説明

アルキルスルフィニルクロライドの製造方法

【課題】 アルキルスルフィニルクロライドを、容易に高純度で製造することができるアルキルスルフィニルクロライドの製造方法を提供する。
【解決手段】
式(1):
[化1]


(式中、RおよびRは、それぞれ独立して、炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基を示す。)で表されるアルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で反応させる、式(2):
[化2]


(式中、Rは、式(1)におけるRと同じ基を示す。)で表されるアルキルスルフィニルクロライドの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、種々の医薬品、農薬等の製造用中間体として有用なアルキルスルフィニルクロライドの製造方法に関する。
【背景技術】
【0002】
従来、種々の医薬品、農薬等の製造用中間体として有用なアルキルスルフィニルクロライドの製造方法としては、たとえば、tert−ブチルスルフィン酸と塩化チオニルとを反応させてtert−ブチルスルフィニルクロライドを得る方法、tert−ブチルtert−ブタンチオスルフィネートと塩素とを反応させてtert−ブチルスルフィニルクロライドを得る方法(以上特許文献1)や、塩化メチレン溶媒下において、tert−ブチルtert−ブタンチオスルフィネートと塩化スルフリルとを反応させてtert−ブチルスルフィニルクロライドを得る方法(非特許文献1)等が知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】国際公開第03/076374号パンフレット
【非特許文献】
【0004】
【非特許文献1】Organic Letters,Vol.1,No.5,p.783−786(1999)
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1および非特許文献1に記載されている方法によると、目的物と類似した物性を有する不純物が生成し、分離精製が困難である。したがって、高純度のアルキルスルフィニルクロライドを得るためには、たとえば、高段数の精留操作等の煩雑な精製を行う必要があることから、不純物含有量の少ない製造方法の提案が望まれている。
また、特許文献1に記載されている塩素を用いた方法は、吹き抜けによる仕込み量の誤差が生じやすく安定した品質でアルキルスルフィニルクロライドを得られない等のおそれがあり、また原料として気体を用いる反応に対応した設備を要する。
さらに、非特許文献1に記載されている方法は、溶媒として用いられる塩化メチレンが、環境に対して有害な物質であり、廃棄において厳密な管理をする必要があること等から、工業的生産において有利な製造方法ではなかった。
【0006】
本発明は、高純度のアルキルスルフィニルクロライドを、工業的に有利な方法で製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、以下に示すとおりの、アルキルスルフィニルクロライドの製造方法に関する。
項1.式(1):
【化1】

(式中、RおよびRは、それぞれ独立して、炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基を示す。)で表されるアルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で反応させる、式(2):
【化2】

(式中、Rは、式(1)におけるRと同じ基を示す。)で表されるアルキルスルフィニルクロライドの製造方法。
項2.式(1)におけるRが、炭素数1〜6のアルキル基であり、RがRと同じ基である、項1に記載のアルキルスルフィニルクロライドの製造方法。
【0008】
本発明は、アルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で反応させる、アルキルスルフィニルクロライドの製造方法に関する。以下に本発明を詳細に説明する。
【0009】
本発明にかかる製造方法において、「無溶媒下」とは、実質的に溶媒を使用しないことを意味する。また、「実質的に溶媒を使用しない」とは、反応溶媒を使用しないことを意味し、たとえば、アルキルアルカンチオスルフィネートや塩化スルフリルに残存する極微量の溶媒等を排除するものではない。
アルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で反応させることにより高純度のアルキルスルフィニルクロライドが容易に得られる理由は詳らかではないが、溶媒が存在する場合、副成物と溶媒との親和力が働き、当該副成物が反応系内に不純物として残留しやすいためと考えられる。また前記不純物は、当該反応の副反応として生成される副成物だけでなく、当該副成物等が互いに反応して生成される化合物を含むものであり、これらが目的物と類似した物性を有するため分離精製が困難と考えられる。
これに対して、本発明では、所定のアルキルアルカンチオスルフィネートと塩化スルフリルとを用いることで、溶媒を使用せずに反応させることが可能となり、その結果、溶媒に起因する不純物の生成を抑制して、高純度のアルキルスルフィニルクロライドを製造することが可能となる。
さらに、本発明にかかる製造方法において、塩素化剤を塩化スルフリルとすることにより、高純度のアルキルスルフィニルクロライドが容易に得られる理由は詳らかではないが、塩化スルフリルと塩素の反応性の差異によるものと考えられる。
【0010】
本発明に用いられるアルキルアルカンチオスルフィネートは式(1)で表される。
【化3】

