説明

グラファイトフィルム

【課題】熱伝導性に優れたグラファイトフィルム、特に厚みが厚くても熱処理により破損を起こさない高熱伝導性グラファイトフィルムを得ることである。
【解決手段】厚さ75μm以上のポリイミドフィルムを熱処理して得られるグラファイトフィルムであって、面方向の熱拡散率が8×10−4/S以上、かつ、面方向の熱拡散率のバラツキが20%以下であるグラファイトフィルムは、熱伝導性に優れる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放熱フィルムとして使用されるグラファイトフィルムの製造方法、およびその方法で製造されたグラファイトフィルムに関するものである。
【背景技術】
【0002】
電気伝導性、熱伝導性に優れたグラファイトフィルムを得る方法として、ポリオキサジアゾール、ポリイミド、ポリフェニレンビニレン、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリチアゾール、またはポリアミド等の高分子フィルムをアルゴン、ヘリウム等の不活性雰囲気下や減圧下で熱処理する高分子熱分解法(特許文献1、2)が知られている。
【0003】
また、電気伝導性、熱伝導性には劣るものの、軸受け、シール、るつぼ、発熱体等に用いられる黒鉛を大量かつ大容積で生産性良く製造する方法として、コークスなどの炭素原料粉とタールピッチなどの粘結材からなる混練物を焼成した後、この焼成体を通電加熱して黒鉛とする方法(特許文献3)が知られている。
しかし、従来の高分子フィルムを雰囲気加熱や減圧下で加熱して得たグラファイトでは、熱伝導性が十分でなく、近年発熱量が急増している電子機器の放熱材料としては十分ではなかった。
【0004】
またさらに、放熱性をあげるために、グラファイトの厚みを厚くして熱輸送量を増やすことも考えられるが、従来の高分子熱分解法ではフィルムが破損しやすく、また破損しない場合には熱伝導性の低いグラファイトしか得られなかった。これは、雰囲気加熱による高分子熱分解法では、加熱が原料フィルムの表面から起こり、フィルムの内部と表面では不均一な黒鉛化が進行し、フィルム全体としての熱伝導性が低下したためである。
【0005】
また、減圧下での加熱による高分子熱分解法では、加熱は、ヒーターと接触している部分からの熱伝導やヒーターからの輻射熱によっておこなわれる。しかし、このような加熱では、原料フィルムへの熱処理が不均一となるために、黒鉛化も不均一に進行し、熱伝導性が低下した。
【0006】
特に、原料フィルムが厚い場合には、表面から黒鉛化が進行することで、内部からの分解ガスが出にくくなり、無理な分解ガス放出により、フィルムが破壊した。また破損しない場合であったとしても、フィルムが薄い場合に比べると内部の黒鉛化は十分進行せず、熱伝導性は非常に劣るものとなった。
【0007】
炭素原料粉と粘結材から得られる焼成体を通電加熱して黒鉛化する方法が知られている。しかし、従来の方法では、原料に焼成体を用いており、焼成体の導電性が不均一であるために、焼成体に流れる電流に偏りが生じ、局所的な温度上昇を起こし、黒鉛化が不均一に起こり、亀裂が入って破損しやすかった。その結果従来の方法で得たグラファイトの熱伝導性、電気伝導性は、高分子フィルムを熱処理して得られるグラファイトフィルムに比べて非常に劣るものであった。
【0008】
また特に、複数の焼成体を得る場合には、加熱中の位置ずれにより特性悪化が起こりやすく、これを防止するために、焼成体を接着剤で接着後、通電加熱する方法が提案されているが、亀裂は入らないグラファイトは得られるものの、熱伝導性、電気伝導性に非常に劣るものであった。
【0009】
また、複数枚のフィルム状のグラファイトを得る場合に、原料フィルムを接着剤で固定する方法を適用すると、接着剤が出来上がり品の品質低下を引き起こすために好ましくなかった。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開昭60−181129号公報
【特許文献2】特開平61−275116号公報
【特許文献3】特開平5−78111号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
熱伝導性に優れたグラファイトフィルム、特に厚みが厚くても熱処理により破損を起こさない高熱伝導性グラファイトフィルムを得る。
【課題を解決するための手段】
【0012】
本発明には、以下の態様を含む。
【0013】
(1)厚さ75μm以上のポリイミドフィルムを熱処理して得られるグラファイトフィルムであって、面方向の熱拡散率が8×10−4/S以上、かつ、面方向の熱拡散率のバラツキが20%以下であるグラファイトフィルム。
【0014】
