説明

Fターム[4K033DA01]の内容

電磁鋼板の製造 (7,545) | 結晶状態 (192) | 結晶粒径 (88)

Fターム[4K033DA01]に分類される特許

61 - 80 / 88


【課題】高い透磁率と加工性を併せ持つ方向性電磁鋼板を提供する。
【解決手段】鋼板の鉄基部分に質量%でSi:1.0〜5.0%を含み、鋼板表面において、円相当径が3mm以下の結晶粒が占める面積率を20%以下とし、かつ円相当径が20mm以上の結晶粒が占める面積率を15%以下とし、鋼板表面にセラミック質被膜を有さず、さらに磁束密度:1.0T、周波数:50Hzにおける比透磁率を20000以上とする。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍において、脱炭処理を施して焼鈍後の表面粒組織においてラメラ間隔を制御するとともに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍において、0.002〜0.02%脱炭させることにより、焼鈍後の表面粒組織のラメラ間隔を20μm以上に制御するとともに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】鏡面方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、アルミナを主成分焼鈍分離剤を塗布して仕上げ焼鈍を施す鏡面方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、冷間圧延をタンデム圧延機で行ってパス間時効を省略しても、それを行った場合と同等の磁気特性を得ること。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、冷間圧延をタンデム圧延機で行い、さらに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃/秒以上、好ましくは50℃/秒以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】加工性および磁気特性に優れ、また経済的にも有利な方向性電磁鋼板を提供する。
【解決手段】質量%で、Si:2.0〜8.0 %およびN:10〜100 ppmを含有する組成とし、また二次再結晶粒の内部に粒径が0.15mm以上、0.50mm以下の微細結晶粒を2個/cm2 以上、100.3個/cm2以下の頻度で含有させ、しかもフォルステライト(Mg2SiO4) を主体とする下地被膜を生成させない。 (もっと読む)


【課題】Ti含有を許容しながら、生産性を阻害することなく、歪取焼鈍後の結晶粒成長と磁気特性に優れた無方向性電磁鋼板およびその製造方法を提供する。
【解決手段】Si:3.5%以下、Mn:0.15%以下、Al:0.1%以上3.0%以下、C:0.0050%以下、Ti:0.0020%以上0.010%以下、S:0.0010%以上0.0050%以下、Sn:0.0050%以上0.20%以下を含有し、残部Fe及び不可避不純物からなり、歪取焼鈍前の平均結晶粒径が40μm以下、歪取焼鈍後の平均結晶粒径が60μm以上、歪取焼鈍前の固溶Tiが質量%で0.0020%未満、歪取焼鈍前にTiとSの双方を含む析出物を有することを特徴とする無方向性電磁鋼板。その製造方法としては、製鋼で成分調整後に脱硫フラックス、Ca合金、Mg合金やREMによって脱硫処理を行なわず、熱延前のスラブ加熱温度を1000℃以上1150℃以下、熱延板焼鈍温度を900℃以上1150℃以下で行なう。 (もっと読む)


【課題】二方向性電磁鋼板専用の特殊な設備を必要とせず、キューブ方位を通常の一次再結晶で形成することができる磁気特性に優れた二方向性電磁鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.005%以上 0.030%以下およびSi:2.0%以上 4.5%以下を含有し、フォルステライト膜を有しない二次再結晶後の方向性電磁鋼板を、50%以上の圧下率で圧延したのち、再結晶焼鈍を行い、再結晶後の結晶粒径を最終板厚の1/2以下とする。 (もっと読む)


【課題】本発明は、主にトランス等の鉄芯として使用される充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法を提供する。
【解決手段】熱間圧延板焼鈍条件を有効酸可溶性Al(AlNR)で規定される熱間圧延鋼帯の焼鈍条件を下記上限、下限の温度での一段化することにより整粒性を改善して、磁束密度を高位に確保して高Siの特徴を発揮させた充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法。
Tmax.(℃)=15/22×AlNR+1000:(<1120℃)
Tmin.(℃)=15/22×AlNR+900:(≧925℃)
ここで、AlNR(ppm)=酸可溶性Al−27/14(N−14/48Ti) (もっと読む)


