説明

電源システム

【課題】システム全体としてのエネルギー効率をより高めることができる電源システムを提供する。
【解決手段】本発明の電源システム1は、燃料電池2が供給する電力を蓄電するとともに、融点が常温よりも高い溶融塩を電解質として用いた溶融塩電池4と、燃料電池2の駆動に応じて生じる排熱を回収する回収手段と、前記溶融塩を融解するために、前記回収手段が回収した排熱を用いて前記溶融塩電池を前記融点以上に加熱する加熱手段とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池と、溶融塩電池とを用いた電源システムに関する。
【背景技術】
【0002】
近年、二酸化炭素の排出を抑えて発電する手段として、燃料電池を用いた電源システムが用いられる場合がある(例えば、特許文献1参照)。このような電源システムでは、余剰電力を蓄電するための蓄電池を電源システムの一部に組み込むことが一般的である。
【0003】
上記蓄電池としては、従来から、鉛蓄電池、ニッケル・水素蓄電池等が用いられてきたが、高エネルギー密度・高効率でかつ大容量な蓄電池として、電解質に溶融塩を用いた溶融塩電池が注目されている。
溶融塩電池の単電池は、例えば、ナトリウムの化合物からなる活物質を集電体に含ませてなる正極と、錫等の金属を集電体にめっきしてなる負極との間に、ナトリウム、カリウム等のアルカリ金属のカチオンと、フッ素を含むアニオンとからなる溶融塩を含浸させたセパレータを介装させた発電要素を電池容器内に備える。正極及び負極はセパレータを介して交互に配置され、積層構造の溶融塩電池本体を成している。このような溶融塩電池は、溶融塩が溶解している状況下で動作しうる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平6−44979号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記溶融塩電池を用いることで、システム全体としてのエネルギー効率を向上させることができるが、上記溶融塩電池は、電解質が溶解しうる温度範囲で保持して用いる必要がある。
すなわち、溶融塩電池は、電解質が溶融状態にありかつ充放電が行われて負荷がかかっている状態では、自らの電解反応による反応熱によって溶融状態を維持できるが、仮に、充放電が行われず負荷がない状態が継続し、電解質の温度が当該電解質の融点より低くなると、電解質が固化するため、充放電できない状態となる。従って、溶融塩電池を安定動作させるためには、当該溶融塩電池を融点より高い所定の温度範囲に維持するための加熱装置が必要となる。
しかし、上記加熱装置を駆動するために電力を利用すれば、電源システム全体の効率を低下させてしまうことになり好ましくない。
【0006】
本発明はこのような事情に鑑みてなされたものであり、システム全体としてのエネルギー効率をより高めることができる電源システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明は、燃料電池を用いて電力を供給する電源システムであって、前記燃料電池が供給する電力を蓄電するとともに、融点が常温よりも高い溶融塩を電解質として用いた溶融塩電池と、前記燃料電池の駆動に応じて生じる排熱を回収する回収手段と、前記溶融塩を融解するために、前記回収手段が回収した排熱を用いて前記溶融塩電池を前記融点以上に加熱する加熱手段と、を備えていることを特徴としている。
【0008】
上記のように構成された電源システムによれば、加熱手段によって、回収手段が回収した燃料電池による排熱を用いて溶融塩電池を融点以上に加熱するので、燃料電池が発電した電力や外部から電力等の供給を受けることなく、溶融塩電池を加熱して安定動作させることができる。このため、充放電について効率の高い溶融塩電池を用いたことに加えて、当該溶融塩電池を安定動作させるために必要な加熱を燃料電池からの排熱を利用して行うことができ、システム全体としての効率をより高めることができる。
