説明

DNAに基づいた数値表現体系及び算術

【課題】本発明の主要な目的は、DNAに基づいた数値表現体系を開発することと、DNAに基づいた算術を実行することとであり、DNAに基づいた数値表現を符号化するソフトウェアを実行することであり、DNAで符号化された数値表現を用いて算術演算を実行することである。
【解決手段】DNAや他の分子コンピューティングの素子や処理装置の分野において広く適用できる、DNAに基づいた数値表現体系と、該数値表現体系のための、加算や減算のような基本的な算術演算を開発した。その数値表現の手法は、全てのDNA塩基への所定の値の割当と(A=0,T=1,C=2,G=3)、DNA塩基の補数の所定の割当と(Aの補数=G,Tの補数=C,逆もまた同一)、DNA塩基による整数及び実数の表現と、DNAに基づいた数値表現体系での基本的な算術割当の実行とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、DNAに基づいた数値表現体系及び算術に関するものである。さらに詳細には、本発明は、全てのDNA塩基への所定の値の割当や、DNA塩基の補数の所定の割当や、DNA塩基による整数及び実数の表現や、DNAに基づいた数値表現体系上での基本的な算術割当の実行を含む、DNAに基づいた数値表現体系及び算術に関するものである。
【背景技術】
【0002】
自然は、数百万年の年月にわたる期間をかけて、広範な形や大きさや特徴を備える多様な生物の種を創造するための技術を完全なものにしてきた。遺伝情報の運び手であるデオキシリボ核酸(DNA)は、強力で複雑な分子電子デバイスとみなすことができる。問題は、この驚くべき分子デバイスはどのように機能するかということである。DNAは、電子部品を構成するために使用され得る。DNAは、遺伝情報を蓄積し保持する能力を持ち、その遺伝情報は、生物学的過程の遂行や、最小の微生物から巨大な鯨まであらゆる種類の生物組織体の成長や維持のために、必要に応じて検索され得る。全ての生物組織体は接合子と呼ばれる一つの細胞の分化により、再生しながら形成される。この細胞はいかなる体の部品も含まない、つまり、接合子は骨も歯も含まないが、接合子のDNAは生体システムの全ての器官の形成のためのプロトコルを全て有する。これは、DNAが、電荷の輸送によりその長さを通して情報を伝達することができるときにだけ全て可能である。
【0003】
現在のコンピュータは、任意の双安定のデバイスから構成される。これは、コンピュータの要素が、二つの安定な位置又は状態を有さなければならないことを意味する。これらの二つの安定な状態は、オンとオフとであり、それぞれ、1と0とを表現する。たいていの現在のコンピュータの基本となる構成要素は、半導体からなるトランジスタである。オン又はオフの変化は電気的に行われ、よってその速度はかなり速いものである。トランジスタは、ざっと1秒間に30億回、状態を変化させることが可能であり、また、およそ1000万個のトランジスタを、Si又はGaAsに基づく集積回路の1cmの面積の場所に配置することが可能である。
【0004】
半導体デバイスは、速度と小型化との点で限界に近づきつつあるので、DNAに基づいたコンピューティングや、分子電子への代替のための方法を案出するために、膨大な量の研究がなされている。DNAは、高密度記憶デバイスや超高速電子デバイスの設計や組立に利用するための有望な材料であると考えられている。DNA中での電荷輸送の研究への関心は、ここ数年の間に増大した。DNAが、ナノ部品として、すなわち、塩基の配列、長さ、配向に応じて、絶縁体、半導体、導体/近接効果によって誘起された超伝導体として利用され得るからである(非特許文献1,2,3,4参照)。DNAは、分子レベルの精度で、金属により選択的に覆うことができる(非特許文献1,5参照)。それによって、ダイオードやトライオードやトランジスタ等のような分子電子部品を設計する可能性を提供する。また、DNAは莫大な並列処理を扱うことができる(非特許文献6,7,8参照)。DNAは、極度にエネルギー効率が良く、大きさや特性が制御可能であり、情報を蓄積する大きな能力を有する。DNAは、容易に入手でき、想像し得るいかなる配列も合成できる。そして、DNAは環境に優しい。さらに、DNAは、0と1との代わりに4つの塩基(AGTC)を有する。
【非特許文献1】Braun, E., Eichen, Y., Sivan, U. & Ben-Yosepf, G. DNA-templated assembly and electrode attachment of a conductiong silver wire. Nature. 391, 775-778(1998).