(2)厚さ31μm以上のグラファイトフィルムであって、面方向の熱拡散率が8×10−4/S以上、かつ、面方向の熱拡散率のバラツキが20%以下であるグラファイトフィルム。
【0015】
(3)面方向の熱拡散率のバラツキが15%未満である(1)又は(2)に記載のグラファイトフィルム。
【0016】
(4)90μm以上の厚みを有する(1)〜(3)のいずれに記載のグラファイトフィルム。
【発明の効果】
【0017】
従来技術である炭素原料粉と粘結材から得られる焼成体を通電加熱して黒鉛化する方法では、焼成体の電気伝導性に偏りがあるため、通電加熱時に加熱の偏りが生じ、品質の高いグラファイトを得ることができなかったが、本発明による場合は、下記に示すとおり、品質の高いグラファイトフィルムを得ることができる。
【0018】
本発明では、従来の雰囲気加熱や減圧下での加熱ではなく、電圧を印加し直接通電可能な容器内に、原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程を含む。従って、結果として原料フィルムに電圧を印加し通電して加熱するため、原料フィルムの炭素化の進行に伴う電気抵抗の低減に伴って電流が流れる結果、ジュール熱により、原料フィルムそのものの発熱が寄与し、フィルムの内部と表面で均一に加熱され、またフィルム周辺からも通電可能な容器によって十分均一に加熱が行なわれるため、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。
【0019】
225μm程度の、従来より厚い原料フィルムを用いた場合にも、フィルムの内部、表面、周辺から均一に加熱されるため、表面と内部がほぼ同時に黒鉛化し、表層に分解ガスの発生を妨げる黒鉛層が形成されず、内部の分解ガスが抜けやすくなり、分解ガスによるフィルム破損が起こらず、厚みの厚い電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。
【0020】
また、特にポリイミドフィルム、中でも、本発明の作製方法および/または特定の複屈折を持つ、高度な分子配向が生じやすくなるように分子設計したポリイミドフィルムを原料フィルムに用いることにより、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。
【0021】
本発明では、原料フィルムを保持した通電可能な容器(A)の複数個を、通電可能な容器(B)内に保持し、全体を通電することで、それぞれの用いた該容器(A)間で、品質のバラツキが少ないグラファイトフィルムを得ることができる。
【図面の簡単な説明】
【0022】
【図1】容器(A)の容器(B)への保持方法。
【図2】容器(A)の容器(B)への保持方法。
【図3】容器(A)の容器(B)への保持方法。
【図4】容器(A)と容器(B)への通電方法。
【図5】容器(A)と容器(B)への通電方法。
【図6】ポリイミドフィルム及びくさび形シート。
【図7】くさび形シートの斜視図。
【図8】原料フィルムの容器(A)への保持方法。
【図9】容器(A)の容器(B)への保持方法の模式図。
【図10】容器(A)の容器(B)への保持方法の模式図(図9の容器(B)には実際には蓋を付けることを示す図)。
【図11】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(A)と容器(B)は非接触。
【図12】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(A)と容器(B)は接触。
【図13】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(A)と容器(B)は接触。
【図14】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、45度。容器(A)と容器(B)は非接触。
【図15】容器(A)の容器(B)への保持方法の模式図
【図16】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(A)と容器(B)は非接触。
【図17】容器(A)の容器(B)への保持方法の模式図
【図18】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、0度。容器(A)と容器(B)は非接触。
【図19】容器(A)の容器(B)への保持方法の模式図
【図20】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(A)と容器(B)は非接触。
【図21】容器(A)の容器(B)への保持方法の模式図
【図22】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、0度。容器(A)と容器(B)は非接触。