【0009】
(2)上記電源システムにおいて、前記加熱手段は、前記溶融塩電池に接触配置され、前記回収手段が回収した前記排熱を利用して得た温水又は水蒸気を用いて熱伝導加熱する加熱部を備えていることが好ましく、この場合、簡易な構成で排熱を利用することができる。
【0010】
(3)また、前記溶融塩電池が、複数の単電池を組み合わせて構成されている場合、偏って加熱されることで各単電池ごとに溶融塩の溶融状態が不均一になると、溶融塩電池を安定動作させることができない。このため、前記加熱部は、前記複数の単電池それぞれを加熱することができるように複数配置されていることが好ましい。
これにより、各単電池を均等に加熱でき、溶融塩電池を確実に安定動作させることができる。
【発明の効果】
【0011】
本発明によれば、システム全体としてのエネルギー効率をより高めることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の一実施形態に係る電源システムの一例を示すブロック図である。
【図2】溶融塩電池の斜視図である。
【図3】溶融塩電池の横断面図である。
【図4】本体部により構成される溶融塩電池による単電池の基本構造を原理的に示す略図である。
【図5】加熱部の斜視図である。
【図6】加熱部の他の例を示す斜視図である。
【発明を実施するための形態】
【0013】
図1は、本発明の一実施形態に係る電源システムの一例を示すブロック図である。この電源システム1は、都市ガス等の原料ガスに含まれる炭化水素ガスから燃料ガスとなる水素を生成し、燃料電池を駆動することで発電を行うように構成されており、燃料電池2と、燃料電池2の燃料ガスとなる水素を生成する燃料処理装置3と、燃料電池2が発電した電力を蓄電する溶融塩電池4とを備えている。
【0014】
燃料電池2は、燃料処理装置3が生成する水素等の燃料ガスと、ブロア等によって供給される空気中の酸素とを、それぞれ、アノード及びカソードに供給し電気化学的に反応させて発電を行う。燃料電池2は、燃料電池として発電を行う本体部2aと、本体部2aにおいて発電のための反応の際に生じる反応熱を冷却する冷却部2bと、発電した電力を出力する出力部2cとを備えている。
【0015】
冷却部2bには、燃料電池2に生じる反応熱を冷却するための冷却水を循環させる冷却水用経路5が接続されている。冷却水用経路5には、熱交換器6及び循環ポンプ7も接続されている。循環ポンプ7は、冷却水用経路5内の冷却水を循環させるポンプである。熱交換器6は、システム各部の排熱を蓄熱するための蓄熱経路8に接続されている。熱交換器6は、上記冷却水により回収された燃料電池2の排熱を回収して蓄熱経路8に蓄熱する。
出力部2cは、電源システム1として電力を出力するための出力部51と、出力線Lp、Lnによって接続されている。
【0016】
燃料処理装置3は、原料ガスとしての都市ガスに水蒸気を混合して加熱し、都市ガスに含まれる炭化水素ガスを改質して燃料電池2の燃料ガスとなる水素を生成する機能を有している。この燃料処理装置3は、炭化水素ガスを改質するための加熱用バーナ等を備えており、改質処理によって高温の排ガスが生成される。燃料処理装置3には、上記排ガスを熱交換器9に導くための配管10が接続されている。
熱交換器9は、熱交換器6と同様、蓄熱経路8に接続されており、燃料処理装置3が生成する排ガスの熱を回収して蓄熱経路8に蓄熱する。
【0017】
蓄熱経路8は、燃料電池2及び燃料処理装置3による排熱を蓄熱するために水蒸気又は温水を循環させている経路である。蓄熱経路8には、当該蓄熱経路8を循環する循環水を循環させるための循環ポンプ11と、温水を貯留するための貯水タンク12とが接続されている。蓄熱経路8内の循環水は、熱交換器6,9を通過することにより当該熱交換器6,9が回収した燃料電池2及び燃料処理装置3による排熱を受け取って、水蒸気又は温水となる。このように、蓄熱経路8は、回収した排熱を水蒸気又は温水として蓄熱する。
