説明

アルカリ金属を含有する多成分金属酸化物化合物およびこれにより製造される金属酸化物化合物

少なくとも1種のアルカリ金属および遷移金属、その他の主族金属、ランタニドおよびアクチニドからなる群から選択される少なくとも1種の他の金属を含有する微粒子のアルカリ金属含有金属酸化粉末の製造が記載される。これらの成分の前駆物質化合物を、固体の形でまたは溶液または懸濁液の形で、無炎の燃焼から生じるガス流を有するパルス反応器に導入し、部分的にまたは完全に所望の多成分金属酸化物化合物に変換する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は粉末の形のアルカリ金属を含有する多成分金属酸化物化合物の製造方法に関する。
【0002】
多成分金属酸化物化合物は例えば化学においてアルコールを製造するための触媒として使用される。これらの化合物の例は米国特許第4219126号および米国特許第4659742号に示される。更にこれらの金属酸化物化合物は、例えばLiAlO、LiMn、LiCoOまたはLiZrOの化合物のように、セラミック工業および電池の製造に使用される。これらの金属酸化物化合物は、使用特性を改良するために、例えばドープされた金属酸化物化合物La0.85Na0.15MnO、LiCo0.8Ni0.2、LiAlCo1−yおよびLiCoMn2−yの場合のように、付加的にドープできることが知られている。この場合に完成した金属酸化物粉末の特に均一なドーピングが所望される。
【0003】
アルカリ金属化合物の高い溶解度のために、水溶液からの通常の沈殿法は、特に三成分および多成分金属酸化物が所望の場合は、アルカリ金属含有粉末の製造から実質的に排除される。
【0004】
回転管状炉または箱形炉中の通常の固体の状態の反応法はかなり固化した、粗い材料を生じ、前記方法を、相当する融点に近いかまたはこれより高い温度で実施するので、この材料を分解することが困難である。固化の危険がない、より低い温度で、固体の状態の反応がきわめて緩慢にのみ進行し、従って経済的に実施できない。更に均一なドープ材料はこれらの通常の熱的方法を使用して取得することがきわめて困難である。
【0005】
しかし、例えば成分の小型化により、最終生成物を生じる引き続く処理はしばしば小さい平均粒子直径を有する粉末状および/または高い表面積の金属酸化物化合物を必要とし、前記化合物は団結または焼結した材料の際に、集中的粉砕によってのみ取得することができる。この場合に前記材料は粉砕媒体の摩擦により汚染されることがある。
【0006】
WOA202/072471号は高温超伝導体の前駆物質として使用するために適している多成分金属酸化物粉末の製造方法を開示する。この粉末を製造するために、Cu、Bi、Pb、Y、Tl、Hg、Laから選択される少なくとも3個の元素を含有する相当する金属塩および/または金属酸化物および/または金属の混合物を、必要な化学量論的比で、固体の形でまたは溶液または懸濁液の形で、無火の燃焼から生じるパルスガス流を有するパルス反応器に導入し、部分的にまたは完全に多成分金属酸化物に変換する。
【0007】
本発明の課題は、粉末の形で存在し、関係する成分の均一な分布を有する、アルカリ金属を含有する、すなわちリチウム、ナトリウム、カリウム、ルビジウムおよび/またはセシウムを含有する金属酸化物化合物を製造する方法を提供することである。
【0008】
この課題は、所望の金属酸化物化合物の成分の前駆物質化合物を、固体の形でまたは溶液または懸濁液の形で、無火の燃焼から生じるガス流を有するパルス反応器に導入し、部分的にまたは完全に所望の酸化物化合物に変換することにより解決され、その際、前駆物質化合物は、アルカリ金属の群からの少なくとも1種の第1金属化合物と、遷移金属、その他の主族金属、ランタニドおよびアクチニドからなる群から選択される少なくとも1種の第2金属化合物の所望の比の混合物を含有する。
【0009】
本発明の範囲で、アルカリ金属含有金属酸化物化合物は、化合物を形成する成分の少なくとも1種がアルカリ金属である、少なくとも2種の成分からなる化合物であると理解される。このための例はLiAlOまたはLiMnである。これにはアルカリ金属および/または金属が部分的に他の金属により置換されている化合物、例えばLiCo0.8Ni0.2が含まれる。同様にアルカリ金属ドーピングを有する化合物(例えばLa0.85Na0.15MnO)が含まれ、その際ホスト格子にアルカリ金属イオンが組み込まれる。金属酸化物化合物はこのほかに、適当な方法、例えばX線検査により、2個以上の異なる化合物を検出できる材料であると理解される。
【0010】