【図23】容器(A)の容器(B)への保持方法の模式図
【図24】容器(A)、容器(B)の保持方法および原料フィルムの面方向と通電方向の関係。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角が、90度。容器(B)と容器(A)は非接触。
【発明を実施するための形態】
【0023】
本発明のグラファイトフィルムの第一の製造方法は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムをグラファイト化するグラファイトフィルムの製造方法であって、通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程を含むことを特徴とする、グラファイトフィルムの製造方法、である。
【0024】
本発明のグラファイトフィルムの第二の製造方法は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムをグラファイト化するグラファイトフィルムの製造方法であって、通電可能な容器(A)内に、該原料フィルムを保持し、さらに該容器(A)を通電可能な容器(B)内に保持し、全体に通電しながらグラファイト化する工程を含むことを特徴とする、グラファイトフィルムの製造方法である。
【0025】
<グラファイトフィルム>
本発明の製造方法で作製されるグラファイトフィルムは、熱伝導性が高いために、例えば、サーバー、サーバー用パソコン、デスクトップパソコン等の電子機器や、ノートパソコン、電子辞書、PDA、携帯電話、PDP、ポータブル音楽プレイヤー等の携帯電子機器等の放熱材料として好適である。
【0026】
<原料フィルム>
本発明で用いることができる原料フィルムとしては、高分子フィルムおよび/または炭素化した高分子フィルムである。
【0027】
<高分子フィルム>
本発明に用いることができる高分子フィルムとしては、特に限定はされないが、ポリイミド(PI)、ポリアミド(PA)、ポリオキサジアゾール(POD)、ポリベンゾチアゾール(PBT)、ポリベンゾビスチアゾール(PBBT)、ポリベンゾオキサゾール(PBO)、ポリベンゾビスオキサゾール(PBBO)、ポリパラフェニレンビニレン(PPV)、ポリフェニレンベンゾイミダゾール(PBI)、ポリフェニレンベンゾビスイミダゾール(PPBI)、ポリチアゾール(PT)が挙げられ、これらのうちから選ばれる少なくとも1種を含む耐熱芳香族性高分子フィルムであることが、最終的に得られるグラファイトの電気伝導性、熱伝導性が高くなることから好ましい。これらのフィルムは、公知の製造方法で製造すればよい。この中でもポリイミドは、原料モノマーを種々選択することによって様々な構造および特性を有するものを得ることができるために好ましい。
【0028】
<炭素化した高分子フィルム>
本発明で用いられる炭素化した高分子フィルムとしては、出発物質である高分子フィルムを減圧下もしくは不活性ガス中で予備加熱処理して得られる。この予備加熱は通常1000℃程度の温度で行い、例えば10℃/分の速度で昇温した場合には1000℃の温度領域で30分程度の温度保持を行うことが望ましい。
【0029】
<本発明の第一である、通電可能な容器内に、原料フィルムを保持し、該容器に通電しながらグラファイト化する方法>
本発明のグラファイトフィルムの第一の製造方法は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムを後述する「電圧を印加し直接通電可能な容器」内に、原料フィルムを保持し、該通電可能な容器および原料フィルムに後述する方法で通電し、グラファイト化する工程を含むことを特徴とする。
【0030】
本発明の第一の方法は、原料フィルムによって、大きく下記の3つに分類できる。
【0031】
後述する「電圧を印加し直接通電可能な容器」内に、
(その1)「炭素化した高分子フィルム」を保持し、または、
(その2)「高分子フィルム」を予備加熱処理することで「炭素化した高分子フィルム」を得た後、その「炭素化した高分子フィルム」を保持し、または、
(その3)絶縁体である「高分子フィルム」を保持し、
該容器に電圧を印加し通電しながら、グラファイト化する工程を含むことを特徴とする。
【0032】
下記に、(その1)から(その3)について、具体的に説明する。
【0033】
(その1)原料に炭素化した高分子フィルムを用い、該フィルムを電圧印加による直接通電が可能な容器内に保持し、該容器へ電圧印加することで通電してグラファイト化する場合、該フィルムは、発熱した容器からの直接熱伝導(1)及びフィルムの自己発熱(2)による2つの手段で加熱され、品質の優れたグラファイトフィルムとなる。詳細を説明すると以下の通りである。
【0034】
