説明

アルゴンガスの精製方法および精製装置

【課題】回収アルゴンガスに含有される不純物を、多くのエネルギーを要することなく除去して高純度のアルゴンガスを得ることができる実用的な精製方法と精製装置を提供する。
【解決手段】少なくとも酸素、水素、一酸化炭素、及び窒素を不純物として含有するアルゴンガスを精製する際に、アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素添加により1/2を超える値に設定する。次に、アルゴンガスにおける酸素を一酸化炭素及び水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成する。次に、アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、及び水分を、常温での圧力スイング吸着法により吸着剤に吸着させる。その吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブを用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、不純物として少なくとも酸素、水素、一酸化炭素、および窒素を含有する回収アルゴンガスを精製するのに適した方法と装置に関する。
【背景技術】
【0002】
例えば、シリコン単結晶引上げ炉、セラミック焼結炉、製鋼用真空脱ガス設備、太陽電池用シリコンプラズマ溶解装置、多結晶シリコン鋳造炉のような設備においては、アルゴンガスが炉内雰囲気ガス等として使用されている。そのような設備から再利用のため回収されたアルゴンガスは、水素、一酸化炭素、空気などの混入により純度が低下している。そこで、回収されたアルゴンガスの純度を高めるため、不純物を吸着剤に吸着させることが行われている。さらに、そのような不純物の吸着を効率良く行うため、吸着処理の前処理として不純物中の酸素と可燃成分とを反応させることが提案されている(特許文献1、2参照)。
【0003】
特許文献1に開示された方法においては、アルゴンガスにおける酸素の量を、水素、一酸化炭素等の可燃成分を完全燃焼させるのに必要な化学量論量よりも僅かに少なくなるよう調節し、次に、一酸化炭素と酸素との反応よりも水素と酸素との反応を優先させるパラジウムまたは金を触媒として、アルゴンガスにおける酸素を一酸化炭素、水素等と反応させることで、一酸化炭素を残留させた状態で二酸化炭素と水を生成し、次に、アルゴンガスに含有される二酸化炭素と水を圧力スイング吸着法により常温で吸着剤に吸着させ、しかる後に、アルゴンガスに含有される一酸化炭素と窒素を温度スイング吸着法により−10℃〜−50℃の温度で吸着剤に吸着させている。
【0004】
特許文献2に開示された方法においては、アルゴンガスにおける酸素の量を、水素、一酸化炭素等の可燃成分を完全燃焼させるのに十分な量とし、次に、パラジウム系の触媒を用いてアルゴンガスにおける酸素を一酸化炭素、水素等と反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、次に、アルゴンガスに含有される二酸化炭素と水を圧力スイング吸着法により常温で吸着剤に吸着させ、しかる後に、アルゴンガスに含有される酸素と窒素を温度スイング吸着法により−170℃程度の温度で吸着剤に吸着させている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3496079号公報
【特許文献2】特許第3737900号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載の方法では、前処理の段階でアルゴンガスにおける一酸化炭素を残留させた状態で二酸化炭素と水を生成し、その後の吸着処理の段階で、二酸化炭素と水を常温で吸着剤に吸着させ、しかる後に、一酸化炭素と窒素を−10℃〜−50℃で吸着剤に吸着させている。しかし、そのような低温で一酸化炭素と窒素を吸着した吸着剤を再生する場合、一酸化炭素は窒素に比べて吸着剤から脱離させるのに多くのエネルギーを要することから工業的に不利である。
【0007】
特許文献2に記載の方法では、前処理の段階で酸素を残留させた状態で二酸化炭素と水を生成し、その後の吸着処理の段階で、二酸化炭素と水を常温で吸着剤に吸着させ、しかる後に、酸素と窒素を−170℃程度の温度で吸着剤に吸着させている。しかし、−170℃程度という超低温での吸着処理を行うと冷却エネルギーが増大し、精製負荷が大きくなるという問題がある。
【0008】
本発明は、上記のような従来技術の問題を解決できるアルゴンガスの精製方法および精製装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明方法は、少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する方法であって、前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する工程と、次に、前記アルゴンガスにおける酸素を一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成する工程と、次に、前記アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、および水分を、常温での圧力スイング吸着法により吸着剤に吸着させる工程とを備え、前記吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブとを用いることを特徴とする。
