説明

蒸気タービン

【課題】冷却する構成部品に達するまでの冷却蒸気の温度上昇を抑制し、的確に冷却を行うことができる蒸気タービンを提供する。
【解決手段】実施形態の蒸気タービン10は、タービンロータ構成部材40、50を軸方向に接合して構成されたタービンロータを備える。タービンロータ構成部材40は、ロータ胴部41と、ロータ胴部41の接合端面42の中心部に形成された窪み部43と、ロータ胴部の軸中心に形成され、一端が窪み部43に連通する中心貫通孔44と、ロータ胴部41の外周面に開口を有し、中心貫通孔44に連通する冷却蒸気導入孔45とを備える。タービンロータ構成部材50は、外周面の周方向に形成されたホイール部54を備えるロータ胴部51と、ロータ胴部51の接合端面52の中心部に形成された窪み部53と、ロータ胴部51の外周面に開口を有し、窪み部53に連通する冷却蒸気噴出孔55とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、蒸気タービンに関する。
【背景技術】
【0002】
蒸気タービンの効率向上の観点から、現在、温度が600℃程度の主流蒸気を用いた蒸気タービンが実用化されている。蒸気タービンの効率をさらに向上させるため、主流蒸気の温度を700〜750℃程度にすることが検討され、開発が進められている。
【0003】
このような蒸気タービンにおいては、主流蒸気が高温であるため、構成部品によっては耐熱合金で構成することが必要となる。例えば、翼植込部などの大きな応力が発生する部位では、耐久性の向上のため、耐熱合金で構成されること以外に冷却構造を備えることが必要になる。そのため、高温となる構成部品を冷却することで、高温化による材料強度の低下を抑制する技術が検討されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−104951号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の蒸気タービンの冷却構造においては、冷却蒸気を供給する冷却蒸気配管が、高温の主流蒸気内を横切るように配置されることがあり、このような構成では、主流蒸気からの熱を受取り、冷却蒸気が加熱される。そのため、冷却する構成部品に到達する前に冷却蒸気の温度が上昇し、構成部品の冷却を十分に行えないこともあった。
【0006】
また、上流のタービン段落の構成部品の冷却を行った冷却蒸気を使用して、下流のタービン段落の構成部品の冷却を行う構成を備えるものでは、冷却蒸気の温度が上昇するため、下流段の構成部品の冷却を十分に行えないこともあった。
【0007】
すなわち、従来の蒸気タービンにおいては、簡易な方法で、構成部品の冷却を的確に行う構成を備えるものがなかった。
【0008】
本発明が解決しようとする課題は、冷却する構成部品に達するまでの冷却蒸気の温度上昇を抑制し、構成部品を的確に冷却することができる蒸気タービンを提供するものである。
【課題を解決するための手段】
【0009】
実施形態の蒸気タービンは、少なくとも2つのタービンロータ構成部材をタービンロータ軸方向に接合して構成されたタービンロータを備える。接合される一方のタービンロータ構成部材は、円柱状の第1のロータ胴部で構成される。前記第1のロータ胴部は、前記第1のロータ胴部の接合端面の中心部に形成された第1の窪み部と、前記第1のロータ胴部の軸中心に形成され、一端が前記第1の窪み部に連通し、他端が封止可能に形成された中心貫通孔と、前記第1のロータ胴部の外周面に開口を有し、導入された冷却蒸気を前記中心貫通孔に導く冷却蒸気導入孔とを備える。
【0010】
接合される他方のタービンロータ構成部材は、半径方向外側に突出するように周方向に亘って形成された、動翼が植設されるホイール部を備える円柱状の第2のロータ胴部で構成される。前記第2のロータ胴部は、前記第2のロータ胴部の接合端面の中心部に形成された第2の窪み部と、前記第2のロータ胴部の外周面に開口を有し、前記第2の窪み部に連通する冷却蒸気噴出孔とを備える。
【図面の簡単な説明】
【0011】
【図1】第1の実施の形態の蒸気タービンの、タービンロータの中心軸を含む断面(子午断面)を示す図である。