従来の通常の雰囲気及び減圧下での熱処理では、加熱は、雰囲気ガスの熱伝導及び/またはヒーターからの輻射熱によりおこなわれるため、フィルムが加熱される手段は基本的には、フィルム表面から内部への熱伝導の1つのみである。
【0035】
しかし本発明の方法では、炭素化した高分子フィルムと導電体(容器(黒鉛製容器であってもよい)及び/又はカーボン粉末)が接している部分がフィルムの一方の表面と他方の表面であるため、電圧印加により発生したジュール熱が、炭素化した高分子フィルムの一方の表面と他方の表面の両方から直ちに伝熱する。その結果、一方の表面と他方の表面の両方から、炭素化が進行する。発熱した容器からの直接熱伝導及び後述するフィルムの自己発熱による2つの手段で加熱されフィルム内部まで十分加熱され、フィルムの表層及び内部で均一に熱処理される。
【0036】
本発明では、電圧を印加し直接通電可能な容器に通電にすると、通電による発熱が生じる。
【0037】
また、出発原料に炭素化した高分子フィルムを用いた場合、容器に電圧を印加すると、該フィルムは既に炭素化しているために炭素化の進行に応じた電気抵抗の変化に応じて電流が流れ、黒鉛化の進行に伴い、抵抗が低くなるために、より電流が流れ、フィルム自体が発熱する。特に、電流は表層及び内部の両方に流れるため、発熱は表層及び内部の両方で同時に進行する。その結果、均一な黒鉛化が起こる。
【0038】
さらに、電流は、炭素化の進行に応じた電気抵抗の変化に応じて流れ、黒鉛化の進行に伴い、抵抗が低くなるために、フィルムに流れる電流量が増え、フィルムの発熱量が増加し、黒鉛化が進行しやすくなる。特に、部分的に発熱が大きくなったとしても、フィルムそのものが発熱しかつ黒鉛化が進行するに従い熱伝導性が高まるために、フィルム全体に熱が伝わり、フィルムは均一に加熱される。
【0039】
グラファイトになる前の炭素化した高分子フィルムは、グラファイトと比べて熱伝導性に劣る傾向が有る。そのため、従来のような通常の雰囲気及び減圧下での熱処理では加熱手段が熱伝導の1つのみであることから、内部まで熱が十分伝わりにくく、表層と内部で黒鉛化の状態に差ができやすく、表層のみ黒鉛化し、内部に黒鉛化の不十分な部分が残る傾向が有る。結果、従来の方法では、高温に熱処理した場合に、内部の不十分な部分が発泡破裂し、フィルムがボロボロになった。
【0040】
一方、本発明の方法では、電圧を印加し直接通電可能な容器そのものが電圧印加に伴い発熱しているのと同時に、炭素化・黒鉛化の進行に応じた電気抵抗の変化に応じて、炭素化した高分子フィルムの炭素化部分に、電流が流れ、フィルム自体が発熱する。したがって、発熱した容器からの直接熱伝導及びフィルムの自己発熱による2つの手段によって、フィルムに十分熱を供給することが可能となり、内部の熱伝導性が悪い部分にも充分熱が供給され、表層のみ黒鉛化されることなく、表層と内部が同時に黒鉛化が進行する。
【0041】
さらに、フィルム面内で均一に電気伝導度が高くなるため、フィルム内で部分的な電界集中を起すことなく、局所的な発熱が起こらず、結果として表面及び内部で均一な黒鉛化が進行する。また、熱処理後のグラファイトが結晶性に非常に優れ、耐熱性にも優れたものとなるため、電界が集中し局所的な加熱が生じたとしても破損することなく、品質の高いグラファイトとなる。
【0042】
(その2)また、原料フィルムとして絶縁体の高分子フィルムを用いる場合、該フィルムを、不活性ガス雰囲気下および/または減圧下で予備加熱処理して得られる、炭素化した高分子フィルムを使用できる。このようにして炭素化した高分子フィルムは、(その1)で上記記載したとおりの方法で、グラファイト化が可能である。
【0043】
(その3)また、原料フィルムとして絶縁体の高分子フィルムを用いる場合、グラファイトに至るまでの炭素化過程の最初から通電によるため、炭素化も均一に起こりやすい。また、絶縁体の高分子フィルムであっても、本発明の製造方法によれば、その絶縁体の高分子フィルムと導電体(黒鉛製容器及び/又はカーボン粉末)が接している部分がフィルムの一方の表面と他方の表面であるため、電圧印加により発生したジュール熱が、絶縁体高分子フィルムの一方の表面と他方の表面の両方から直ちに伝熱する。従って、一方の表面と他方の表面の両方から、炭素化が進行する。
【0044】
このように本発明では、絶縁体の高分子フィルムであっても、両方の表面に導電体が接しているため、電圧を印加し通電して加熱する場合、当初は、フィルムの両方の表面から炭素化が進行し、引き続き、フィルム内部の炭素化の進行に応じた電気抵抗の変化に応じてフィルム内部にも電流が流れ、また炭素化の進行に伴いフィルムに流れる電流量が増え、最終的に表面及び内部での均一な発熱が起こるため、均一な黒鉛化が進行しやすくなる。またフィルム面内で均一に電気伝導度が高くなるため、フィルム内で部分的な電界集中を起すことなく、局所的な発熱が起こらず、結果として表面及び内部で均一な黒鉛化が進行する。また、熱処理後のグラファイトの結晶性に非常に優れ、耐熱性にも優れたものとなるため、電界が集中し局所的な加熱が生じたとしても破損することなく、品質の高いグラファイトとなる。