本発明によれば、アルゴンガスにおける酸素を一酸化炭素および水素と反応させ、酸素を残留させた状態で二酸化炭素と水を生成することで、アルゴンガスにおける主な不純物を酸素、二酸化炭素、窒素、および水分とし、その酸素、二酸化炭素、窒素、および水分を常温での圧力スイング吸着法により吸着剤に吸着させる。その吸着剤として、合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブを用いることで、常温での圧力スイング吸着法によりアルゴンガスにおける酸素、二酸化炭素、窒素、および水分の濃度を低減でき、温度スイング吸着法のような低温での不純物(主に窒素)の吸着を不要にできる。
前記触媒としては、アルミナ等に担持した白金系触媒を用いるのが好ましく、特に、ルテニウム触媒を用いるのが好ましい。ルテニウム触媒を用いることで、ルテニウム触媒以外の白金族触媒を用いる場合に比べて反応温度を低減でき、例えば200℃以下にすることが可能になり、よりエネルギー消費を低減できる。なお、ルテニウム触媒を用いる反応を完結する上では反応温度を70℃以上にするのが好ましい。
【0010】
本発明装置は、少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する装置であって、前記アルゴンガスが導入される反応器と、前記反応器に導入される前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する濃度調節装置と、前記反応器から流出する前記アルゴンガスが導入されるPSAユニットとを備え、前記反応器内で前記アルゴンガスにおける酸素が一酸化炭素および水素と反応することで、酸素が残留した状態で二酸化炭素と水が生成されるように、前記反応器に触媒が充填され、前記PSAユニットにより、前記反応器から流出する前記アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、および水分が、常温での圧力スイング吸着法により吸着剤に吸着され、前記吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブとが用いられることを特徴とする。
本発明装置によれば本発明方法を実施できる。
【発明の効果】
【0011】
本発明によれば、回収アルゴンガスに含有される不純物を、多くのエネルギーを要することなく除去して高純度のアルゴンガスを得ることができる実用的な精製方法と精製装置を提供できる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施形態に係るアルゴンガスの精製装置の構成説明図
【図2】本発明の実施形態に係るアルゴンガスの精製装置における圧力スイング吸着装置の構成説明図
【発明を実施するための形態】
【0013】
図1に示すアルゴンガスの精製装置αは、例えば多結晶シリコン鋳造炉のようなアルゴンガス供給源1から供給される使用済アルゴンガスを回収し、再利用できるように精製するもので、加熱器2、反応器3、濃度調節装置7、冷却器4、およびPSAユニット10を備える。
【0014】
供給源1から供給されるアルゴンガスは、図外フィルター等により除塵され、ブロワ等のガス送り手段(図示省略)を介して加熱器2に導入される。精製対象のアルゴンガスに含有される微量の不純物は少なくとも酸素、水素、一酸化炭素、および窒素とされるが、二酸化炭素、炭化水素、水分等の他の不純物を含有していてもよい。精製されるアルゴンガスにおける不純物の濃度は特に限定されず、例えば5モルppm〜40000モルppm程度とされる。加熱器2によるアルゴンガスの加熱温度は、反応器3における反応を完結するためには150℃以上にするのが好ましく、触媒の寿命短縮を防止する観点から350℃以下とするのが好ましい。
【0015】
加熱器2により加熱されたアルゴンガスは反応器3に導入される。濃度調節装置7は、反応器3に導入されるアルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する。濃度調節装置7は、例えば、アルゴンガスにおける酸素モル濃度、一酸化炭素モル濃度、および水素モル濃度を測定する測定器と、酸素供給源と、酸素供給源から反応器3に到る流路を開閉するバルブ装置と、バルブ装置のコントローラを有するものにより構成できる。そのコントローラは、測定された酸素モル濃度が一酸化炭素モル濃度と水素モル濃度の和の1/2以下であるか否かを判断し、1/2以下である場合は1/2を超える値にするのに必要な酸素量に対応する制御信号をバルブ装置に送り、バルブ装置は制御信号に応じた量の酸素が供給されるように流路を開度調整する。反応器3に導入されるアルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度の和の1/2を超える場合、濃度調節は必要がないことから行われない。また、反応器3に導入されるアルゴンガスにおける酸素モル濃度が、常に一酸化炭素モル濃度と水素モル濃度の和の1/2を超えるものである場合、濃度調節装置7を設けなくてもよい。なお、濃度調節装置7により酸素を添加する場合、アルゴンガスにおける酸素モル濃度を一酸化炭素モル濃度と水素モル濃度との和の0.525倍〜0.550倍の値にするのが好ましく、0.525倍以上とすることで一酸化炭素と水素を確実に低減でき、0.550倍以下とすることで酸素濃度が必要以上に高くなることはない。