【図2】第1の実施の形態の蒸気タービンの子午断面が示された図1におけるA−A断面に相当する断面において冷却蒸気噴出孔の他の構成を示した図である。
【図3】第2の実施の形態の蒸気タービンの、タービンロータの中心軸を含む断面(子午断面)を示す図である。
【図4】第3の実施の形態の蒸気タービンの、タービンロータの中心軸を含む断面(子午断面)を示す図である。
【図5】第3の実施の形態の蒸気タービンにおける、他の形状の窪み部を示す子午断面図である。
【図6】第3の実施の形態の蒸気タービンにおける、他の形状の窪み部を示す子午断面図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について図面を参照して説明する。
【0013】
(第1の実施の形態)
図1は、第1の実施の形態の蒸気タービン10の、タービンロータ24の中心軸を含む断面(子午断面)を示す図である。なお、以下において、同一の構成部分には同一の符号を付して、重複する説明を省略または簡略する。
【0014】
また、以下において、蒸気タービン10として、中圧タービンを例示して説明するが、高温高圧の蒸気が供給される、高圧タービン、さらには超高圧タービンにも本実施の形態の構成を適用することができる。
【0015】
図1に示すように、ケーシング20の内周には、ダイアフラム外輪21が周方向に沿って設けられ、このダイアフラム外輪21の内側には、ダイアフラム内輪22が周方向に沿って設けられている。そして、ダイアフラム外輪21とダイアフラム内輪22との間には、周方向に複数の静翼23が支持され、静翼翼列を構成している。
【0016】
ダイアフラム内輪22の内周には、ラビリンスシール33が設けられ、ダイアフラム内輪22と、後述するタービンロータ24との間からの蒸気の漏洩を抑制している。
【0017】
ケーシング20の内には、タービンロータ24が貫設されている。図1に示すように、タービンロータ24は、2つのタービンロータ構成部材40、50をタービンロータ軸方向に、例えば溶接などにより接合して構成されている。なお、ここでは、タービンロータ24が、2つのタービンロータ構成部材40、50で構成された一例を示すが、3つ以上のタービンロータ構成部材で構成されてもよい。
【0018】
タービンロータ構成部材40は、図1に示すように、第1段の静翼23が備えられる位置よりも外部側(図1では左側)のタービンロータ24を構成している。そのため、タービンロータ構成部材40は、高温の蒸気に曝されることがなく、例えば、CrMoV鋼などの従来鋼で構成することができる。
【0019】
タービンロータ構成部材40は、第1のロータ胴部として機能する、円柱状のロータ胴部41を備えている。このロータ胴部41の接合端面42の中心部には、第1の窪み部として機能する窪み部43が形成されている。この窪み部43は、タービンロータ軸に垂直な断面形状が、例えば円形となるように形成されている。例えば、この断面形状がいずれの断面においてもほぼ同じになるように、窪み部43を形成することができる。すなわち、窪み部43は、例えば、断面直径が一定の円柱状の空洞部となる。
【0020】
ロータ胴部41の軸中心には、一端が窪み部43に連通する中心貫通孔44が形成されている。この中心貫通孔44の他端は、この中心貫通孔44に導入された冷却蒸気が外部に流出するのを防止するため、封止可能に構成されている。中心貫通孔44の他端は、例えば、フランジを介して固定された封止板などによって封止される。
【0021】
ロータ胴部41には、外周面に開口を有し、中心貫通孔44に連通する冷却蒸気導入孔45が形成されている。この冷却蒸気導入孔45は、例えば、ロータ胴部41の半径方向に、放射状に貫通する貫通孔で構成され、周方向に亘って複数箇所に形成される。この冷却蒸気導入孔45を介して中心貫通孔44に冷却蒸気が導入される。
【0022】
一方、タービンロータ構成部材50は、図1に示すように、第1段の静翼23が備えられる位置よりも内部側(図1では右側)のタービンロータ24を構成している。そのため、タービンロータ構成部材50は、高温の蒸気に曝され、高温となるため、例えば、12Cr鋼などの耐熱鋼やNi基合金などの耐熱合金で構成される。
【0023】
