置。
【請求項2】
前記支持機構は、前記ガンマ線を検出しない状態の前記検出部を、前記荷電粒子線照射部の側方へ退避させることを特徴とする請求項1に記載の荷電粒子線照射装置。
【請求項3】
前記荷電粒子線の照射を受けて前記被照射体内にて発生した消滅ガンマ線を検出する一対の前記検出部であるPETカメラを備え、
前記一対のPETカメラは、前記被照射体を挟んで両側に配置され、
前記一対のPETカメラを移動させるための駆動力を付与する一つの駆動源によって、前記一対のPETカメラが前記径方向に移動可能である請求項1または2に記載の荷電粒子線照射装置。
【請求項4】
前記支持機構は、前記荷電粒子線照射部の幅方向に延在する所定の軸線回りに、前記検出部を揺動可能に支持する支持アームと、
前記荷電粒子線照射部の前記幅方向において、前記検出部を前記被照射体に対して接近または離間させる駆動部と、を備えることを特徴とする請求項1〜3の何れか一項に記載の荷電粒子線照射装置。
【請求項5】
前記支持機構は、直線運動を回転運動に変換する機構を有し、
前記支持アームは、前記機構によって伝達された駆動力が付与され揺動する請求項4に記載の荷電粒子線照射装置。
【請求項6】
前記支持機構は、前記荷電粒子線照射部に支持され、前記荷電粒子線照射部に対して前記支持アームを揺動させるトラニオン機構を備える請求項5に記載の荷電粒子線照射装置。
【請求項7】
前記支持機構は、一対の前記検出部であるPETカメラを、前記荷電粒子線照射部の幅方向に前記被照射体に対して1つの駆動源で接近または離間させる駆動機構を有することを特徴とする請求項1〜6の何れか一項に記載の荷電粒子線照射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−13613(P2013−13613A)
【公開日】平成25年1月24日(2013.1.24)
【国際特許分類】
【出願番号】特願2011−149290(P2011−149290)
【出願日】平成23年7月5日(2011.7.5)
【出願人】(000002107)住友重機械工業株式会社 (2,241)
【Fターム(参考)】