金属酸化物化合物は熱ガス流から適当なフィルターにより分離し、引き続き125μmまで、有利に0.1〜50μmもしくは1〜30μmの平均粒度を有する粉末の形で存在する。前駆物質化合物を溶液の形でパルスガス流に導入する場合は、この方法で処理パラメーターを適当に選択して10〜100nmの平均粒度を有するいわゆるナノ粉末も達成できる。
【0011】
回転管形炉および平炉に比較した本発明の方法の特別な利点は、パルスガス流中のきわめて均一な熱処理である。これは外部加熱(熱壁反応器)による下降管処理のような選択的方法の場合には付与されず、この場合は異なる降下速度および縁部帯域効果により不均一な材料を生じる。同じことは噴霧熱分解法および火炎熱分解法に該当する。
【0012】
これに対してパルスガス流中の焼成は、かなり大きい固化した凝集物を形成せずに、出発物質または最終物質の軟化温度または溶融温度より低い温度まで出発物質のきわめて均一な処理を可能にする。
【0013】
前記方法は、アルカリ金属として、リチウム、ナトリウム、カリウム、ルビジウム、セシウムまたはこれらの混合物を含有する金属酸化物化合物の製造を可能にする。第2金属化合物は有利にアルミニウム、マンガン、コバルト、ジルコニウム、鉄、クロム、亜鉛、ニッケル、およびランタニドの化合物から選択される。
【0014】
アルカリ金属および遷移金属、その他の主族金属、ランタニドおよびアクチニドからなる群からの金属を、適当な前駆物質化合物の混合物の形で前記方法に導入する。溶解していないおよび場合により溶解した前駆物質化合物の水性または非水性溶液または懸濁液をパルス反応器に導入することが有利である。前駆物質化合物は前記金属の無機酸または有機酸の任意の塩または無機化合物または有機化合物であってもよく、特に硝酸塩、塩化物、硫酸塩、酢酸塩、アミン、水酸化物、炭酸塩、蓚酸塩、クエン酸塩、および酒石酸塩である。前駆物質化合物の水性または非水性溶液は付加的に第1および第2金属化合物の水酸化物、酸化物、炭酸塩、蓚酸塩および/または他の溶解していない塩の形で固体の化合物を含有することができる。
【0015】
同様に、特に反応性の出発物質または物質組成物を反応器に、粉末混合物として、例えば粉末噴射機により導入することが可能である。これらの粉末混合物は第1および第2金属化合物の微粒子の水酸化物、酸化物、炭酸塩、蓚酸塩、および/または溶解していない塩の形の固体の緊密な混合物であってもよい。
【0016】
本発明の方法に使用するために適したパルス反応器は例えばWO02/072471号に記載される。前記反応器は燃焼室および共鳴管を有する。燃焼空気および燃料を空気弁により燃焼室に供給し、空気弁は燃焼室内の圧力が外部の圧力より低い場合に開き、燃焼室内の圧力が外部の圧力より高い場合に閉じる。燃焼室中の燃料ガス混合物の発火は圧力を高め、空気弁を閉鎖し、その結果として、圧縮波が外部に、共鳴管の方向に移動する。共鳴管に流入するガスは燃焼室中の圧力を低下させ、従って弁を再び開放する。これは自動制御する振動を生じ、振動のパルス周波数は反応器の形状および燃焼温度に依存し、当業者により容易に調節できる。パルス周波数を10〜130Hzの範囲に調節することが有利である。
【0017】
熱い燃焼排ガス温度は約650〜1400℃の範囲の値に調節できる。700〜1050℃の範囲の燃焼排ガス温度を選択することが有利である。
【0018】
パルス反応器の共鳴管は膨張室により中断することができ、その前方に二次ガスを導入して燃焼排ガスを冷却することができる。共鳴管および膨張室中の熱い燃焼排ガス温度はこの手段により300〜800℃の範囲の値に調節できる。この方法で共鳴管中で650℃より低い温度を実現することが可能であり、このことは従来のパルス反応器を使用する場合は達成できない。
【0019】
前駆物質化合物はパルス反応器の燃焼室に、共鳴管に、または膨張室に直接導入できる。パルス反応器に導入する位置の選択は達成されるべき金属酸化物化合物の個々の特性に依存する。最終生成物を生じる反応での処理時間および温度は導入する位置の選択により変動できる。前駆物質の比表面積または反応の完成度のような個々のパラメーター(例えば酸溶解度)をこの方法で調節できる。反応温度は処理時間と組み合わせて例えば最終生成物の結晶変態の形成を決定する。最終生成物がなお微量の好ましくない酸化物を含有する場合に、試験により処理パラメーターの適当な最適化により前記酸化物を除去できることが示された。この最適化のための適当な処理パラメーターは、例えば溶解した前駆物質化合物の濃度、前駆物質化合物それ自体、熱いガス流の温度およびパルス反応器中の滞在時間である。
【0020】
炭素含有燃料を使用する他の方法と比較した他の利点は、単独燃料としてまたは他の燃料との混合物で水素を使用できることである。