タービンロータ構成部材50は、第2のロータ胴部として機能する、円柱状のロータ胴部51を備えている。このロータ胴部51の接合端面52の中心部には、第2の窪み部として機能する窪み部53が形成されている。この窪み部53は、タービンロータ軸に垂直な断面形状が、例えば円形となるように形成されている。例えば、この断面形状がいずれの断面においてもほぼ同じになるように、窪み部53を形成することができる。すなわち、窪み部53は、例えば、断面直径が一定の円柱状の空洞部となる。
【0024】
なお、ロータ胴部51の接合端面52は、ロータ胴部41の接合端面42に対応する形状に構成され、例えば、双方の接合端面42、52の形状が同一となるように構成されることが好ましい。
【0025】
ロータ胴部51には、半径方向外側に突出するように周方向に亘って形成されたホイール部54を備えている。このホイール部54は、タービンロータ軸方向に複数段形成されている。このホイール部54の先端部には、動翼25が周方向に亘って植設され、動翼翼列を構成している。この動翼翼列は、前述した静翼翼列と交互にタービンロータ24の軸方向に設けられ、静翼翼列と動翼翼列とからなる複数のタービン段落を構成している。
【0026】
ホイール部54における、動翼25が植設される部分よりもタービンロータ軸側には、上流側から下流側へ貫通する貫通孔54aが形成されている。冷却蒸気の一部は、この貫通孔54aを通って、下流側、すなわち一段下流のタービン段落に流れ込む。
【0027】
ロータ胴部51には、外周面に開口を有し、窪み部53に連通する冷却蒸気噴出孔55が形成されている。この冷却蒸気噴出孔55は、例えば、ロータ胴部51の半径方向に、放射状に貫通する貫通孔で構成される。そして、冷却蒸気噴出孔55は、周方向に亘って複数箇所に形成される。この冷却蒸気噴出孔55を介して、窪み部53に流入した冷却蒸気をロータ胴部51の外部に噴出する。
【0028】
ここで、ロータ胴部51の外周面の開口が、図1に示すように、ホイール部54の根元部と、その上流側に位置するラビリンスシール33との間に位置するように、冷却蒸気噴出孔55を形成することが好ましい。また、ロータ胴部51の外周面の開口が、ホイール部54の根元部の直上流側に位置するように、冷却蒸気噴出孔55を形成することがさらに好ましい。
【0029】
このように冷却蒸気噴出孔55を形成することで、高温となるホイール部54を冷却蒸気によって的確に冷却することができる。
【0030】
図1に示された蒸気タービンでは、タービン段落の中でも高温の蒸気に曝される、例えば、上流から第3段までのタービン段落に冷却蒸気噴出孔55を形成した一例を示している。冷却蒸気噴出孔55は、タービン段落の入口蒸気温度、すなわち静翼23における入口蒸気温度が、例えば600〜750℃となるタービン段落に形成されることが好ましい。
【0031】
ここで、冷却蒸気噴出孔55は、ロータ胴部51の半径方向に、放射状に貫通する貫通孔、すなわちタービンロータ軸に垂直な方向に、放射状に形成される構造に限られない。例えば、図1の第3段のタービン段落に形成された冷却蒸気噴出孔55のように、タービンロータ軸方向に傾けて形成されてもよい。また、各ホイール部54に対応して形成された冷却蒸気噴出孔55の通路断面積や個数は、対応するホイール部54ごとに異なるように構成してもよい。
【0032】
主蒸気が流れる蒸気流路32における圧力は、第1段のタービン段落よりも第3段のタービン段落の方が低いため、冷却蒸気の圧力および冷却蒸気噴出孔55の構成を同じとした場合、第1段のタービン段落よりも第3段のタービン段落の冷却蒸気の流量が多くなる。しかしながら、上記したように、各タービン段落に対応して、冷却蒸気噴出孔55の形状や個数などを変えることで、冷却蒸気噴出孔55を冷却蒸気が流れる際の圧力損失を調整して、冷却蒸気の流量の最適化を図ることができる。
【0033】
上記したタービンロータ構成部材40とタービンロータ構成部材50とが接合部26において溶接などにより接合され、タービンロータ24は、図1に示すように、窪み部43と窪み部53とからなる中空部を備える構成となる。
【0034】
第1段の動翼25が備えられる位置よりも外部側(図1では左側)のケーシング20の内周には、タービンロータ軸方向に沿って、複数のグランドラビリンスシール27が設けられ、ケーシング20とタービンロータ24との間における、蒸気の外部への漏洩を防止している。