【0045】
本発明によるグラファイトフィルムが従来製造方法によるグラファイトフィルムよりも優れた均一性を発現する理由や機構については、学術的詳細研究がさらに必要ではあるが、上記のとおり、推定できる。
【0046】
<本発明の第一である、通電可能な容器内に、原料フィルムを保持し、該容器に通電しながらグラファイト化する方法における、原料フィルムを保持する方法>
なお、電圧を印加し直接通電可能な容器(例えば黒鉛製容器)内に、原料フィルムを保持する方法とは、例えば、原料フィルムを金属板やグラファイト板で挟んだ上で、金属板やグラファイト板の自重以外には特には加圧しない状態で容器壁や容器底に接するように保持する方法が有るが、必ずしもこれらの方法だけに制約を受けるものではない。
【0047】
<通電方法/黒鉛製容器と原料フィルムとの間および/または前記黒鉛製容器の外部周辺に、カーボン粉末が充填されている状態>について。
【0048】
本発明の原料フィルムのグラファイト化プロセス、特に、通電方法について説明する。本発明において、電圧を印加し通電する方法としては、交流電圧および/又は直流電圧を印加し、通電することをいう。
【0049】
本発明の原料フィルムのグラファイト化プロセスは、電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程を含むことによって行なわれる。例えば次のよう方法(1)−(4)で通電されるのが好ましい。ここでは特に、黒鉛製容器の場合について記載するが、必ずしも、黒鉛製容器にのみ制約されるものではない。
【0050】
(1)黒鉛製容器内に、原料フィルムを保持し、該黒鉛製容器自体に電圧を印加し通電する方法。
【0051】
(2)黒鉛製容器内に、原料フィルムを保持し、該黒鉛製容器の外部周辺をカーボン粉末で覆い(充填し)、カーボン粉末を介して、黒鉛製容器自体に電圧を印加し通電する方法。
【0052】
(3)黒鉛製容器内に、カーボン粉末で覆った原料フィルムを保持し(黒鉛製容器と原料フィルムとの間に、カーボン粉末が充填されている状態で、保持し)、該黒鉛製容器自体に電圧を印加し通電する方法。
【0053】
(4)黒鉛製容器内に、カーボン粉末で覆った原料フィルムを保持し(黒鉛製容器と原料フィルムとの間に、カーボン粉末が充填されている状態で、保持し)、さらに該黒鉛製容器をカーボン粉末で覆い(黒鉛製容器の外部周辺にカーボン粉末が充填されてい状態で)、カーボン粉末を介して、黒鉛製容器自体に電圧を印加し通電する方法。
【0054】
直接通電可能な容器及び製造されたフィルムの電気伝導性から考えて、サンプルの大きさにもよるが、通電の結果、例えば原料フィルムには10mA以上の電流が流れ、ジュ−ル熱により容器および/またはフィルムが発熱する。特に、初期絶縁体で途中から導電体に変換する場合であっても、投入電力を制御することにより急激な温度上昇を防止することで、安定的に高品質のグラファイトフィルムを製造できる。
【0055】
従来の雰囲気加熱や減圧下での加熱では、加熱は、ヒーターと接触している部分や雰囲気ガスからの熱伝導、ヒーターからの輻射熱によって原料フィルムの表面からおこなわれ、フィルムの内部と表面で不均一に黒鉛化が進行し、フィルム全体としての熱伝導性が低下した。特に、原料フィルムが厚い場合には、表面から黒鉛化が進行することで、内部からの分解ガスが出にくくなり、無理な分解ガス放出により、フィルムが破壊した。また破損しない場合であったとしても、フィルムが薄い場合に比べると内部の黒鉛化は十分進行せず、熱伝導性は非常に劣るものとなった。
【0056】
しかし、本発明にある電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程では、結果として原料フィルムに電圧を印加し通電して加熱するため、原料フィルムそのものの発熱が寄与する。従って、フィルムの内部と表面で均一に加熱され、またフィルム周辺からも十分均一に加熱が行なわれるため、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。さらに、125μmや225μm程度の、従来より厚い原料フィルムを用いた場合にも、フィルムの内部、表面、周辺から均一に加熱されるため、表面と内部が同時に黒鉛化し、表層に分解ガスの発生を妨げる黒鉛層が形成されず、内部の分解ガスが抜けやすくなり、分解ガスによるフィルム破損が起こらず、厚みの厚い電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。