(式中、RおよびRは、それぞれ独立して、炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基を示す。)
【0011】
およびRで示される炭素数1〜6のアルキル基としては、たとえば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル、n−ヘキシル等を挙げることができる。
上記炭素数1〜6のアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。
【0012】
およびRで示される炭素数3〜6のシクロアルキル基としては、たとえば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等を挙げることができる。
これらの中でも入手が容易であること等からRが、炭素数1〜6のアルキル基であり、RがRと同じ基であるアルキルアルカンチオスルフィネートが好適に用いられる。
【0013】
式(1)で表されるアルキルアルカンチオスルフィネートの具体例としては、たとえば、メチルメタンチオスルフィネート、エチルメタンチオスルフィネート、n−プロピルメタンチオスルフィネート、イソプロピルメタンチオスルフィネート、n−ブチルメタンチオスルフィネート、イソブチルメタンチオスルフィネート、sec−ブチルメタンチオスルフィネート、tert−ブチルメタンチオスルフィネート、n−ペンチルメタンチオスルフィネート、イソペンチルメタンチオスルフィネート、sec−ペンチルメタンチオスルフィネート、tert−ペンチルメタンチオスルフィネート、ネオペンチルメタンチオスルフィネート、n−ヘキシルメタンチオスルフィネート、シクロヘキシルメタンチオスルフィネート、メチルエタンチオスルフィネート、エチルエタンチオスルフィネート、n−プロピルエタンチオスルフィネート、イソプロピルエタンチオスルフィネート、n−ブチルエタンチオスルフィネート、イソブチルエタンチオスルフィネート、sec−ブチルエタンチオスルフィネート、tert−ブチルエタンチオスルフィネート、n−ペンチルエタンチオスルフィネート、イソペンチルエタンチオスルフィネート、sec−ペンチルエタンチオスルフィネート、tert−ペンチルエタンチオスルフィネート、ネオペンチルエタンチオスルフィネート、n−ヘキシルエタンチオスルフィネート、シクロヘキシルエタンチオスルフィネート、メチルn−プロパンチオスルフィネート、エチルn−プロパンチオスルフィネート、n−プロピルn−プロパンチオスルフィネート、メチルイソプロパンチオスルフィネート、エチルイソプロパンチオスルフィネート、n−プロピルイソプロパンチオスルフィネート、イソプロピルイソプロパンチオスルフィネート、メチルn−ブタンチオスルフィネート、エチルn−ブタンチオスルフィネート、n−プロピルn−ブタンチオスルフィネート、イソプロピルn−ブタンチオスルフィネート、n−ブチルn−ブタンチオスルフィネート、イソブチルn−ブタンチオスルフィネート、sec−ブチルn−ブタンチオスルフィネート、tert−ブチルn−ブタンチオスルフィネート、メチルtert−ブタンチオスルフィネート、エチルtert−ブタンチオスルフィネート、n−プロピルtert−ブタンチオスルフィネート、イソプロピルtert−ブタンチオスルフィネート、n−ブチルtert−ブタンチオスルフィネート、イソブチルtert−ブタンチオスルフィネート、sec−ブチルtert−ブタンチオスルフィネート、tert−ブチルtert−ブタンチオスルフィネート、メチルn−ペンタンチオスルフィネート、エチルn−ペンタンチオスルフィネート、n−プロピルn−ペンタンチオスルフィネート、イソプロピルn−ペンタンチオスルフィネート、n−ブチルn−ペンタンチオスルフィネート、イソブチルn−ペンタンチオスルフィネート、sec−ブチルn−ペンタンチオスルフィネート、tert−ブチルn−ペンタンチオスルフィネート、n−ペンチルn−ペンタンチオスルフィネート、メチルn−ヘキサンチオスルフィネート、エチルn−ヘキサンチオスルフィネート、n−プロピルn−ヘキサンチオスルフィネート、イソプロピルn−ヘキサンチオスルフィネート、n−ブチルn−ヘキサンチオスルフィネート、イソブチルn−ヘキサンチオスルフィネート、sec−