つまり、蓄熱経路8、冷却水用経路5、配管10、及びこれらに接続されている機能部は、燃料電池2の駆動に応じて生じる排熱を回収して蓄熱する回収手段を構成している。
【0018】
溶融塩電池4は、融点が常温よりも高い溶融塩を電解質として用いられた二次電池であり、二次電池としての機能を有する電池本体4aと、電池本体4aを加熱するための加熱部4bと、蓄電又は放電する電力を入出力するための入出力部4cとを備えている。
【0019】
加熱部4bは、温水又は水蒸気を用いて、電池本体4aを熱伝導加熱するものである。加熱部4bには、加熱に用いる温水を循環させるための温水用経路13が接続されている。温水用経路13には、循環ポンプ14と、蓄熱経路8に接続された熱交換器15とが接続されている。循環ポンプ14は、温水用経路13内の循環水を循環させるポンプである。熱交換器15は、蓄熱経路8に蓄熱された排熱を温水用経路13内の循環水に与える。これにより、温水用経路13内の循環水は、温水として排熱を受け取り、加熱部4bによる電池本体4aの加熱に用いられる。
【0020】
図2は、溶融塩電池4の斜視図である。図に示すように、電池本体4aは、複数の本体部4a1により構成されている。また、溶融塩電池4は、加熱部4bを複数備えており、複数の加熱部4b及び複数の本体部4a1は、互いに接触した状態で交互に配置されている。
【0021】
各本体部4a1は、内部に電極や溶融塩等を収納したアルミニウム合金製の直方体状の容器16を備えており、溶融塩電池による単電池を構成している。
溶融塩電池4は、単電池である本体部4a1を互いに直列又は直並列に接続した組電池として構成されている。
【0022】
本体部4a1の外部には、内部の電極に接続された正極端子17及び負極端子18が、容器16との絶縁を保って設けられている。また、本体部4a1内部の圧力が過度に上昇したときに放圧するための安全弁19も設けられている。
【0023】
図3は、溶融塩電池4の横断面図である。本体部4a1は、容器16の内部に、複数(図示しているのは6個)の矩形平板状の負極32と、隣接する負極32の間に配置された複数(図示しているのは5個)の矩形平板状の正極31と、これら正極31及び負極32の間に介在して配置されているセパレータ33とを備えている。つまり、正極31及び負極32は、セパレータ33を介して交互に積層された積層構造を成している。
【0024】
複数の正極31は、正極端子17(図2)に接続されており、単一の電極(正極)として構成されている。また、複数の負極32も、負極端子18(図2)に接続されており、単一の電極(負極)として構成されている。これらにより、本体部4a1は、溶融塩電池による単電池を構成している。
【0025】
図4は、本体部4a1により構成される溶融塩電池による単電池の基本構造を原理的に示す略図である。図において、溶融塩電池による単電池は、上述のように、正極31、負極32及びそれらの間に介在するセパレータ33を備えている。正極31は、正極集電体31aと、正極材31bとによって構成されている。負極32は、負極集電体32aと、負極材32bとによって構成されている。
【0026】
正極集電体31aの素材は、例えば、アルミニウム不織布(線径100μm、気孔率80%)である。正極材31bは、正極活物質としての例えばNaCrO2と、アセチレンブラックと、PVDF(ポリフッ化ビニリデン)と、N−メチル−2−ピロリドンとを、質量比85:10:5:100の割合で混練したものである。そして、混練したものを、アルミニウム不織布の正極集電体31aに充填し、乾燥後に、1000kgf/cm2にてプレスし、正極31の厚みが約1mmとなるように形成される。
一方、負極32においては、アルミニウム製の負極集電体32a上に、負極活物質としての例えば錫を含むSn−Na合金からなる合金層32bが、めっき等により形成される。
【0027】