【0035】
タービンロータ構成部材40に形成された冷却蒸気導入孔45の開口に対向するケーシング20の内周面には、図1に示すように、周方向に亘って凹状の溝部28が形成されている。溝部28よりも外部側(図1では左側)および内部側(図1では右側)には、グランドラビリンスシール27が備えられ、溝部28に導入された冷却蒸気が周囲へ漏洩するのを抑制している。
【0036】
ケーシング20には、冷却蒸気を供給する冷却蒸気供給管29と連通し、溝部28に冷却蒸気を導く連通孔30が形成されている。この連通孔30は、冷却蒸気導入流路として機能する。なお、連通孔30は、周方向に亘って溝部28に冷却蒸気を均等に供給するために、周方向に複数箇所形成されることが好ましい。
【0037】
冷却蒸気としては、他の蒸気タービンから抽気された蒸気、他の蒸気タービンから排気された蒸気、ボイラから抽気された蒸気などを使用することができる。蒸気タービン10が、中圧タービンである場合は、冷却蒸気として、例えば高圧タービンから抽気された蒸気を使用することができる。また、蒸気タービン10が、高圧タービンである場合は、冷却蒸気として、例えばボイラから抽気された蒸気を使用することができる。
【0038】
なお、冷却蒸気の温度は、冷却するタービンロータ24などの構成部品に大きな熱応力が発生しない程度の温度に設定されることが好ましい。冷却蒸気の温度としては、冷却蒸気を供給する蒸気タービンの仕様によって変更可能であり、例えば、400℃程度に設定することができる。
【0039】
また、冷却蒸気の供給圧力は、冷却蒸気噴出孔55から噴出される冷却蒸気の圧力が、蒸気流路32における圧力よりも高くなるように設定される。すなわち、冷却蒸気の供給圧力は、冷却蒸気噴出孔55から蒸気流路32に、確実に冷却蒸気を噴出することができる程度に設定される。
【0040】
また、蒸気タービン10には、ケーシング20を連通するように、蒸気入口管31が備えられている。外部からの蒸気が、この蒸気入口管31によって蒸気タービン10内に導入され、主蒸気として蒸気流路32に導入される。
【0041】
次に、上記したような冷却構造を備える蒸気タービン10の作用について説明する。
【0042】
図1に示すように、蒸気入口管31から蒸気タービン10内に導入された蒸気は、第1段の静翼23に導かれ、第1段の動翼25に向けて噴出される。そして、蒸気は、静翼23と動翼25を備える蒸気流路32を流動し、膨張仕事をしながらタービンロータ24を回転させる。最終段の動翼25を通過した蒸気は、排気流路(図示しない)を通り蒸気タービン10の外部へ排気される。
【0043】
冷却蒸気供給管29から連通孔30を介して溝部28に導入された冷却蒸気は、冷却蒸気導入孔45を通り、中心貫通孔44に導かれる。この際、中心貫通孔44の他端側は、封止部材(図示しない)によって封止されているため、冷却蒸気が中心貫通孔44の他端から外部に流出することはない。
【0044】
中心貫通孔44に導かれた冷却蒸気は、窪み部43と窪み部53とからなる中空部に導入され、内部からタービンロータ24を冷却する。中空部に導入された冷却蒸気は、各冷却蒸気噴出孔55から、例えば、ホイール部54の根元部の直上流側に噴出され、タービンロータ24やホイール部54の表面を冷却する。そして、冷却蒸気の大部分は、蒸気流路32に流れ込む。
【0045】
噴出された冷却蒸気の一部は、ホイール部54に形成された貫通孔54aを通過して、下流側のタービン段落に導かれる。冷却蒸気が、貫通孔54aを通過する際にも、ホイール部54は冷却される。
【0046】
このように、タービンロータ24を冷却蒸気によって内部および外部から冷却することができる。
【0047】
上記したように、第1の実施の形態の蒸気タービン10によれば、タービンロータ24の内部の中空部に冷却蒸気を一旦導入し、冷却蒸気噴出孔55から外部に噴出することができる。そのため、タービンロータ24を内部および外部から冷却することができるとともに、冷却する構成部品に達するまでの冷却蒸気の温度上昇を抑制することができる。これによって、冷却する構成部品を的確に効率よく冷却することができる。
【0048】