【0057】
通電方法(2)である、黒鉛製容器内に、原料フィルムを保持し、該黒鉛製容器の外部周辺をカーボン粉末で覆い、カーボン粉末を介して、黒鉛製容器自体に電圧を印加し通電する方法は、通電方法(1)である黒鉛製容器内に、原料フィルムを保持し、該黒鉛製容器自体に電圧を印加し通電する方法よりも、熱伝導性が高く、特性にバラツキのない優れたグラファイトフィルムを得るうえでは、優れている。というのは、黒鉛製容器をカーボン粉末で覆うことにより、黒鉛製容器および/または原料フィルムに加わる通電および加熱が均一におこるためである。
【0058】
またさらに、通電方法(3)(4)にあるように、黒鉛製容器内に、カーボン粉末で覆った原料フィルムを保持することも、黒鉛製容器および/または原料フィルムに加わる通電および加熱が均一になるために好ましい。
【0059】
通電の結果生じる熱から与えられ、原料フィルムに結果として与えられる熱処理温度としては最低でも2400℃以上が必要で、好ましくは2600℃以上、最終的には2700℃以上の温度で熱処理することが好ましく、2800℃以上で熱処理することがより好ましい。
【0060】
<本発明の第二である、通電可能な容器(A)内に、原料フィルムを保持し、さらに該容器(A)を通電可能な容器(B)内に保持し、全体に通電しながらグラファイト化する方法>
本発明のグラファイトフィルムの第二の製造方法は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムを後述する「電圧を印加し直接通電可能な容器」(A)内に保持し、さらに該容器(A)を通電可能な容器(B)内に保持し、全体に通電しながらグラファイト化する工程を含むことを特徴とする。
【0061】
<直接通電可能な容器(A)の直接通電可能な容器(B)内への保持方法>について
まず、本発明の第一のグラファイト化方法について述べる。容器(A)を容器(B)内に保持しないような場合、すなわち、容器を2つ使用せず1つの容器を使用して高分子フィルムまたは炭素化した高分子フィルムの直接通電によるグラファイトの製造方法では、原料フィルムを1つの直接通電可能な容器内に保持して、該容器一つ一つの外部周辺にカーボン粉末で充填し、全体に通電してグラファイトフィルムを作製する。この場合、多数の該容器をそれぞれカーボン粉末で覆って通電し、グラファイトを作製した場合には、カーボン粉末の充填密度や該容器自身それぞれの電気抵抗の差に起因して、作製したグラファイトの品質が、原料フィルムを保持した容器によって、品質に差が生じる場合があった。
【0062】
次に、本発明の第二のグラファイト化方法について述べる。本発明の原料フィルムのグラファイト化プロセスは、電圧を印加し、直接通電可能な容器内(A)に、該原料フィルムを保持し、さらに直接通電可能な容器(B)に該原料フィルムが保持されている容器(A)を保持する。例えば図1〜3のいずれかで示されている保持方法がある。ここでは、該容器(A)を直方体、該容器(B)を円筒として記載しているが、該容器(A)と該容器(B)の形状は、必ずしも、直方体と円筒に制約されるものではない。
【0063】
(1)図1は、該原料フィルムが保持されている直接通電可能な容器(A)の外部周辺をカーボン粉末で覆い(容器(A)の外部周辺にカーボン粉末が存在している状態)、直接通電可能な容器(B)内に、該容器(A)が該容器(B)と接触しないように保持されている状態である。
【0064】
(2)図2は、該原料フィルムが保持されている直接通電可能な容器(A)の外部周辺にカーボン粉末を覆い(容器(A)の外部周辺にカーボン粉末が存在している状態)、直接通電可能な容器(B)内に、該容器(A)が該容器(B)と接触するように保持されている状態である。
【0065】
(3)図3は、該原料フィルムが保持されている直接可能な容器(A)を、直接通電可能な容器(B)に、該容器(A)が該容器(B)と接触するように保持されている状態である。図3では該容器(B)内への該容器(A)の保持にはカーボン粉末が使われていない。
【0066】
本発明では、原料フィルムを保持した該容器(A)を該容器(B)内に保持することで、該容器(A)に加わる電圧および/または熱を均一化でき該容器(A)間で作製されたグラファイトの品質には、差が生じないという特徴がある。さらに、原料フィルムを保持した該容器(A)の外部周辺のカーボン粉末の存在密度(充填する場合には充填密度)を均一にでき、多数の該容器(A)を用いた場合であっても、該容器(A)間で作製されたグラファイトの品質には、差が生じないという特徴がある。
【0067】
該原料フィルムが保持されている直接通電可能な容器(A)を直接通電可能な容器(B)内に保持し、電圧を印加し、通電する場合には、該容器(A)と該容器(B)が接触していないほうが好ましい。その理由は以下に示す通りである。