セパレータ33は、ガラスの不織布(厚さ200μm)、あるいはポリオレフィン系シート(厚さ50μm)に電解質としての溶融塩を含浸させたものである。この溶融塩は、例えば、NaFSA(ナトリウム ビスフルオロスルフォニルアミド)56mol%と、KFSA(カリウム ビスフルオロスルフォニルアミド)44mol%との混合物であり、融点は常温よりも高い57℃である。
融点以上の温度では、溶融塩は溶融した状態で正極31及び負極32に直接接触する。このとき、正極31及び負極32と、溶融塩との間において反応が生じるとともに、溶融塩が溶解することにより当該溶融塩にはイオン伝導性が生じ、正極31、負極32、及び電解質としてのセパレータ33は、溶融塩電池として機能する。
このように、本体部4a1は、融点以上に加熱し溶融塩を融解することによって溶融塩電池として動作することができる。また、この溶融塩は不燃性である。
【0028】
上記溶融塩は、陽イオンとなるアルカリ金属イオンと、FSA(ビスフルオロスルフォニルアミド)イオン等の陰イオンから構成される。
アルカリ金属イオンは、例えば、Na(ナトリウム)イオンの伝導により駆動する溶融塩電池の場合には、Naイオンに、他のアルカリ金属イオンが混合されたものが使用される。他のアルカリ金属イオンとは、Li(リチウム)イオン、K(カリウム)イオン、Cs(セシウム)イオンであり、これらの1種以上が混合される。代表的には、Kイオンがあり、NaFSA:KFSA=56モル%:44モル%の混合比で混合された上述の混合物が使用される。また、Kの代わりにCsを用いると、融点はさらに低くなる。
また、陰イオンは、FSAの他、TFSA(ビストリフルオロメチルスルフォニルアミド)やFTA(フルオロスルフォニル(トリフルオロメチルスルフォニルアミド))が用いることができる。TFSAの溶融塩の融点は、FSAの溶融塩よりも低下する。
Naイオン伝導の溶融塩は、主に資源量、及び熱的安定性から選択されるが、特に、これに限定されるものではなく、正負極の活物質を選定することにより、Liイオン等の他のアルカリ金属イオンを伝導種とする溶融塩電池も使用可能である。
【0029】
なお、上述した各部の材質・成分や数値は好適な一例であるが、これらに限定されるものではない。
例えば、溶融塩としては、上記の他、LiFSA(リチウム ビスフルオロスルフォニルアミド)−KFSA−CsFSA(セシウム ビスフルオロスルフォニルアミド)の混合物も好適である。また、他の塩を混合する場合もあり(有機カチオン等)、一般には、溶融塩は、(a)NaFSA、又は、LiFSAを含む混合物、(b)NaTFSA(ナトリウム ビストリフルオロメチルスルフォニルアミド)、又は、LiTFSA(リチウム ビストリフルオロメチルスルフォニルアミド)を含む混合物、(c)NaFTA(ナトリウム フルオロスルフォニル(トリフルオロメチルスルフォニルアミド))、又は、LiFTA(リチウム フルオロスルフォニル(トリフルオロメチルスルフォニルアミド))を含む混合物が適する。これらの場合においても、各混合物の溶融塩は、融点が常温よりも高い範囲で比較的低温となる特性を有しているので、少ない加熱で溶融塩を融解することができ、容易かつ速やかに溶融塩電池を作動させることができる。
【0030】
図3に戻って、本体部4a1は、上述の両極31,32及びセパレータ33の他に、押さえ板34と、薄板ばね35とが収容されている。押さえ板34は、アルミニウム合金からなる矩形状の板材で、両極31,32及びセパレータ33からなる積層体の一側面を構成する負極32に当接している。前記積層体の他側面は、容器16の内面に当接している。前記積層体に接触する可能性のある、容器16の内面及び押さえ板34の表面には、例えば、フッ素樹脂コーティングによる絶縁処理が施されている。
押さえ板34は、押さえつけるための面強度があれば、非金属でもよい。
【0031】
薄板ばね35は、前記積層体を容器16の内面と押さえ板34との間に挟み込んで積層方向(図の上下方向)へ圧迫するように、押さえ板34を付勢している。これにより、前記積層体は、正極31、負極32がセパレータ33と圧接した状態を保って、容器16内に緊密に収容されている。