ここで、前述した冷却蒸気噴出孔55の構成は、上記した構成に限られるものではない。図2は、第1の実施の形態の蒸気タービン10の子午断面が示された図1におけるA−A断面に相当する断面において冷却蒸気噴出孔55の他の構成を示した図である。
【0049】
図2に示すように、冷却蒸気噴出孔55をタービンロータの半径方向に対して周方向に傾けて形成してもよい。傾ける方向は、タービンロータ24の回転方向またはその逆方向であってもよい。
【0050】
各ホイール部54に対応して形成された各冷却蒸気噴出孔55の傾き角度は、対応するホイール部54ごとに異なるように構成してもよい。また、同じホイール部54に対応して形成された冷却蒸気噴出孔55においても、各冷却蒸気噴出孔55の傾き角度を異ならせてもよい。
【0051】
このように、冷却蒸気噴出孔55を周方向に傾けて形成することで、冷却蒸気噴出孔55の通路長さを変え、冷却蒸気噴出孔55における圧力損出を調整することができる。さらに冷却蒸気噴出孔55の形状や大きさなどを変えることで、冷却蒸気が冷却蒸気噴出孔55を流れる際の圧力損失を調整することができる。換言すれば、各ホイール部54に対応して形成された各冷却蒸気噴出孔55ごと、または同じホイール部54に対応して形成された各冷却蒸気噴出孔55ごとに、噴出する冷却蒸気の流量を調整することができる。
【0052】
このように冷却蒸気噴出孔55を構成した場合においても、前述した蒸気タービン10における作用効果と同様の作用効果を得ることができる。
【0053】
(第2の実施の形態)
第2の実施の形態の蒸気タービン11においては、冷却蒸気噴出孔の構成以外は第1の実施の形態の蒸気タービン10の構成と同じであるので、ここでは、主に冷却蒸気噴出孔の構成について説明する。
【0054】
図3は、第2の実施の形態の蒸気タービン11の、タービンロータ24の中心軸を含む断面(子午断面)を示す図である。
【0055】
タービンロータ24は、2つのタービンロータ構成部材40、50をタービンロータ軸方向に、例えば溶接などにより接合して構成されている。
【0056】
タービンロータ構成部材50を構成するロータ胴部51には、半径方向外側に突出するように周方向に亘って形成されたホイール部54を備えている。このホイール部54は、タービンロータ軸方向に複数段形成されている。このホイール部54の先端部には、動翼25が周方向に亘って植設され、動翼翼列を構成している。
【0057】
ホイール部54には、図3に示すように、その先端面に開口を有し、窪み部53に連通する冷却蒸気噴出孔60が形成されている。この冷却蒸気噴出孔60は、例えば、ロータ胴部51の半径方向に、放射状に貫通する貫通孔で構成される。そして、冷却蒸気噴出孔60は、周方向に亘って複数箇所に形成される。この冷却蒸気噴出孔60を介して窪み部53に流入した冷却蒸気が、ホイール部54の先端面から外部に噴出する。
【0058】
図3に示すような、アウトサイドタブティル型の翼植込部を備える動翼25を用いる場合、翼植込部の鞍型脚部の根元部とホイール部54の先端面との間には隙間を有している。そのため、ホイール部54の先端面の、冷却蒸気噴出孔60の開口から噴出された冷却蒸気は、翼植込部の鞍型脚部の根元部に衝突し、根元部を冷却する。
【0059】
ここで、冷却蒸気噴出孔60は、ロータ胴部51の半径方向に、放射状に貫通する貫通孔、すなわちタービンロータ軸に垂直な方向に、放射状に形成される構造に限られず、前述したように、タービンロータ軸方向に傾けられた部分を有して形成されてもよい。また、各ホイール部54に対応して形成された冷却蒸気噴出孔60の通路断面積や個数は、対応する各ホイール部54ごとに異なるように構成してもよい。さらに、図3に示したように、冷却蒸気噴出孔60をタービンロータの半径方向に対して周方向に傾けて形成してもよい。
【0060】
例えば、各タービン段落に対応して、冷却蒸気噴出孔60の形状や個数などを変えることで、冷却蒸気噴出孔60を冷却蒸気が流れる際の圧力損失を調整して、冷却蒸気の流量の最適化を図ることができる。
【0061】
このような冷却構造を備える蒸気タービン11において、冷却蒸気供給管29から連通孔30を介して溝部28に導入された冷却蒸気は、冷却蒸気導入孔45を通り、中心貫通孔44に導かれる。この際、中心貫通孔44の他端側は、封止部材(図示しない)によって封止されているため、冷却蒸気が中心貫通孔44の他端から外部に流出することはない。