【0021】
これは炭酸塩の形成を阻止し、炭酸塩はアルカリ金属の場合にきわめて安定であり、すなわちきわめて高い温度まで炭酸塩含有燃料ガスから安定であり、固体の状態の反応を加速した速度で進行できる。
【0022】
個々の特性(硝酸塩および塩化物含量の減少、変形、表面積、結晶の治療、結晶子の大きさ)を達成するために、パルス反応器中で得られた金属酸化物粉末を更に処理することが必要である。この場合にパルス反応器または多工程パルス反応器の更なる通過を用意することができる。もちろん炉または流動床反応器中の処理のような通常の熱的処理も可能である。しかし金属酸化物化合物を製造する重要な工程は第1処理工程である。引き続く工程は使用特性を最適化する単なる変形である。
【0023】
同様に使用特性を最適化するために、前記熱処理の代わりに例えば可溶性成分の抽出または洗い落としを用意することができる。
【0024】
前記方法は、例えば金属酸化物化合物の製造を可能にし、その場合にリチウムの前駆物質化合物がアルミニウム、マンガン、コバルトまたはジルコニウムの化合物と完全にまたは部分的に反応してLiAlO、LiMn、LiCoOまたはLiZrOの化合物を形成する。更にLa0.85Na0.15MnO、LiCo0.8Ni0.2、LiAlCo1−yおよびLiCoMn2−yのようなドープ化合物を前記方法により完全にまたは部分的に取得することができる。
【0025】
本発明を以下の実施例により説明する。
【0026】
例1:ドープ化合物La0.85Na0.15MnOの製造
組成La0.85Na0.15MnOを有するアルカリ金属含有金属酸化物粉末を製造した。この目的のために、適当な化学量論的比および全酸化物濃度10質量%(La、NaOおよびMnOとして計算して)を有する、硝酸ランタン、硝酸ナトリウムおよび硝酸マンガン(II)・4HOの水溶液をパルス反応器中で反応させた。前記水溶液を、二成分噴射ノズルを使用して燃焼室に800℃の温度で、5.3kg・hの速度で導入した。燃料ガス流は天然ガス2.8kg/hであり、燃焼空気流は66kg/hであった。熱ガス流からセラミックキャンドルフィルターを使用して生成物を分離した。
【0027】
形成された黒みがかった灰色の粉末は比表面積(BET)15m/g、平均粒度d50(CILAS920)14μmおよび強熱減量1.9%を有した。X線回折分析はランタンマンガン酸化物LaMnOの信号のみを示し、従ってドープ化合物La0.85Na0.15MnOの形成を示す。化学的分析によりこの結論を確認した。測定値は分析の精度の限界内で予想される組成、すなわちランタン52.6質量%(理論値53.0質量%)、マンガン24.5質量%(理論値24.7質量%)およびナトリウム1.54質量%(理論値1.55質量%)に相当した。
【0028】
例2:化合物LiMnの製造
アルカリ金属含有化合物LiMnを製造した。この目的のために、適当な化学量論的比および全酸化物濃度10質量%(LiOおよびMnOとして計算して)を有する硝酸リチウムおよび硝酸マンガン(II)・4HOの水溶液をパルス反応器中で反応させた。前記水溶液を、二成分噴射ノズルを使用して5.3kg/hの速度で、805℃で燃焼室に導入した。燃料ガス流は天然ガス2.9kg/hであり、燃焼空気流は66kg/hであった。熱いガス流からセラミックキャンドルフィルターを使用して生成物を分離した。
【0029】
形成された黒みがかった灰色の粉末は平均粒度d50(CILAS)3.2μmおよび強熱減量1.9%を有した。透過電子顕微鏡写真は約60nmの一次粒度を有する凝集物を示した。X線回折分析は微量のMnと一緒にリチウムマンガン酸化物LiMnの信号を示し、従って所望の化合物の形成を示した。
【0030】
例3:化合物LiCoOの製造
アルカリ金属含有化合物LiCoOを製造した。この目的のために、適当な化学量論的比および全酸化物濃度10質量%(LiOおよびCoOとして計算して)を有する硝酸リチウムおよび硝酸コバルト・6HOの水溶液をパルス反応器中で反応させた。前記水溶液を、二成分噴射ノズルを使用して5.3kg/hの速度で、710℃で燃焼室に導入した。燃料ガス流は天然ガス2.9kg/hであり、燃焼空気流は66kg/hであった。熱いガス流からセラミックキャンドルフィルターを使用して生成物を分離した。
【0031】
形成された黒みがかった灰色の粉末は比表面積(BET)18m/gおよび平均粒度d50(CILAS)16μmを有した。X線回折分析は微量のCoと一緒にリチウムコバルト酸化物LiCoOの信号を示し、従って所望の化合物の形成を示した。

【特許請求の範囲】
【請求項1】
