説明

Fターム[5F152DD01]の内容

再結晶化技術 (53,633) | 被結晶化層の後処理 (501) | 形状の変更 (116)

Fターム[5F152DD01]の下位に属するFターム

薄膜化、平坦化 (109)
その他のもの

Fターム[5F152DD01]に分類される特許

1 - 7 / 7


【課題】 結晶化に用いた触媒材料は結晶性珪素膜にとって好ましくない材料であるので、結晶化後はできるだけ濃度にしたい要求がある。珪素中に欠陥準位が多い場合、光生成キャリアは欠陥準位にトラップされ消滅し、光電変換特性が低下させる。本発明の目的は触媒材料による珪素の結晶化と、結晶化した後に不要となった触媒材料を除去して光電変換装置の特性向上を目的とする。
【解決手段】 結晶化した後に第1の半導体膜に残存する触媒元素は、その上に希ガス元素を含む第2の半導体膜を形成し、第2の加熱処理を行うことで該第2の半導体膜に移動させ濃集させる。即ち、第2に半導体膜に希ガス元素を含ませることで歪み場を形成し、ゲッタリングサイトとする。希ガス元素は基本的に他の原子と結合を形成しないため、半導体膜中で格子間に挿入されて、それにより歪み場を形成することができる。 (もっと読む)


【課題】 ゲルマニウム(Ge)半導体を自己組織的に実現するGe半導体製造方法。
【解決手段】 シリコン(Si)とゲルマニウム(Ge)からなるSiGe薄膜を融液成長により固化させ、結晶化されたSiGe薄膜中に自己組織的に出現したGe偏析に起因するGe高濃度構造を形成する。さらに酸化濃縮技術を利用してGe濃度を高めることを特徴としたGe半導体製造方法。 (もっと読む)


【課題】単結晶シリコン層を貼り付けた高価な基板や、触媒金属を拡散させたシリコン膜を用いなくても、トランジスター特性の優れた薄膜トランジスターを備えた半導体装置の製造方法、半導体装置、および電気光学装置を提供すること。
【解決手段】半導体装置の製造工程では、非晶質のシリコン膜1の一部の領域にゲルマニウムを導入して熱処理を行う。その結果、核形成用元素導入領域1sに結晶核が生成するとともに、かかる結晶核を起点として結晶粒が成長する。このため、シリコン結晶粒の位置制御が可能となり、チャネル領域1hに含まれる粒界の量を制御することができる。また、ゲルマニウムは、チャネル領域形成予定領域1iやその周辺の領域1k、1mなどに拡散しない。 (もっと読む)


【課題】横方向固相エピタキシャル成長法において単結晶膜成膜工程に要する時間を短縮し、半導体装置の製造を短時間で行う。
【解決手段】単結晶シリコン部403及び絶縁膜401が表面において露出したウエハ200を、構成元素としてSiを含むガスの雰囲気中に曝露し、単結晶シリコン部403及び絶縁膜401の上にアモルファスのシリコン膜402を成膜する成膜工程と、成膜工程後に、シリコン膜402を加熱して、単結晶シリコン部403を基にしてシリコン膜402を単結晶化させる加熱工程と、加熱工程後に、ウエハ200を構成元素としてSiを含むガス及び構成元素としてClを含むガスの混合雰囲気中に曝露し、単結晶化した部分を残留させつつ、単結晶化しなかった部分を除去する選択成長工程と、を含む半導体装置の製造方法であって、ウエハ200に対して、成膜工程、加熱工程及び選択成長工程を繰り返す。 (もっと読む)


【課題】従来に比べて結晶粒径の大きい結晶質半導体膜を用いた半導体装置の作製方法を提供する。
【解決手段】絶縁膜上に半導体膜を形成し、半導体膜の表面に固体レーザー光を照射し、半導体膜の裏面には、絶縁膜の下方に配置された反射体によって反射された固体レーザー光を照射して半導体膜を結晶化させ、結晶化させた半導体膜を用いてソース領域、ドレイン領域及びチャネル形成領域を含む活性層を形成する。これにより従来に比べて結晶粒径の大きい結晶質半導体膜を得ることができる。 (もっと読む)


【課題】 工程数を削減して製造コストの低減が可能な、薄膜トランジスタの製造方法を提供する。
【解決手段】 非晶質の半導体層を形成する工程(S1)と、その半導体層の表面に、ネガ型の感光性を有するポリシラザン層を形成する工程(S3)と、ポリシラザン層の所定領域に光を照射して、ポリシラザン層を露光するとともに、半導体層の所定領域を結晶化する工程(S4)と、を有する。 (もっと読む)


【課題】 基板上に、成長の核となる微結晶を作製し、その粒径と密度を制御し、大粒径多結晶Si薄膜を作製できるGe微結晶核付き基板の作製方法及びGe微結晶核付き基板を提供する。
【解決手段】 電子工業用ガラス基板、石英ガラス基板、熱酸化したSiウェーハ又はSiO2膜付き基板の上に固相成長法により島状に独立したGe微結晶を形成し、次いで酸素エッチングによってGe微結晶の粒径と密度とを、300〜600℃の範囲のエッチング温度とエッチング時間とで制御する。前記基板の上に粒径が1〜40nmのGe微結晶を、密度が1×105〜1×107個/cm2となるように分散配置した。 (もっと読む)


1 - 7 / 7