【非特許文献2】Kasumov, A. Y., Kociak, M., Gueron, B., Reulet, B., Volkov, V. T., Klinov, D. V & Bouchiat, H. Proximity-induced superconductivity in DNA. Science. 291, 280-282(2001).
【非特許文献3】Porath, D., Bezryadin, A., De Vries, S. & Dekker, C. Direct measurement of electrical transport through DNA molecules. Nature. 403, 635-638(2000).
【非特許文献4】Fink, H. W. & Schonenberger, C. Electrical Conduction through DNA Molecules. Nature. 398, 407-410(1999).
【非特許文献5】Winfree, E., Liu, F., Wenzler, L. A. and Seeman, N. C. Design and self-assembly of two-dimensinal DNA crystals. Nature. 394, 539-544(1998).
【非特許文献6】Adleman, L. M. Computing with DNA. Sci. Am. 54-61(August 1998).
【非特許文献7】Adleman, L. M. Molecular computation of solutions to combinatorial problems. Scienec. 266, 1021-1024(1994).
【非特許文献8】Benenson, Y., Elizur, T. P., Adar, R., Keinan, E., Livneh, Z. and Shapiro, E. Programmable and autonomous computing machines made of biomolecules. Nature. 414, 430-434(2001).
【発明の開示】
【発明が解決しようとする課題】
【0005】
DNAで構成された4つの状態を有する素子に基づいたコンピュータを案出することは、重要なことである。これらの4つの状態は0,1,2,3で表現されると考えられる。これらの状態は、電流レベルを計測するか、又は光学的な相違を計測することで区別される。4つのDNA塩基(AGTC)が集まって、DNAに基づいたコンピューティングの1つの単位となると考えると、およそ3×1013のそのような単位が1cmの面積内に配置され得る。しかしながら、DNAに基づいた素子を動作させるためには、DNAに基づいた算術を実行するための、適切なDNAに基づいた数値表現体系を提供することが必須である。よって、DNAに基づいた数値表現体系と、この体系に変換するためのソフトウェアとを開発し、ここに開示する。これによれば、DNAに基づいた4つの状態を有する素子の創造が可能となる。
【0006】
本発明の主要な目的は、DNAに基づいた数値表現体系を開発することと、DNAに基づいた算術を実行することとであり、DNAに基づいた数値表現を符号化するソフトウェアを実行することであり、DNAで符号化された数値表現を用いて算術演算を実行することである。
【0007】
本発明の他の目的は、正と負との両方の整数の、DNA塩基による符号化を定義することである。
【0008】
本発明のさらに他の目的は、正と負との両方の実数の、DNA塩基による符号化を定義することである。
【0009】
本発明のさらに他の目的は、DNAで符号化された整数及び実数について基本的な算術演算を定義することである。
【課題を解決するための手段】
【0010】
本発明は、DNAに基づいた数値表現体系及び算術に関するものである。さらに詳細には、本発明は、全てのDNA塩基への所定の値の割当や、DNA塩基の補数の所定の割当や、DNA塩基による整数及び実数の表現や、DNAに基づいた数値表現体系上での基本的な算術割当の実行を含む、DNAに基づいた数値表現体系及び算術に関するものである。
【0011】
本発明の実施形態において、DNAに基づいた数値表現体系は、4つの構成要素を有する。これらの構成要素は「A」「T」「C」「G」である。
【0012】
本発明の他の実施形態において、DNAに基づいた数値表現体系の各構成要素に割り当てられる所定の値は、A=0,T=1,C=2,G=3である。
【0013】
本発明の実施形態において、整数は8塩基/セルとして表現される。補数表示が整数を表現するために用いられる。正の整数は補数を持たない。