【課題】無負荷損失や外力にて回転させられる場合の損失を軽減することが可能となる。
【解決手段】無方向性電磁鋼板および永久磁石を用いた磁石モータであり、前記無方向性電磁鋼板は、まずSiを0.1〜4.5mass%含有する。そして、J100≧1.75T―(1)J10/J100≦0.80―(2)W20≦3.0W/kg―(3)(ただし、J100:磁化力10000A/mにおける磁気分極、J10:磁化力1000A/mにおける磁気分極、W20:2000A/m、50Hzで磁化した場合の鉄損)を全て満たす磁気特性を有している。このような無方向性電磁鋼板の一実施形態としては、{111}面方位のX線反射面強度のランダム集合組織強度に対する比が3.5以上9.0以下であり、かつ、平均結晶粒径が45μm以上である無方向性電磁鋼板が挙げられる。 (もっと読む)


【課題】方向性電磁鋼板の製造において、鋼板幅方向の結晶粒径の変動を低く抑えることで歩留まりの低下を防止することが可能な方向性電磁鋼板の一次再結晶焼鈍設備を提供する。
【解決手段】本発明に係る方向性電磁鋼板の一次再結晶焼鈍設備は、連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向の2ヶ所以上に備える。
また、連続焼鈍炉出側に、鋼板の結晶粒径をオンラインで測定可能なセンサーを、鋼板幅方向に移動可能に1つ以上備えてもよい。
ここで、前記鋼板の結晶粒径をオンラインで測定可能なセンサーとしては、コの字形コアに、励磁一次コイルと出力二次電圧コイルとを巻装した構成のものを用いることが好ましい。 (もっと読む)


【課題】コイルの全幅、全長にわたり欠陥のない均一で密着性に優れたフォルステライト質絶縁被膜を有し、かつ磁気特性およびベンド特性にも優れた方向性電磁鋼板を、低コストで提供する。
【解決手段】インヒビターレス法により一方向性電磁鋼板を製造するに際し、成分として特にSb:0.035〜0.30%,Mn:{0.04+Sb(%)}%以上 0.50%以下を含有させ、脱炭・一次再結晶焼鈍工程において、鋼板表面にファイヤライトとシリカの組成比が赤外反射の吸光度比(Af/As)で0.1以上 1.0未満であるサブスケールを形成し、焼鈍分離剤中に、マグネシア:100質量部に対して、Ti化合物をTi換算で0.3〜8質量部含有させ、二次再結晶焼鈍の昇温過程において、800℃以上 900℃以下の滞留時間を40時間以上 150時間以下とし、さらに二次再結晶焼鈍後の純化焼鈍を1125℃以上の温度で行うと共に、昇温・冷却過程を含めて1100℃以上の温度域の雰囲気を、アルゴン単体、窒素単体あるいはアルゴンと窒素の混合雰囲気とする。 (もっと読む)


【課題】実質的にAl無添加で、磁性焼鈍後の鉄損の低い無方向性電磁鋼板を提供する。
【解決手段】質量%で、C:0.005%以下、Si:4%以下、P:0.2%以下、Mn:0.05〜1.0%、S:0.005%以下、N:0.005%以下、Nb:0.0008%以下、Al:0.004%以下、V:0.004%以下を含有し、残部Feおよび不可避的不純物からなり、かつ[Al]+[V]+5×[Nb]≦0.004%を満たす磁性焼鈍後の鉄損の低い無方向性電磁鋼板;ただし、[M]は元素Mの含有量(質量%)を表す。 (もっと読む)