【0068】
該原料フィルムが保持されている直接通電可能な容器(A)の外部周辺をカーボン粉末で覆った状態で(容器(A)の外部周辺にカーボン粉末が存在している(好ましくは、充填している状態で、))直接通電可能な容器(B)内に該容器(A)を該容器(B)と接触しないように保持していれば、電圧を印加し通電する場合、該原料フィルムを保持した該容器(A)への通電が、該容器(A)の外部周辺に存在する(好ましくは充填した)カーボン粉末を介して該容器(A)全面に均一に起きる。このために、該容器(A)には、部分的な電圧の偏りが生じず均一な通電発熱が発生し、該原料フィルムが品質のバラツキがない優れたグラファイトとなる。
【0069】
一方で、該容器(A)と該容器(B)が接触している状態で、電圧を印加し通電すると、該容器(A)と該容器(B)が接触している部分からのみ該容器(A)への通電が起こるために、該容器(A)には均一な通電発熱の発生が達成されず、該原料フィルムのグラファイト化の均一性が(1)の場合より不充分なものとなる。
【0070】
該原料フィルムが保持されている直接通電可能な容器(A)の外部周辺にカーボン粉末を覆い(容器(A)の外部周辺にカーボン粉末が存在している(好ましくは充填している)状態)、直接通電可能な容器(B)内に、該容器(A)が該容器(B)と接触するように保持されている状態では、該容器(A)への通電が、該容器(B)と接触している部分と、該容器(A)の外部周辺を覆っているカーボン粉末から2つの経路で通電が起きるが、該容器(B)とカーボン粉末とでは電気抵抗が異なるために、電気抵抗が低いほうから通電が起き、該容器(A)の通電発熱の均一性が(2)の場合より不充分なものとなる。
【0071】
従って、該容器(B)への該容器(A)の保持方法として、一番好ましいのは、前記(1)であり、次に(2)、次に(3)である。
【0072】
また、図1〜3のいずれかの保持状態に加えて、さらに、原料フィルムの周辺をカーボン粉末で覆っている状態(該容器(A)と原料フィルムとの間にカーボン粉末が存在している(好ましくは充填されている)状態)、または、該容器(B)の外部周辺にカーボン粉末が覆っている状態(該容器(B)の外部周辺にカーボン粉末が存在している(好ましくは充填されている)状態)であっても良い。
【0073】
<該原料フィルムを保持した直接通電可能な容器(A)に通電する方法>
本発明の原料フィルムのグラファイト化プロセス、特に、通電方法について説明する。
本発明において、電圧を印加し通電する方法としては、交流電圧および/又は直流電圧を印加し、通電することをいう。
【0074】
該原料フィルムを保持した直接通電可能な容器(A)/原料フィルムへの通電方法は、例えば次のような方法(1)と(2)がある。ここでは特に、黒鉛製容器の場合について記載するが、必ずしも、黒鉛製容器にのみ制約されるものではない。また、該容器(A)を直方体、該容器(B)を円筒として記載しているが、該容器(A)と該容器(B)の形状は、必ずしも、直方体と円筒に制約されるものではない。
【0075】
(1)図4に示すような該容器(A)の保持方法であり、黒鉛製容器(B)内に外部周辺をカーボン粉末で覆った黒鉛製容器(A)を黒鉛製容器(B)と接触しないように保持し(該容器(A)と該容器(B)の間にカーボン粉末が存在している(好ましくは充填されている)状態で、保持し)、直接、黒鉛製容器(B)に電圧を印加し、黒鉛製容器(B)およびカーボン粉末を介して、黒鉛容器(A)/または原料フィルムに通電する方法。
【0076】
(2)図5に示すような保持方法であり、黒鉛製容器(B)内に黒鉛製容器(A)を黒鉛製容器(B)と接触しないように黒鉛製容器(A)の外部周辺をカーボン粉末で覆った状態で保持し(該容器(A)と該容器(B)の間にカーボン粉末が存在している(好ましくは充填されている)状態で、保持し)、さらには、黒鉛製容器(B)の外部周辺をカーボン粉末で覆った状態で、(黒鉛製容器Bの外部周辺にカーボン粉末が存在している(好ましくは充填されている)状態で、)該容器(B)の外部周辺に存在している(このましくは充填されている)カーボン粉末に電圧を印加し、該容器(B)を覆っているカーボン粉末、黒鉛製容器(B)、そして該容器Aと該容器Bの間のカーボン粉末を介して、黒鉛容器(A)/または原料フィルムに通電する方法。
【0077】
図5に示す保持方法は、図4に示す保持方法よりも、熱伝導性が高く、特性にバラツキのない優れたグラファイトフィルムを得るうえでは、優れている。というのは、黒鉛製容器(B)をカーボン粉末で覆うことにより、黒鉛製容器および/または原料フィルムに加わる通電および加熱が均一におこるためである。
【0078】