【0014】
本発明の他の実施形態において、DNAに基づいた数値表現体系の構成要素に割り当てられる補数は、Aの補数=G,Tの補数=Cであり、逆もまた同一である。
【0015】
本発明のさらに他の実施形態において、DNAに基づいた数値表現体系における塩基の値は、位を定めるものである。
【0016】
本発明のさらに他の実施形態において、正の整数のDNAに基づいた数値表現への変換は、その数値を4で除算してその余りを抽出し、商が0になるまでこの処理を繰り返すことにより行われる。最初の余りの数字は最下位の塩基(LSB)とされ、最後に抽出された数字は最上位の塩基(MSB)とされる。抽出された塩基をMSDからLSDまで左から右に記述することによって、DNAに基づいた数値表現が与えられる。さらに、Aの値に対する補填データ(pudding)を左側に付加し、左側の最上位の塩基に、正負の符号を示す塩基、すなわち正の整数に対しては「A」を割り当てて、そのセルを閉じる(8塩基/セル、又はその倍数)。左側の最上位の塩基は、その数値の正負の符号を表す。
【0017】
本発明のさらに他の実施形態において、負の数のDNAに基づいた数値表現への変換は、まず、その数値を正の整数とみなし、その正の整数をDNAに基づいた数値表現体系へと変換する。そして、その補数を、Aの値をGの値に、Tの値をCの値に変換し、逆も同一にすることによって生成し、塩基T(=1)をその補数に加え、Gの値に対する補填データを左側に付加し、左側の最上位の塩基に、正負の符号を示す塩基、すなわち負の整数に対しては「G」を割り当てて、そのセルを閉じることにより行われる(8塩基/セル、又はその倍数)。左側の最上位の塩基は、その数値の正負の符号を表す。
【0018】
本発明のさらに他の実施形態において、実数は、32塩基の中で浮動小数点を用いた表示として表現される。
【0019】
また、本発明の他の実施形態において、正の実数のDNAに基づいた数値表現への変換のために、その実数は小数点の右移動によりまず整数に変換され、この整数が、正の整数のDNAに基づいた数値表現への変換と同様に、DNAに基づいた数値表現に変換される。小数点が移動された数は記録され、指数として表現される(整数をDNAに基づいた数値表現に変換する上述の手法を利用する)。左側の最上位の塩基はその数値の正負の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表す。
【0020】
本発明のさらに他の実施形態において、正の実数の場合には、符号を示す塩基は、「T」となり、負の実数の場合には、符号を示す塩基は「C」となる。
【0021】
本発明のさらに他の実施形態において、負の実数のDNAに基づいた数値表現への変換のために、その実数は正の実数とみなされ、その実数は小数点の右移動により整数に変換される。この整数が、正の整数のDNAに基づいた数値表現への変換と同様に、DNAに基づいた数値表現に変換される。結果として得られたDNAに基づいた数値表現の補数が、Aの値をGの値に、Tの値をCの値に変換し、逆も同一にすることによって生成され、その補数に塩基T(=1)が加えられる。小数点が移動された数は記録され、指数として表現される(整数をDNAに基づいた数値表現に変換する上述の手法を利用する)。左側の最上位の塩基はその数値の正負の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表す。
【発明を実施するための最良の形態】
【0022】
本発明は、DNAに基づいた数値表現体系及び算術に関するものである。さらに詳細には、本発明は、全てのDNA塩基への所定の値の割当や、DNA塩基の補数の所定の割当や、DNA塩基による整数及び実数の表現や、DNAに基づいた数値表現体系上での基本的な算術割当の実行を含む、DNAに基づいた数値表現体系及び算術に関するものである。
【0023】
本発明の体系において、DNAに基づいた数値表現体系は、4つの構成要素を有する。これらの構成要素は、「A」「T」「C」「G」である。DNAに基づいた数値表現体系の各構成要素に割り当てられる所定の値は、A=0,T=1,C=2,G=3である。整数は8塩基/セルとして表現される。DNAに基づいた数値表現体系における塩基の値は、位を定めるものである。
【0024】
補数表示が整数を表現するために用いられる。しかし、正の整数は補数を持たない。DNAに基づいた数値表現体系の構成要素に割り当てられる補数は、Aの補数=G,Tの補数=Cであり、逆もまた同一である。
【0025】