粉末の形の多成分金属酸化物化合物の製造方法において、所望の金属酸化物化合物の成分の前駆物質化合物を、固体の形でまたは溶液または懸濁液の形で、無炎の燃焼から生じるガス流を有するパルス反応器に導入し、部分的にまたは完全に所望の金属酸化物化合物に変換し、前駆物質化合物がアルカリ金属の群からの少なくとも1種の第1金属化合物と、遷移金属、その他の主族金属、ランタニドおよびアクチニドからなる群から選択される少なくとも1種の第2金属化合物の所望の比の混合物を含有することを特徴とする多成分金属酸化物化合物の製造方法。
【請求項2】
第1金属化合物がリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムの化合物から選択され、第2金属化合物がアルミニウム、マンガン、コバルト、ジルコニウム、鉄、クロム、亜鉛、ニッケルの化合物およびランタニドの化合物から選択される請求項1記載の方法。
【請求項3】
第1金属化合物および第2金属化合物の前駆物質化合物が無機酸または有機酸の塩または無機化合物または有機化合物であり、水性または非水性溶液としてパルス反応器に導入する請求項1または2記載の方法。
【請求項4】
第1金属化合物および第2金属化合物の前駆物質化合物が硝酸塩、塩化物、硫酸塩、酢酸塩、アミン、水酸化物、炭酸塩、蓚酸塩、クエン酸塩および酒石酸塩の形で存在する請求項3記載の方法。
【請求項5】
前駆物質化合物の水性または非水性溶液が付加的に第1および第2金属化合物の水酸化物、酸化物、炭酸塩、蓚酸塩および/または他の溶解していない塩の形で固体の成分を含有する請求項4記載の方法。
【請求項6】
第1および第2金属化合物の微粒子の水酸化物、酸化物、無機塩または有機塩の形の固体の緊密な混合物をパルス反応器に導入する請求項1または2記載の方法。
【請求項7】
パルス反応器が燃焼室、共鳴管、および場合により共鳴管中に膨張室を有し、燃焼室で燃料の燃焼により熱い燃焼排ガスを製造し、引き続き共鳴管および存在する場合は膨張室に流し、前駆物質化合物を直接パルス反応器の燃焼室に、共鳴管にまたは膨張室に導入する請求項1から6までのいずれか1項記載の方法。
【請求項8】
パルス反応器のガス流が10〜130Hzでパルスする請求項7記載の方法。
【請求項9】
熱い燃焼排ガスの温度が650〜1400℃の範囲である請求項8記載の方法。
【請求項10】
熱い燃焼排ガスの温度が700〜1050℃の範囲である請求項9記載の方法。
【請求項11】
二次ガスを燃焼室と膨張室の間で熱い燃焼排ガスに混合し、燃焼排ガスを300〜800℃の範囲の温度に冷却する請求項10記載の方法。
【請求項12】
パルス反応器用の燃料が水素からなるかまたは水素を含有する請求項7から11までのいずれか1項記載の方法。
【請求項13】
第1金属化合物の金属としてリチウムを使用し、アルミニウム、マンガン、コバルト、およびジルコニウムから選択される第2金属化合物の金属と完全にまたは部分的に反応し、化合物LiAlO、LiMn、LiCoOまたはLiZrOを形成する請求項12記載の方法。
【請求項14】
ドープ化合物が完全にまたは部分的に得られる請求項1記載の方法。
【請求項15】
ドープ化合物、例えばLa0.85Na0.15MnO、LiCo0.8Ni0.2、LiAlCo1−yおよびLiCoMn2−yが完全にまたは部分的に得られる請求項14記載の方法。
【請求項16】
得られた金属酸化物化合物をパルス反応器中で少なくとも1回更に処理する請求項1記載の方法。
【請求項17】
得られた金属酸化物化合物を炉または流動床反応器中で更に処理する請求項1記載の方法。
【請求項18】
製造した金属酸化物化合物に存在する可溶性成分を洗浄または抽出により除去する請求項1記載の方法。
【請求項19】
請求項1から18までのいずれか1項記載の方法により製造される粉末の形の金属酸化物化合物。

【公表番号】特表2008−512337(P2008−512337A)
【公表日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2007−530662(P2007−530662)
【出願日】平成17年9月10日(2005.9.10)
【国際出願番号】PCT/EP2005/009759
【国際公開番号】WO2006/027270
【国際公開日】平成18年3月16日(2006.3.16)
【出願人】(501399500)ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト (139)
【氏名又は名称原語表記】Umicore AG & Co.KG
【住所又は居所原語表記】Rodenbacher Chaussee 4,D−63457 Hanau,Germany
【Fターム(参考)】