【0032】
なお、図3において、正極31の縦方向及び横方向それぞれの寸法は、デンドライトの発生を防止するために、負極32の縦方向及び横方向の寸法より小さくしてあり、正極31の外縁が、セパレータ33を介して負極32の周縁部に対向するようになっている。
【0033】
図2を参照して、溶融塩電池4は、上述のように、加熱部4bを複数備えており、複数の加熱部4b及び複数の本体部4a1は、互いに接触した状態で交互に配置されている。
【0034】
加熱部4bは、例えば銅を用いて矩形板状に形成された部材であり、その外部には、当該加熱部4bの内部に形成された温水流路に温水を導入するための入出水口40が一対突設されている。各入出水口40は、各加熱部4bの温水流路が単一の流路を構成するように接続されており、各入出水口40の内の一つから温水が導入され、他の一つから導入された温水が排水される。
【0035】
図5は、加熱部4bの斜視図である。加熱部4bは、側面41aに温水流路41bが形成された銅製の加熱部本体41と、加熱部本体41の側面41aに密接固定される銅製の板部材42とを備えている。
【0036】
加熱部本体41に形成された温水流路41bは、側面41aから板厚方向に凹む一本の溝として形成されている。また、温水流路41bは、できるだけその内側面の面積を大きく確保するために、側面41aの範囲内で、複数回折り返すように形成されている。
【0037】
板部材42は、側面41aに水密に固定される。これによって、溝として加熱部本体41に形成された温水流路41bは、加熱部4bの内部において、温水が通過可能な流路として機能する。
温水流路41bの両端41cは、加熱部4bの同じ端面に開口するように設けられており、それぞれに上述の入出水口40(図2)が突設される。
【0038】
入出水口40の一方から温水が導入されると、温水流路41bには、温水が流れる。加熱部4bは、銅により形成されているので、温水が有する熱は、加熱部4bの両側面に接触して配置されている溶融塩電池4の本体部4a1に伝導する。これにより、加熱部4bは、温水用経路13を循環する温水を用いて、溶融塩電池4の本体部4a1を熱伝導加熱する。本体部4a1は、加熱部4bによる熱伝導加熱によって、溶融塩の融点以上の温度に加熱される。
【0039】
このように、加熱部4b、温水用経路13、及び温水用経路13に接続されている機能部は、溶融塩電池4の溶融塩を融解するために、蓄熱経路8等により構成される回収手段が回収した燃料電池2の排熱を用いて溶融塩電池4の本体部4a1を溶融塩の融点以上に加熱する加熱手段を構成している。
本実施形態では、加熱手段に含まれる加熱部4bが、燃料電池2の排熱を利用して得た温水又は水蒸気を用いて、本体部4a1を熱伝導加熱するので、簡易な構成で排熱を利用することができる。
【0040】
また、本実施形態では、溶融塩電池4の電池本体4aが、複数の本体部4a1を組み合わせて構成されているが、電池本体4aが偏って加熱されることで各本体部4a1ごとに溶融塩の溶融状態が不均一になると、電池本体4a全体として安定動作させることができない。この点、本実施形態では、複数の加熱部4bと、複数の本体部4a1とを互いに接触した状態で交互に配置しているので、複数の本体部4a1それぞれを個々に加熱することができる。
これにより、各本体部4a1を均等に加熱でき、溶融塩電池4を確実に安定動作させることができる。
【0041】
図1に戻って、溶融塩電池4の入出力部4cは、出力部51と燃料電池2の出力部2cとの間を繋ぐ出力線Lp、Lnに、電圧調整器50を介して接続されている。この電圧調整器50は、燃料電池2から溶融塩電池4に蓄電される余剰電力、及び、溶融塩電池4から出力部51に向けて放電される放電電力を所定の電圧に調整して燃料電池2の発電電圧と、溶融塩電池4の充放電電圧との間の電圧差を調整する。
【0042】
溶融塩電池4は、燃料電池2の発電により生じた余剰電力を蓄電するとともに、燃料電池2が停止中に蓄電した余剰電力を放電し、出力部51からシステムとしての電力を出力する。