ブチルn−ヘキサンチオスルフィネート、tert−ブチルn−ヘキサンチオスルフィネート、n−ペンチルn−ヘキサンチオスルフィネート、イソペンチルn−ヘキサンチオスルフィネート、sec−ペンチルn−ヘキサンチオスルフィネート、tert−ペンチルn−ヘキサンチオスルフィネート、ネオペンチルn−ヘキサンチオスルフィネート、n−ヘキシルn−ヘキサンチオスルフィネート、シクロヘキシルn−ヘキサンチオスルフィネート、メチルシクロヘキサンチオスルフィネート、エチルシクロヘキサンチオスルフィネート、n−プロピルシクロヘキサンチオスルフィネート、イソプロピルシクロヘキサンチオスルフィネート、n−ブチルシクロヘキサンチオスルフィネート、イソブチルシクロヘキサンチオスルフィネート、sec−ブチルシクロヘキサンチオスルフィネート、tert−ブチルシクロヘキサンチオスルフィネート、n−ペンチルシクロヘキサンチオスルフィネート、イソペンチルシクロヘキサンチオスルフィネート、sec−ペンチルシクロヘキサンチオスルフィネート、tert−ペンチルシクロヘキサンチオスルフィネート、ネオペンチルシクロヘキサンチオスルフィネート、n−ヘキシルシクロヘキサンチオスルフィネート、およびシクロヘキシルシクロヘキサンチオスルフィネート等が挙げられる。これらの中でも、メチルメタンチオスルフィネート、エチルエタンチオスルフィネート、n−プロピルn−プロパンチオスルフィネート、イソプロピルイソプロパンチオスルフィネート、n−ブチルn−ブタンチオスルフィネート、イソブチルイソブタンチオスルフィネート、sec−ブチルsec−ブタンチオスルフィネート、tert−ブチルtert−ブタンチオスルフィネート、n−ペンチルn−ペンタンチオスルフィネート、イソペンチルイソペンタンチオスルフィネート、sec−ペンチルsec−ペンタンチオスルフィネート、tert−ペンチルtert−ペンタンチオスルフィネート、およびネオペンチルネオペンタンチオスルフィネートが好適に用いられる。
前記アルキルアルカンチオスルフィネートは市販のものを使用してもよいし、種々の公知の方法によって得られたものを使用してもよい。
【0014】
本発明のアルキルスルフィニルクロライドの製造方法において、塩化スルフリルの使用割合は、アルキルアルカンチオスルフィネート1モルに対して、0.8〜10.0モルであることが好ましく、1.0〜3.0モルであることがより好ましい。塩化スルフリルの使用割合が、0.8モル未満の場合、反応が完結せず収率が低下するおそれがあり、10.0モルを超える場合、使用量に見合う効果がなく経済的に有利でない。
【0015】
本発明において、アルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で混合する方法としては、特に限定されないが、前記アルキルアルカンチオスルフィネートに塩化スルフリルを添加し混合する方法等を挙げることができる。添加方法としては、徐々に添加、または滴下等の方法が挙げられるが、本発明の反応は発熱反応であり、除熱効率が低下して反応液が蓄熱してしまうおそれがあることから、滴下によって添加する方法が好ましい。
【0016】
また、アルキルアルカンチオスルフィネートと塩化スルフリルとを反応させる反応温度は、アルキルアルカンチオスルフィネート等の融点以上とすることが好ましく、たとえば、10〜100℃であることが好ましく、10〜70℃であることがより好ましい。反応温度が10℃未満の場合、反応速度が遅く反応に長時間を要するおそれがあり、100℃を超える場合、副反応が起こり、その結果として収率が低下するおそれがある。
【0017】
また、反応時間は、反応温度により異なるが、たとえば、塩化スルフリル滴下終了からの保持時間は、0.5〜2時間であるのが好ましい。なお、本発明にかかる前記反応は、アルキルスルフィニルクロライドの分解等を防ぐことから、窒素雰囲気下で行うことが好ましい。
【0018】
上記のようにして得られるアルキルスルフィニルクロライドは、通常の簡便な単位操作より単離することができる。具体的には、たとえば、前記反応終了後の反応液を減圧蒸留することによって、アルキルスルフィニルクロライドを容易に単離することができる。
以上のようにして得られるアルキルスルフィニルクロライドは、式(2)で表される。
【化4】