正の整数のDNAに基づいた数値表現への変換は、その数を4で除算してその余りを抽出し、商が0になるまでこの処理を繰り返すことにより行われる。最初の余りの数字は最下位の塩基(LSB)とされ、最後に抽出された数字は最上位の塩基(MSB)とされる。DNAに基づいた数値表現は、抽出された塩基をMSDからLSDまで左から右に記述することによって得られる。さらに、Aの値のような補填データを左側に付加し、左側の最上位の塩基に、符号を示す塩基、すなわち正の整数に対しては「A」を割り当てて、そのセルを閉じる(8塩基/セル、又はその倍数)。左側の最上位の塩基は、その数値の正負の符号を表す。
【0026】
負の数のDNAに基づいた数値表現への変換は、まず、その数を正の整数とみなし、その数を上述のようにDNAに基づいた数値表現体系へと変換し、その補数を、Aの値をGの値に、Tの値をCの値に変換し、逆も同一にして生成し、塩基T(=1)をその補数に加え、Gの値のような補填データを左側に付加し、左側の最上位の塩基に、符号を示す塩基、すなわち負の整数に対しては「G」を割り当てて、そのセルを閉じることにより行われる(8塩基/セル、又はその倍数)。左側の最上位の塩基は、その数値の正負の符号を表す。
【0027】
実数は、32塩基の中で浮動小数点を用いた表示で表現される。
【0028】
正の実数は、まず、その実数を小数点の右移動により整数に変換することによって、DNAに基づいた数値表現に変換される。この整数が、上述の正の整数と同様に、DNAに基づいた数値表現に変換される。小数点が移動された数は記録され、指数として表現される(整数をDNAに基づいた数値表現に変換する上述の手法を利用する)。左の最上位の塩基はその数値の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表す。
【0029】
本発明の手法において、正の実数の場合には、符号を示す塩基は、「T」となり、負の実数の場合には、符号を示す塩基は「C」となる。
【0030】
負の実数のDNAに基づいた数値表現への変換のために、その実数はまず正の実数とみなされ、この正の実数は小数点の右移動により整数に変換される。この整数が、上述の正の整数のDNAに基づいた数値表現への変換と同様に、DNAに基づいた数値表現に変換される。結果として得られたDNAに基づいた数値表現の補数が、Aの値をGの値に、Tの値をCの値に変換し、逆も同一にすることによって生成され、その補数に塩基T(=1)が加えられる。小数点が移動された数は記録され、指数として表現される(整数をDNAに基づいた数値表現に変換する上述の手法を利用する)。左側の最上位の塩基はその数値の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表す。
【0031】
本発明の数値表現体系は、4つの構成要素を有し、2進法のように2つの構成要素に制限されないので、4つの状態を有する計算素子の創造に有効である。従って、本発明の数値表現体系は、従来の2進法に比較して、より大きな数の表現を可能にするものであり、強力なDNAに基づいた計算素子の設計と組立とを可能にするものである。
【0032】
ここで、本発明は、添付した表及び図面に記載した例を参照して説明される。なお、記載した例は、いかなる意味においても、本発明の範囲を限定するものとして解釈すべきものではない。
【0033】
【表1】

【0034】
【表2】

【図面の簡単な説明】
【0035】
【図1】DNA塩基による整数の表現及び算術の処理図。
【図2】DNA塩基による実数の表現及び算術の処理図。

【特許請求の範囲】
【請求項1】
A,T,C,Gからなる4つの塩基を有し、各塩基はA=0,T=1,C=2,G=3からなる所定の値を割り当てられ、整数と実数との両方がDNA塩基の形式で表現され、その各塩基の値が位を定める体系であることを特徴とするDNAに基づいた数値表現体系。
【請求項2】
実数は、32塩基の中で浮動小数点を用いた表示として表現されることを特徴とする請求項1記載の数値表現体系。
【請求項3】
(a)A=0,T=1,C=2,G=3であるように、所定の値を各DNA塩基に割り当て、
(b)Aの補数=G,Tの補数=Cであり、逆もまた同一であるように、所定の補数の値を各DNA塩基に割り当てることからなるDNA塩基(A,T,C,G)の形式による数値表現方法。
【請求項4】
数値は正の整数、負の整数、正の実数、負の実数からなる群から選択されることを特徴とする請求項3記載の方法。
【請求項5】
DNAに基づいた数値表現体系における各構成要素に割り当てられた補数は、Aの補数=G,Tの補数=Cであり、逆もまた同一であることを特徴とする請求項3記載の方法。
【請求項6】