【0062】
中心貫通孔44に導かれた冷却蒸気は、窪み部43と窪み部53とからなる中空部に導入され、内部からタービンロータ24を冷却する。中空部に導入された冷却蒸気は、各冷却蒸気噴出孔60を通り、ホイール部54の先端面の、冷却蒸気噴出孔60の開口から、動翼25における翼植込部の鞍型脚部の根元部に向けて噴出される。そして、噴出された冷却蒸気は、ホイール部54の先端部および動翼25を冷却し、蒸気流路32に流れ込む。
【0063】
なお、冷却蒸気噴出孔60の開口から噴出された冷却蒸気は、蒸気流路32に流れ込むため、第2の実施の形態においては、第1の実施の形態におけるホイール部54に形成された貫通孔54aを備えずに構成することができる。
【0064】
上記したように、第2の実施の形態の蒸気タービン11によれば、タービンロータ24の内部の中空部に冷却蒸気を一旦導入し、冷却蒸気噴出孔60から外部に噴出することができる。また、冷却蒸気をホイール部54の内部を通過させ、ホイール部54の先端部から噴出することができる。
【0065】
そのため、タービンロータ24を内部および外部から冷却することができるとともに、冷却する構成部品に達するまでの冷却蒸気の温度上昇を抑制することができる。これによって、冷却する構成部品を的確に効率よく冷却することができる。
【0066】
(第3の実施の形態)
第3の実施の形態の蒸気タービン12においては、タービンロータ24の内部に形成される、窪み部43と窪み部53とからなる中空部の構成以外は第1の実施の形態の蒸気タービン10の構成と同じであるので、ここでは、主に中空部の構成について説明する。
【0067】
図4は、第3の実施の形態の蒸気タービン12の、タービンロータ24の中心軸を含む断面(子午断面)を示す図である。
【0068】
図4に示すように、タービンロータ24は、2つのタービンロータ構成部材40、50をタービンロータ軸方向に、例えば溶接などにより接合して構成されている。
【0069】
タービンロータ構成部材40は、円柱状のロータ胴部41を備え、このロータ胴部41の接合端面42の中心部には、窪み部43が形成されている。この窪み部43は、タービンロータ軸に垂直な断面形状が、例えば円形となるように形成されている。例えば、この断面形状がいずれの断面においてもほぼ同じか、または開口側に向かって断面積が徐々に増加するように、窪み部43を形成することができる。
【0070】
タービンロータ構成部材50は、円柱状のロータ胴部51を備え、このロータ胴部51の接合端面52の中心部には、窪み部53が形成されている。この窪み部53は、タービンロータ軸に垂直な断面形状が、例えば円形となるように形成され、かつ窪み部53の底部53aに向かって断面積が徐々に増加するように形成されている。すなわち、窪み部53は、底部53aに向かってテーパ状に広がる空洞部で構成される。
【0071】
なお、ロータ胴部51の接合端面52は、ロータ胴部41の接合端面42に対応する形状に構成され、例えば、双方の接合端面42、52の形状が同一となるように構成されることが好ましい。
【0072】
ロータ胴部51には、外周面に開口を有し、窪み部53に連通する冷却蒸気噴出孔55が形成されている。この冷却蒸気噴出孔55は、例えば、ロータ胴部51の半径方向に、放射状に貫通する貫通孔で構成することができる。そして、冷却蒸気噴出孔55は、周方向に亘って複数箇所に形成される。この冷却蒸気噴出孔55を介して窪み部53に流入した冷却蒸気がロータ胴部51の外部に噴出する。
【0073】
なお、冷却蒸気噴出孔55は、ロータ胴部51の半径方向に、放射状に貫通する貫通孔、すなわちタービンロータ軸に垂直な方向に、放射状に形成される構造に限られず、前述したように、タービンロータ軸方向に傾けて形成されてもよい。また、各ホイール部54に対応して形成された冷却蒸気噴出孔55の通路断面積や個数は、対応する各ホイール部54ごとに異なるように構成してもよい。さらに、図3に示したように、冷却蒸気噴出孔60をタービンロータの半径方向に対して周方向に傾けて形成してもよい。
【0074】