(式中、Rは、式(1)におけるRと同じ基を示す。)
【0019】
式(2)で表されるアルキルスルフィニルクロライドの具体例としては、たとえば、メチルスルフィニルクロライド、エチルスルフィニルクロライド、n−プロピルスルフィニルクロライド、イソプロピルスルフィニルクロライド、n−ブチルスルフィニルクロライド、イソブチルスルフィニルクロライド、sec−ブチルスルフィニルクロライド、tert−ブチルスルフィニルクロライド、n−ペンチルブチルスルフィニルクロライド、イソペンチルスルフィニルクロライド、sec−ペンチルスルフィニルクロライド、tert−ペンチルスルフィニルクロライド、ネオペンチルスルフィニルクロライド、n−ヘキシルスルフィニルクロライド、シクロヘキシルスルフィニルクロライド等が挙げられる。
【発明の効果】
【0020】
本発明によれば、アルキルスルフィニルクロライドを、容易に高純度で製造することができる。
【発明を実施するための形態】
【0021】
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
【0022】
製造例1
攪拌機、温度計、冷却管および滴下漏斗を備えた1L容の四つ口フラスコに、ジイソプロピルジスルフィド60.1g(0.40モル)、酢酸200gを仕込み、35℃に維持しながら30重量%過酸化水素水54.4gを0.5時間かけて滴下し、同温度にて20時間攪拌した。反応終了後、10〜15℃に維持しながら、5重量%亜硫酸水素ナトリウム水200gを滴下し、引き続き反応液に酢酸エチル100gを加えて抽出した(3回)。分取した有機層を30重量%NaOH水で中和した後、水で洗浄した。溶媒を蒸留除去することによりイソプロピルイソプロパンチオスルフィネート64.6gを得た。イソプロピルイソプロパンチオスルフィネートの収率は、ジイソプロピルジスルフィドに対して97.1%であった。
【0023】
製造例2
製造例1において、ジイソプロピルジスルフィド60.1g(0.40モル)に代えて、ジ−sec−ブチルジスルフィド71.3g(0.40モル)を用いた以外は製造例1と同様にして、sec−ブチルsec−ブタンチオスルフィネート75.6gを得た。sec−ブチルsec−ブタンチオスルフィネートの収率は、ジ−sec−ブチルジスルフィドに対して97.2%であった。
【0024】
製造例3
製造例1において、ジイソプロピルジスルフィド60.1g(0.40モル)に代えて、ジ−tert−ブチルジスルフィド71.3g(0.40モル)を用いた以外は製造例1と同様にして、tert−ブチルtert−ブタンチオスルフィネート75.4gを得た。tert−ブチルtert−ブタンチオスルフィネートの収率は、ジ−tert−ブチルジスルフィドに対して97.0%であった。
【0025】
実施例1
攪拌機、温度計、冷却管および滴下漏斗を備えた200mL容の四つ口フラスコに、製造例1により得られたイソプロピルイソプロパンチオスルフィネート58.2g(0.35モル)を仕込み、25℃に維持しながら塩化スルフリル61.4g(0.46モル)を20分間かけて滴下し、さらに同温度で1時間攪拌した。反応終了後の反応液中のイソプロピルスルフィニルクロライドの純度は、GC(ガスクロマトグラフィー)による面積百分率法(以下、GC面百法と略記する。)にて87.3%であった。
反応液を減圧蒸留(40℃にて50torr、45〜55℃にて5torr)することによりイソプロピルスルフィニルクロライド29.2gを得た。得られたイソプロピルスルフィニルクロライドのGC面百法による純度は99.1%であり、イソプロピルスルフィニルクロライドの収率は、イソプロピルイソプロパンチオスルフィネートに対して65.9%であった。
【0026】
実施例2
攪拌機、温度計、冷却管および滴下漏斗を備えた200mL容の四つ口フラスコに、製造例2により得られたsec−ブチルsec−ブタンチオスルフィネート68.0g(0.35モル)を仕込み、25℃に維持しながら塩化スルフリル61.4g(0.46モル)を20分間かけて滴下し、さらに同温度で1時間攪拌した。反応終了後の反応液中のsec−ブチルスルフィニルクロライドの純度は、GC面百法にて87.5%であった。