DNAに基づいた数値表現体系における塩基の値は、位を定めるものであることを特徴とする請求項3記載の方法。
【請求項7】
(a)そのように得られた正の整数を4で除算してその余りを抽出し、
(b)商が0になるまでステップ(a)を繰り返し、
(c)最初の余りの数字を最下位の数字(LSD)とし、
(d)最後に抽出された数字を最上位の数字(MSD)とし、
(e)抽出された数字をMSDからLSDまで左から右に記述し、
(f)必要であれば補填データを付加し、左側に符号を示す塩基を付加し、そのセルを閉じることにより、正の整数がDNA塩基表現に変換されることを特徴とする請求項4記載の方法。
【請求項8】
(a)まず負の整数を正の整数に変換し、
(b)そのように得られた正の整数を4で除算してその余りを抽出し、
(c)商が0になるまでステップ(c)を繰り返し、
(d)最初の余りの数字を最下位の数字(LSD)とし、
(e)最後に抽出された数字を最上位の数字(MSD)とし、
(f)抽出された数字をMSDからLSDまで左から右に記述し、
(g)必要であれば補填データを付加し、左側に符号を示す塩基を付加し、そのセルを閉じ、
(h)Aの値をGの値に、Tの値をCの値に変換し、逆も同一にすることによって補数を生成し、
(i)その補数に塩基T(=1)を加えることにより、負の整数が前記DNA塩基表現に変換され、
閉じられたバイト(byte)/セルで、左側の最上位の塩基は、その整数の正負の符号を表すことを特徴とする請求項4記載の方法。
【請求項9】
(a)まず正の実数を小数点の右移動により正の整数に変換し、
(b)そのように得られた正の整数を4で除算してその余りを抽出し、
(c)商が0になるまでステップ(b)を繰り返し、
(d)最初の余りの数字を最下位の数字(LSD)とし、
(e)最後に抽出された数字を最上位の数字(MSD)とし、
(f)抽出された数字をMSDからLSDまで左から右に記述し、
(g)必要であれば補填データを付加し、左側に符号を示す塩基を付加し、そのセルを閉じ、
(h)小数点が移動された数を記録し、指数として表現することにより、正の実数が前記DNA塩基表現に変換され、
左側の最上位の塩基は、その数値の正負の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表すことを特徴とする請求項4記載の方法。
【請求項10】
正の実数の場合には、符号を示す塩基は「T」であり、負の実数の場合には、符号を示す塩基は「C」であることを特徴とする請求項4記載の方法。
【請求項11】
(a)負の実数を正の実数に変換し、
(b)その正の実数を小数点の右移動により正の整数に変換し、
(c)そのように得られた正の整数を4で除算してその余りを抽出し、
(d)商が0になるまでステップ(c)を繰り返し、
(e)最初の余りの数字を最下位の数字(LSD)とし、
(f)最後に抽出された数字を最上位の数字(MSD)とし、
(g)抽出された数字をMSDからLSDまで左から右に記述し、
(h)必要であれば補填データを付加し、左側に符号を示す塩基を付加し、そのセルを閉じ、
(i)小数点が移動された数を記録し、指数として表現することにより、負の実数が前記DNA塩基表現に変換され、
左の最上位の塩基は、その数値の正負の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数を表すことを特徴とする請求項4記載の方法。
【請求項12】
a)整数が8塩基/セルで表現され、補数表示が整数の表現に使用され、正の整数は補数を備えず、左側の最上位の塩基はその整数の符号を表し、
b)実数が浮動小数点表示手法を用いた32塩基/セルとして表現され、左側の最上位の塩基はその数値の正負の符号を示す塩基を表し、次の23塩基は絶対値を表し、残りの8塩基は指数、すなわち実数を整数に変換するために小数点が右側に移動された数を表すことを特徴とする、請求項1記載のDNAに基づいた数値表現体系に基づいたソフトウェア。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2007−520782(P2007−520782A)
【公表日】平成19年7月26日(2007.7.26)
【国際特許分類】
【出願番号】特願2006−530670(P2006−530670)
【出願日】平成16年5月20日(2004.5.20)
【国際出願番号】PCT/IB2004/001639
【国際公開番号】WO2004/104918
【国際公開日】平成16年12月2日(2004.12.2)
【出願人】(595023873)カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ (69)