【課題】 優れた交流磁気特性を確保できると共に、製造工程で優れた冷間鍛造性や切削加工性を発揮し、複雑形状の軟磁性鋼部品を高歩留まりかつ低コストで製造することのできる軟磁性鋼材を提供する。
【解決手段】 C:0.004〜0.020%(質量%の意味、以下同じ)、Si:2.0%超〜4.0%以下、Mn:0.2〜1.0%、P:0.02%以下(0%を含まない)、S:0.02〜0.10%、Al:0.05〜2.0%、Cu:0.01〜0.1%、Ni:0.01〜0.1%、Cr:0.01〜0.1%、N:0.0050%以下(0%を含まない)、O:0.010%以下(0%を含まない)、残部:Feおよび不可避不純物からなり、
[Mn]/[S]≧8
{[Mn]はMn含有量(質量%)、[S]はS含有量(質量%)を示す}
を満たし、金属組織がフェライト単相組織であることを特徴とする冷間鍛造性、切削加工性および交流磁気特性に優れた軟磁性鋼材。 (もっと読む)


【課題】 Si+Alが1.9%以上の成分系で安定して高い全周の磁束密度を得られる無方向性電磁鋼板の製造方法を提供する。
【解決手段】 特性成分を含有し、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において下記式で表されるM値を0.1以上5以下、冷延率を85%〜93%とすることを特徴とした全周の磁束密度の高い無方向性電磁鋼板の製造方法。
【数1】


ここで、n:冷延パス回数、Hi:iパス目の入り側板厚、Hi+1:iパス目の出側板厚(i+1パス目の入り側板厚)、Ri:iパス目の圧延ロール径 (もっと読む)


【課題】本発明は、圧延方向の磁気特性を飛躍的に向上させた無方向性電磁鋼板をコストと生産性に優れた方法で提供する。
【解決手段】質量%で、Si:2.0%以下、Mn:3.0%以下、Al:1.0%以上3.0%以下、さらに必要に応じSn、Sb、Cu、Ni、Cr、P、REM、Ca、Mgを合計で0.002%以上0.5%以下、残部Fe及び不可避不純物からなり、歪取焼鈍後の圧延方向について、磁束密度B50Lと飽和磁束密度Bsの比(B50L/Bs)が0.85以上、鉄損W15/50Lが2.0W/kg以下であることを特徴とする、圧延方向の磁気特性が良好な無方向性電磁鋼板。その製造方法は、熱延板焼鈍を800℃以上1100℃以下で30秒以上、仕上焼鈍後の結晶粒径を50μm以下とし、圧下率3%以上10%以下のスキンパスを施した後、歪取焼鈍を行なう。さらに冷延圧下率は60%以上75%以下が望ましい。 (もっと読む)


【課題】 400Hz〜2kHz程度の高周波域で、安定して低鉄損特性を示す電磁鋼板とその安価な製造方法を提案する。
【解決手段】 Siを4mass%以下含有する電磁鋼板であって、該鋼板の両表層部には下記のように定義される粗大結晶粒部分を有し、板厚方向の中央部には下記のように定義される微細結晶粒部分を有し、かつ、該粗大結晶粒部分と該微細結晶粒部分とは平均結晶粒径の比が2.0以上であることを特徴とする高周波域での鉄損が低い電磁鋼板。

鋼板表面に平行な面内での平均結晶粒径Dの板厚方向の分布を測定し、その最大値をDmax、最小値をDminとしたとき、
粗大結晶粒部分:D≧0.5Dmaxを満たす部分
微細結晶粒部分:D≦2.0Dminを満たす部分 (もっと読む)


【課題】磁壁移動を阻害することなしに、結晶粒の成長を効果的に抑制することにより、高周波鉄損特性に優れる高珪素鋼板を得る。
【解決手段】質量%で、C:0.02%以下、Si:4.5%以上 7.5%以下、Mn:2.0%以下、Al:3.0%以下、P:0.2%以下、N:0.02%以下およびO:0.02%以下を含有し、かつ1100℃以上 1300℃以下の温度範囲において液相となる析出物を0.005%以上 1.0%以下の範囲で含有し、残部はFeおよび不可避的不純物の組成とする。 (もっと読む)


61 - 80 / 88