【0016】
反応器3に、酸素を水素および一酸化炭素と反応させる触媒が充填される。これにより、反応器3内でアルゴンガスにおける酸素が一酸化炭素および水素と反応することにより、酸素が残留した状態で二酸化炭素と水が生成される。反応器3に充填される触媒は、酸素を一酸化炭素および水素と反応させるものであれば特に限定されず、例えば、ルテニウム、白金、白金合金、パラジウム等をアルミナ等に担持した触媒を用いることができる。なお、多結晶シリコン鋳造炉等から回収されるアルゴンガスは可燃成分として炭化水素を含むが、そのモル濃度は水素と一酸化炭素の合計モル濃度の通常は1/100以下である。よって、通常は一酸化炭素モル濃度と水素モル濃度との和の1/2を僅かに超えるように酸素モル濃度を設定すれば、酸素が残留した状態で二酸化炭素と水が生成される。また、微量の炭化水素が残留しても圧力スイング吸着法により容易に吸着して除去できる。よって、炭化水素のために特に酸素濃度を調整する必要はない。
【0017】
反応器3から流出するアルゴンガスは、冷却器7によって冷却された後にPSAユニット10に導入される。PSAユニット10は、アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、および水分を、常温での圧力スイング吸着法により吸着剤に吸着させる。
【0018】
PSAユニット10は公知のものを用いることができる。例えば図2に示すPSAユニット10は2塔式であり、アルゴンガスを圧縮する圧縮機12と、第1、第2吸着塔13を有し、各吸着塔13に吸着剤が充填されている。その吸着剤として、LiX型合成ゼオライトとカーボンモレキュラーシーブとが用いられ、そのカーボンモレキュラーシーブの細孔直径分布のピークは細孔直径0.35nm〜0.55nmの間にあるものとされている。そのカーボンモレキュラーシーブとして市販品を採用でき、その場合は3A型と呼ばれるものを用いることができる。各吸着塔13においては、下部にカーボンモレキュラーシーブを、上部に合成ゼオライトを充填するのが好ましく、カーボンモレキュラーシーブと合成ゼオライトの充填比率および充填量は、不純物組成および精製純度に応じて適宜調整すればよい。
吸着塔13の入口13aそれぞれは、切替バルブ13bを介して原料配管13fに接続され、切替バルブ13cおよびサイレンサー13eを介して大気中に接続され、切替バルブ13dと下部均圧配管13gを介して互いに接続される。反応器3から流出するアルゴンガスは、圧縮機12により圧縮された後に原料配管13fに到る。
吸着塔13の出口13kそれぞれは、切替バルブ13lを介して流出配管13oに接続され、切替バルブ13mを介して洗浄配管13pに接続され、切替バルブ13nと上部均圧配管13qを介して互いに接続される。
流出配管13oは、並列配置された逆止弁13rと切替バルブ13sを介して均圧槽14の入口に接続される。
均圧槽14の出口は、吸着塔13における吸着圧力を制御するための圧力調節バルブ14aを介して製品槽15の入口に接続される。製品槽15の出口配管15aを介して精製されたアルゴンガスが取り出される。
また、流出配管13oと均圧槽14は、流量制御バルブ13u、流量指示調節計13vを介して洗浄配管13pに接続され、吸着塔13から流出した不純物濃度の低減されたアルゴンガスを、洗浄配管13pを介して吸着塔13に一定流量に調節して再び送ることが可能とされている。
【0019】
PSAユニット10の第1、第2吸着塔13それぞれにおいて、吸着工程、均圧工程、脱着工程、洗浄工程、均圧工程、昇圧工程が順次行われる。
すなわち、第1吸着塔13において切替バルブ13b、13lのみが開かれることで、圧縮機12により圧縮されたアルゴンガスが、切替バルブ13bを介して第1吸着塔13に導入される。その導入されたアルゴンガス中の少なくとも酸素、二酸化炭素、窒素、および水分が吸着剤に吸着されることで、第1吸着塔13においては吸着工程が行われる。第1吸着塔13において不純物の含有率が低減されたアルゴンガスは、流出配管13oを介して均圧槽14に送られる。この際、第2吸着塔13において、切替バルブ13m、13cのみが開かれることで、第1吸着塔13から流出配管13oに送られたアルゴンガスの一部が、洗浄配管13p、流量制御バルブ13uを介して第2吸着塔13に送られ、第2吸着塔13においては洗浄工程が行われる。
次に、第1吸着塔13において切替バルブ13b、13lが閉じられ、第2吸着塔13において切替バルブ13m、13cが閉じられ、切替バルブ13n、13dが開かれることで、第1吸着塔13と第2吸着塔13において内部圧力の均一化を図る均圧工程が行われる。
次に、切替バルブ13n、13dが閉じられ、第1吸着塔13において切替バルブ13cが開かれることで、吸着剤から不純物を脱着する脱着工程が第1吸着塔13において行われ、脱着された不純物はガスと共にサイレンサー13eを介して大気中に放出される。この際、第2吸着塔13の切替バルブ13b、13lと切替バルブ13sが開かれることで、圧縮機12により圧縮されたアルゴンガスが切替バルブ13bを介して、均圧槽14における不純物の含有率が低減されたアルゴンガスが切替バルブ13s、13lを介して、第2吸着塔23に導入され、第2吸着塔13において昇圧工程が行われると共に吸着工程が開始される。