【0043】
上記のように構成された電源システム1によれば、加熱手段によって、回収手段が回収した燃料電池2による排熱を用いて溶融塩電池4の溶融塩を融点以上に加熱するので、燃料電池2が発電した電力や外部から電力等の供給を受けることなく、溶融塩電池4を加熱して安定動作させることができる。このため、充放電について効率の高い溶融塩電池4を用いたことに加えて、当該溶融塩電池4を安定動作させるために必要な加熱を燃料電池2からの排熱を利用して行うことができ、システム全体としてのエネルギー効率をより高めることができる。
【0044】
また、本実施形態では、回収した燃料電池2の排熱を、蓄熱経路8を循環する循環水によって蓄熱するので、例えば、何らかの事由によって燃料電池2が停止していることで排熱を発生していない状態にある場合にも、蓄熱経路8によって蓄熱された排熱を利用して溶融塩電池4を加熱することができる。
【0045】
なお、本発明は、上記実施形態に限定されることはない。上記実施形態では、冷却水用経路5と、温水用経路13との間に蓄熱経路8を介在した場合の構成を例示したが、冷却水用経路5と、温水用経路13とを直接熱交換器により繋ぎ、燃料電池2の循環冷却水によって回収される排熱を温水用経路13の循環水に与える構成としてもよい。
【0046】
また、上記実施形態では、加熱部4bとして、銅製の矩形平板状に形成したものを例示したが、図6に示すように、本体部4a1の容器側面の範囲内で複数回折り返すように形成された一本の銅管を用い、隣接する本体部4a1同士の間に接触配置してもよい。
この場合、加熱部4bをより簡易な構成にできる。
さらにこの場合、図6に示すように、加熱部4bと、本体部4a1の容器側面との間に、両者を密接させてより熱伝導効果を高めるための熱伝導シート42を介在させてもよく、これにより、本体部4a1の加熱効率を高めることができる。
【0047】
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0048】
1 電源システム
2 燃料電池
2b 冷却部(回収手段)
4 溶融塩電池
4a 電池本体
4b 加熱部(加熱手段)
4a1 本体部
5 冷却水用経路(回収手段)
6 熱交換器(回収手段)
7 循環ポンプ(回収手段)
8 蓄熱経路(回収手段)
9 熱交換器(回収手段)
10 配管(回収手段)
11 循環ポンプ(回収手段)
12 貯水タンク(回収手段)
13 温水用経路(加熱手段)
14 循環ポンプ(加熱手段)
15 熱交換器(加熱手段)

【特許請求の範囲】
【請求項1】
燃料電池を用いて電力を供給する電源システムであって、
前記燃料電池が供給する電力を蓄電するとともに、融点が常温よりも高い溶融塩を電解質として用いた溶融塩電池と、
前記燃料電池の駆動に応じて生じる排熱を回収する回収手段と、
前記溶融塩を融解するために、前記回収手段が回収した排熱を用いて前記溶融塩電池を前記融点以上に加熱する加熱手段と、を備えていることを特徴とする電源システム。
【請求項2】
前記加熱手段は、前記溶融塩電池に接触配置され、前記回収手段が回収した前記排熱を利用して得た温水又は水蒸気を用いて熱伝導加熱する加熱部を備えている請求項1に記載の電源システム。
【請求項3】
前記溶融塩電池は、複数の素電池を組み合わせて構成されており、
前記加熱部は、前記複数の素電池それぞれを加熱することができるように複数配置されている請求項2に記載の電源システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−105620(P2013−105620A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−248475(P2011−248475)
【出願日】平成23年11月14日(2011.11.14)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】