例えば、各タービン段落に対応して、冷却蒸気噴出孔55の形状や個数などを変えることで、冷却蒸気噴出孔55を冷却蒸気が流れる際の圧力損失を調整して、冷却蒸気の流量の最適化を図ることができる。
【0075】
このような冷却構造を備える蒸気タービン12において、冷却蒸気の動作は、前述した第1の実施の形態における冷却蒸気の動作と同じである。
【0076】
蒸気タービン12では、運転停止後に、窪み部43および窪み部53に存在する冷却蒸気が凝縮し、窪み部43および窪み部53内の重力下方側に水滴が溜まる。これを放置すると、タービンロータ24の内部において腐食が進む。
【0077】
そこで、窪み部53の形状を上記したように傾斜側面を有するテーパ状に構成することで、窪み部53内の重力下方側に溜まった凝縮水が、冷却蒸気噴出孔55に導かれ、冷却蒸気噴出孔55を介して、蒸気流路32へ排出される。ここで、図4には、凝縮水の流れを矢印で示している。蒸気流路32の重力下方側に導かれた凝縮水は、凝縮した主流蒸気を排出する排出管(図示しない)によって、蒸気タービン12の外部へ排出される。
【0078】
この窪み部53の構成の場合には、凝縮水は、最終的には、窪み部53の底部53a側に導かれる。そのため、他の冷却蒸気噴出孔55で排出されなかった凝縮水を、底部53a側の冷却蒸気噴出孔55から排出することができ、窪み部53内に凝縮水が残存することを防止できる。
【0079】
また、窪み部43においては、例えば、窪み部43の深さが深い場合に、開口側に向かって断面積が徐々に増加するように、傾斜側面を有するテーパ状に構成することで、溜まった凝縮水をより確実に冷却蒸気噴出孔55に導くことができる。
【0080】
上記したように、第3の実施の形態の蒸気タービン12によれば、運転停止後に窪み部43および窪み部53に溜まった凝縮水を蒸気タービン12の外部へ排出することができる。そのため、前述した第1の実施の形態の蒸気タービン10の作用効果に加えて、タービンロータ24の内部の腐食を防止することができる。
【0081】
ここで、窪み部53の形状は、前述した形状に限られるものではなく、窪み部53におけるタービンロータ軸に垂直な断面の面積が、タービンロータ軸方向に沿って異なるように窪み部53が形成されていればよい。すなわち、いずれかの冷却蒸気噴出孔55に最終的に凝縮水が導かれるように、窪み部53の形状が設定されていればよい。
【0082】
図5および図6は、第3の実施の形態の蒸気タービン12における、他の形状の窪み部53を示す子午断面図である。
【0083】
図5に示すように、開口側の冷却蒸気噴出孔55に向かって傾斜するように窪み部53の側面を形成してもよい。この場合、凝縮水は、最終的には、開口側の冷却蒸気噴出孔55に導かれる。そのため、他の冷却蒸気噴出孔55で排出されなかった凝縮水を、開口側の冷却蒸気噴出孔55から排出することができ、窪み部53内に凝縮水が残存することを防止できる。
【0084】
また、図6に示すように、図5で示した構成に、さらに、開口側の冷却蒸気噴出孔55の入口を備える窪み部53の内周面に、周方向に亘って溝部70を形成してもよい。この溝部70を備えることで、開口側の冷却蒸気噴出孔55に導かれた凝縮水を溜めることができる。そのため、例えば、開口側の冷却蒸気噴出孔55に集まる凝縮水の流量が多い場合でも、窪み部43側へ流出することなく、凝縮水を排出できる。
【0085】
なお、図5および図6に示された構成では、開口側の冷却蒸気噴出孔55に向かって傾斜するように窪み部53の側面を形成した一例を示したがこの構成に限られない。例えば、中央の冷却蒸気噴出孔55(第2段のタービン段落の冷却蒸気噴出孔55)に向かって傾斜するように、窪み部53の側面を形成してもよい。
【0086】
また、ここでは、第1の実施の形態の蒸気タービン10の構成に、上記したテーパ状の側面を有する窪み部53を備えた一例を示したが、前述した第2の実施の形態の蒸気タービン11の構成に、この窪み部53の構成を適用することもできる。この場合においても、上記した作用効果と同様の作用効果を得ることができる。
【0087】
以上説明した実施形態によれば、冷却する構成部材に達するまでの冷却蒸気の温度上昇を抑制し、的確に冷却を行うことが可能となる。
【0088】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0089】