次に、第1吸着塔13において切替バルブ13mが開かれ、切替バルブ13sが閉じられ、これにより、吸着工程が行われている第2吸着塔13から流出配管13oに送られたアルゴンガスの一部が、洗浄配管13p、流量制御バルブ13uを介して第1吸着塔13に送られ、第1吸着塔13において洗浄工程が行われる。洗浄工程で用いられたガスは、切替バルブ13c、サイレンサー13eを介して大気中に放出される。
次に、第1吸着塔13において切替バルブ13c、13mが閉じられ、第2吸着塔13において切替バルブ13b、13lが閉じられ、切替バルブ13n、13dが開かれることで、第1吸着塔13と第2吸着塔13において内部圧力の均一化を図る均圧工程が行われる。
次に、切替バルブ13n、13dが閉じられ、第1吸着塔13の切替バルブ13b、13lと切替バルブ13sが開かれることで、圧縮機12により圧縮されたアルゴンガスが切替バルブ13bを介して、均圧槽14における不純物の含有率が低減されたアルゴンガスが切替バルブ13s、13lを介して、第1吸着塔13に導入され、第1吸着塔13において昇圧工程が行われると共に吸着工程が開始される。この際、第2吸着塔13において切替バルブ13cが開かれることで、吸着剤から不純物を脱着する脱着工程が第2吸着塔13において行われ、不純物はガスと共にサイレンサー13eを介して大気中に放出される。
上記の各工程が第1、第2吸着塔13それぞれにおいて順次繰り返されることで、不純物含有率を低減されたアルゴンガスが均圧槽14、圧力調節バルブ14aを介して製品槽15に送られる。
なお、PSAユニット10は図2に示すものに限定されず、例えば塔数は2以外、例えば3でも4でもよい。
【0020】
上記実施形態によれば、少なくとも酸素、水素、一酸化炭素、および窒素を含有するアルゴンガスを精製する際に、そのアルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで一酸化炭素モル濃度と水素モル濃度との和の1/2を超える値に設定した後に、そのアルゴンガスにおける酸素を、一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成している。これにより、アルゴンガスにおける主な不純物を酸素、二酸化炭素、窒素、および水分とし、その酸素、二酸化炭素、窒素、および水分を常温での圧力スイング吸着法により吸着剤に吸着させている。その吸着剤として、合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブを用いることで、常温での圧力スイング吸着法によりアルゴンガスにおける酸素、二酸化炭素、窒素、および水分の濃度を低減でき、温度スイング吸着法のような低温での不純物の吸着を不要にできる。
【実施例1】
【0021】
上記精製装置αを用いてアルゴンガスの精製を行った。
アルゴンガスは不純物として酸素を500モルppm、水素を20モルppm、一酸化炭素を1800モルppm、窒素を1000モルppm、二酸化炭素を20モルppm、水分を20モルppmそれぞれ含有するものを用いた。
そのアルゴンガスを標準状態で8.0L/minの流量で反応器3に導入し、さらに、そのアルゴンガスに酸素を標準状態で7.28mL/minの流量で添加した。
反応器3に、アルミナ担持のルテニウム触媒(エヌ・イー・ケムキャット(株)製、0.5%RUアルミナペレットEA)を96mL充填し、反応条件は温度200℃、大気圧、空間速度5000/hとした。反応器3から流出するアルゴンガスをPSAユニット10に導き、アルゴンガスにおける不純物含有率を低減した。
PSAユニット10は2塔式で、各塔は呼び径32A、容量1Lの円筒状とした。各塔に吸着剤として、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にある円柱状成形炭のカーボンモレキュラーシーブ(クラレケミカル製GN−UC−H)と、LiX型合成ゼオライト(東ソー製NSA−700)を、80:20の重量比で充填し、カーボンモレキュラーシーブを下部に合成ゼオライトを上部に配置した。圧力スイング吸着法を実施する際の操作条件は、吸着圧力0.8MPaG、脱着圧力10kPaG、サイクルタイム80sec/塔とし、均圧5secを実施した。
PSAユニット10から流出する精製されたアルゴンガスの組成を以下の表1に示す。
なお、精製されたアルゴンガスにおける酸素濃度はDELTA F社製微量酸素濃度計型式DF−150Eにより、一酸化炭素および二酸化炭素の濃度は島津製作所製GC-FIDを用いてメタナイザーを介して測定した。吸着剤の細孔直径分布は、日本ベル社製 Belsorp maxにより吸着質ガスを二酸化炭素として温度25度にて吸着量を測定してHK法で計算して求めた。窒素濃度についてはGLscience 社製GC-PID、水分は露点計を用いて測定した。
【実施例2】
【0022】
反応器3に、アルミナ担持のプラチナ触媒(エヌ・イー・ケムキャット(株)、DASH−220触媒)を96mL充填し、反応条件は温度300℃、大気圧、空間速度5000/hとした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【実施例3】