反応液を減圧蒸留(40℃にて50torr、45〜55℃にて5torr)することによりsec−ブチルスルフィニルクロライド32.0gを得た。得られたsec−ブチルスルフィニルクロライドのGC面百法による純度は99.0%であり、sec−ブチルスルフィニルクロライドの収率は、sec−ブチルsec−ブタンチオスルフィネートに対して65.0%であった。
【0027】
実施例3
攪拌機、温度計、冷却管および滴下漏斗を備えた200mL容の四つ口フラスコに、製造例3と同様にして得られたtert−ブチルtert−ブタンチオスルフィネート68.0g(0.35モル)を仕込み、25℃に維持しながら塩化スルフリル61.4g(0.46モル)を20分間かけて滴下し、さらに同温度で1時間攪拌した。反応終了後の反応液中のtert−ブチルスルフィニルクロライドの純度は、GC面百法にて87.7%であった。
反応液を減圧蒸留(40℃にて50torr、45〜55℃にて5torr)することによりtert−ブチルスルフィニルクロライド33.0gを得た。得られたtert−ブチルスルフィニルクロライドのGC面百法よる純度は99.0%であり、tert−ブチルスルフィニルクロライドの収率は、tert−ブチルtert−ブタンチオスルフィネートに対して67.0%であった。
【0028】
比較例1
非特許文献1の記載に従って、攪拌機、温度計、および冷却管を備えた500mL容の四つ口フラスコに、製造例3と同様にして得られたtert−ブチルtert−ブタンチオスルフィネート68.0g(0.35モル)、および塩化メチレン125gを仕込んだ。5℃に維持しながら、塩化スルフリル47.2g(0.35モル)および塩化メチレン20gを混合した溶液を、30分間かけて徐々に添加し、さらに同温度で1時間攪拌した。反応終了後の反応液中のtert−ブチルスルフィニルクロライドの純度は、GC面百法にて81.3%であった。
反応液を減圧蒸留(40℃にて50torr、45〜55℃にて5torr)することによりtert−ブチルスルフィニルクロライド31.0gを得た。得られたtert−ブチルスルフィニルクロライドのGC面百法による純度は93.4%であり、tert−ブチルスルフィニルクロライドの収率は、tert−ブチルtert−ブタンチオスルフィネートに対して63.0%であった。
【0029】
比較例2
攪拌機、温度計、冷却管およびガス導入管を備えた200mL容の四つ口フラスコに、製造例3と同様にして得られたtert−ブチルtert−ブタンチオスルフィネート68.0g(0.35モル)を仕込み、25℃に維持しながら塩素37.3g(0.53モル)を40分間かけて吹き込み、さらに同温度で1時間攪拌した。反応終了後の反応液中のtert−ブチルスルフィニルクロライドの純度は、GC面百法にて84.5%であった。
反応液を減圧蒸留(40℃にて50torr、45〜55℃にて5torr)することによりtert−ブチルスルフィニルクロライド32.0gを得た。得られたtert−ブチルスルフィニルクロライドのGC面百法による純度は96.5%であり、tert−ブチルスルフィニルクロライドの収率は、tert−ブチルtert−ブタンチオスルフィネートに対して65.0%であった。
【産業上の利用可能性】
【0030】
本発明のアルキルスルフィニルクロライドの製造方法を用いることで、種々の医薬品、農薬等の製造用中間体として有用なアルキルスルフィニルクロライドを、容易に高純度で製造することが可能となる。

【特許請求の範囲】
【請求項1】
式(1):
【化1】

(式中、RおよびRは、それぞれ独立して、炭素数1〜6のアルキル基または炭素数3〜6のシクロアルキル基を示す。)で表されるアルキルアルカンチオスルフィネートと塩化スルフリルとを無溶媒下で反応させる、式(2):
【化2】

(式中、Rは、式(1)におけるRと同じ基を示す。)で表されるアルキルスルフィニルクロライドの製造方法。
【請求項2】
式(1)におけるRが、炭素数1〜6のアルキル基であり、RがRと同じ基である、請求項1に記載のアルキルスルフィニルクロライドの製造方法。


【公開番号】特開2012−87078(P2012−87078A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−233905(P2010−233905)
【出願日】平成22年10月18日(2010.10.18)
【出願人】(000195661)住友精化株式会社 (352)
【Fターム(参考)】