10,11,12…蒸気タービン、20…ケーシング、21…ダイアフラム外輪、22…ダイアフラム内輪、23…静翼、24…タービンロータ、25…動翼、26…接合部、27…グランドラビリンスシール、28、70…溝部、29…冷却蒸気供給管、30…連通孔、31…蒸気入口管、32…蒸気流路、33…ラビリンスシール、40,50…タービンロータ構成部材、41,51…ロータ胴部、42,52…接合端面、43,53…窪み部、44…中心貫通孔、45…冷却蒸気導入孔、53a…底部、54…ホイール部、54a…貫通孔、55…冷却蒸気噴出孔、60…冷却蒸気噴出孔。

【特許請求の範囲】
【請求項1】
少なくとも2つのタービンロータ構成部材をタービンロータ軸方向に接合して構成されたタービンロータを備えた蒸気タービンであって、
接合される一方のタービンロータ構成部材は、円柱状の第1のロータ胴部で構成され、
前記第1のロータ胴部が、
前記第1のロータ胴部の接合端面の中心部に形成された第1の窪み部と、
前記第1のロータ胴部の軸中心に形成され、一端が前記第1の窪み部に連通し、他端が封止可能に形成された中心貫通孔と、
前記第1のロータ胴部の外周面に開口を有し、導入された冷却蒸気を前記中心貫通孔に導く冷却蒸気導入孔と
を備え、
接合される他方のタービンロータ構成部材は、半径方向外側に突出するように周方向に亘って形成された、動翼が植設されるホイール部を備える円柱状の第2のロータ胴部で構成され、
前記第2のロータ胴部が、
前記第2のロータ胴部の接合端面の中心部に形成された第2の窪み部と、
前記第2のロータ胴部の外周面に開口を有し、前記第2の窪み部に連通する冷却蒸気噴出孔と
を備えることを特徴とする蒸気タービン。
【請求項2】
前記第1のロータ胴部の外周面に形成された、前記冷却蒸気導入孔の開口に対向するケーシングの内壁に、周方向に亘って形成された溝部と、
前記ケーシングの内壁の、前記溝部よりも蒸気タービンの内部側および外部側に設けられた、蒸気の漏洩を防止するシール部と、
前記ケーシングに形成され、外部から導入された冷却蒸気を前記溝部に導く冷却蒸気導入流路と
をさらに備えることを特徴とする請求項1記載の蒸気タービン。
【請求項3】
前記冷却蒸気噴出孔の開口が、前記ホイール部の根元部の直上流側に形成されていることを特徴とする請求項1または2記載の蒸気タービン。
【請求項4】
前記冷却蒸気噴出孔の開口が、前記ホイール部の先端部に形成されていることを特徴とする請求項1または2記載の蒸気タービン。
【請求項5】
前記ホイール部がタービンロータ軸方向に複数段形成され、各前記ホイール部に対応して前記冷却蒸気噴出孔が形成されていることを特徴とする請求項1乃至4のいずれか1項記載の蒸気タービン。
【請求項6】
各前記ホイール部に対応して形成された前記冷却蒸気噴出孔の通路断面積および/または個数が、対応する前記ホイール部ごとに異なることを特徴とする請求項5記載の蒸気タービン。
【請求項7】
少なくとも1つの前記ホイール部に対応して形成された前記冷却蒸気噴出孔が、タービンロータの半径方向に対して周方向に傾けて形成されていることを特徴とする請求項5記載の蒸気タービン。
【請求項8】
前記第1の窪み部および前記第2の窪み部におけるタービンロータ軸に垂直な断面形状が円形であることを特徴とする請求項1乃至7のいずれか1項記載の蒸気タービン。
【請求項9】
前記第2の窪み部におけるタービンロータ軸に垂直な断面の面積が、タービンロータ軸方向に沿って異なることを特徴とする請求項1乃至8のいずれか1項記載の蒸気タービン。
【請求項10】
接合される前記タービンロータ構成部材が、それぞれ異なる材料で構成されていることを特徴とする請求項1乃至9のいずれか1項記載の蒸気タービン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−19284(P2013−19284A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−151669(P2011−151669)
【出願日】平成23年7月8日(2011.7.8)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】