【0023】
反応器3にアルミナ担持のパラジウム触媒(エヌ・イー・ケムキャット(株)、DASH−220D触媒)を96mL充填し、反応条件は温度250℃、大気圧、空間速度5000/hとした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【実施例4】
【0024】
酸素の添加流量を標準状態で10.7mL/minにした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【実施例5】
【0025】
圧縮機12から流出するアルゴンガスの水分含有率を、圧縮機12による圧縮後であって吸着塔13への導入前に乾燥機による脱水操作により低減した。乾燥機として、アルゴンガスを加圧冷却して凝縮された水分を除去する冷凍式脱水装置を用い、−35℃まで冷却して水分を除去した。他は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【比較例1】
【0026】
PSAユニット10で用いる吸着剤をカーボンモレキュラーシーブ(クラレケミカル製GN−UC−H)のみとした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【比較例2】
【0027】
PSAユニット10で吸着剤として用いる合成ゼオライトをCaX型合成ゼオライト(東ソー製SA−600A)とした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【比較例3】
【0028】
PSAユニット10で用いる吸着剤を、細孔直径分布のピークが細孔直径0.60nm〜0.70nmの間にあるカーボンモレキュラーシーブ(日本エンバイロ製G2X)のみとした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【比較例4】
【0029】
PSAユニット10で吸着剤として用いるカーボンモレキュラーシーブを、細孔直径分布のピークが細孔直径0.60nm〜0.70nmの間にあるカーボンモレキュラーシーブ(日本エンバイロ製G2X)とした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。
【0030】
【表1】

【0031】
上記表1から、PSAユニット10における吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブを用いることで、常温での圧力スイング吸着法によりアルゴンガスにおける酸素、二酸化炭素、窒素、および水分の濃度を低減できることが確認され、また、乾燥機による脱水操作がなくても水分濃度を低減できることを確認できる。
【符号の説明】
【0032】
α…精製装置、3…反応器、7…濃度調節装置、10…PSAユニット

【特許請求の範囲】
【請求項1】
少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する方法であって、
前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する工程と、
次に、前記アルゴンガスにおける酸素を一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成する工程と、
次に、前記アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、および水分を、常温での圧力スイング吸着法により吸着剤に吸着させる工程とを備え、
前記吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブとを用いるアルゴンガスの精製方法。
【請求項2】
前記触媒としてルテニウム触媒を用いる請求項1に記載のアルゴンガスの精製方法。
【請求項3】
少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する装置であって、
前記アルゴンガスが導入される反応器と、
前記反応器に導入される前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する濃度調節装置と、
前記反応器から流出する前記アルゴンガスが導入されるPSAユニットとを備え、
前記反応器内で前記アルゴンガスにおける酸素が一酸化炭素および水素と反応することで、酸素が残留した状態で二酸化炭素と水が生成されるように、前記反応器に触媒が充填され、
前記PSAユニットにより、前記反応器から流出する前記アルゴンガスにおける少なくとも酸素、二酸化炭素、窒素、および水分が、常温での圧力スイング吸着法により吸着剤に吸着され、
前記吸着剤として、LiX型合成ゼオライトと、細孔直径分布のピークが細孔直径0.35nm〜0.55nmの間にあるカーボンモレキュラーシーブとが用いられるアルゴンガスの精製装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−101976(P2012−101976A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−251607(P2010−251607)
【出願日】平成22年11月10日(2010.11.10)
【出願人】(000195661)住友精化株式会社 (352)
【Fターム(参考)】