(1)〜(2)のいずれかに記載した、該容器(A)/原料フィルムへの通電方法に加えて、原料フィルムの周辺をカーボン粉末で覆っている状態(該容器(A)と原料フィルムとの間にカーボン粉末が存在している(好ましくは充填されている)状態)、または、該容器(A)と該容器(B)が接触している状態であっても良いことは、いうまでもない。
【0079】
従来の雰囲気加熱や減圧下での加熱では、加熱は、ヒーターと接触している部分や雰囲気ガスからの熱伝導、ヒーターからの輻射熱によって原料フィルムの表面からおこなわれ、フィルムの内部と表面で不均一に黒鉛化が進行し、フィルム全体としての熱伝導性が低下した。特に、原料フィルムが厚い場合には、表面から黒鉛化が進行することで、内部からの分解ガスが出にくくなり、無理な分解ガス放出により、フィルムが破壊した。また破損しない場合であったとしても、フィルムが薄い場合に比べると内部の黒鉛化は十分進行せず、熱伝導性は非常に劣るものとなった。
【0080】
しかし、本発明にある電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程では、結果として原料フィルムに電圧を印加し通電して加熱するため、原料フィルムそのものの発熱が寄与する。従って、フィルムの内部と表面で均一に加熱され、またフィルム周辺からも十分均一に加熱が行なわれるため、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。さらに、125μmや225μm程度の、従来より厚い原料フィルムを用いた場合にも、フィルムの内部、表面、周辺から均一に加熱されるため、表面と内部が同時に黒鉛化し、表層に分解ガスの発生を妨げる黒鉛層が形成されず、内部の分解ガスが抜けやすくなり、分解ガスによるフィルム破損が起こらず、厚みの厚い電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができる。
【0081】
通電の結果生じる熱から与えられ、原料フィルムに結果として与えられる熱処理温度としては最低でも2400℃以上が必要で、好ましくは2600℃以上、最終的には2700℃以上の温度で熱処理することが好ましく、2800℃以上で熱処理することがより好ましい。
【0082】
なお、本発明で記載の温度は、例えば直接通電可能な容器の外壁や内部の一部などにおいて、放射温度計などを使用して計測することができる。
【0083】
なお、本明細書で使う「熱処理」という言葉は、下記のような広義の意味で用いる。従来技術の場合は、概ね、「熱処理」とは、減圧下での加熱や、ガス雰囲気での加熱を指す。一方で、本発明の特徴である通電についても、通電の結果生じる熱が原料フィルムに伝わることを「熱処理」と概括的に表現している場合が有る。従来技術との対比で説明する場合に、従来の減圧下での加熱や、ガス雰囲気での加熱、通電の結果生じる熱が原料フィルムに伝わる場合を、区別なく説明する際に、特に注釈を付けずに複数の原理が有りうる「熱処理」という表現をすることが有る。
【0084】
<通電方向と原料フィルムの法線との成す角度>について
本発明では、通電方向と該原料フィルムの位置関係は、原料フィルムへの通電方向を示す直線と、原料フィルムの法線との、成す角度が0度より大きく180度未満であればよい。ここでいう、成す角度とは、通電における正極から負極への通電方向を直線で表した場合の、原料フィルムの面方向に対する法線との成す角度を意味する。
【0085】
原料フィルムの面方向に対する法線と、通電方向を示す直線との、成す角は、好ましくは60度以上120度以下、さらに好ましくは75度以上105度以下、最も好ましくは90度である。
【0086】
原料フィルムへの通電方向と原料フィルムの法線の成す角と90度がもっとも好ましい理由としては、成す角が90度であれば、通電方向が原料フィルムの面方向であるために、原料フィルムに均一な通電が可能であり、品質の優れたグラファイトフィルムが得られる。
【0087】
一方で、通電方向と原料フィルムの面方向に対する法線との成す角が0度で、通電方向が原料フィルムの厚み方向である場合、原料フィルムを容器(A)内に保持するために用いられている板状の通電可能な黒鉛を介して、原料フィルムに通電が起きるために、成す角が90度に比べて、原料フィルムへの通電が妨げられる場合がある。このために、成す角が0度に比べて、90度のほうが原料フィルム自身の通電による加熱には有利である。
【0088】
また、成す角が0度では、通電方向が原料フィルムの厚み方向であるのに対して、成す角90度では、通電方向が原料フィルムの面方向であることから、成す角90度のほうが通電距離が長く、このために、成す角90度であるほうが通電時の原料フィルム自身の発熱にも有利である。
【0089】
<電圧を印加し直接通電可能な容器>
本発明の、電圧を印加し直接通電可能な容器とは、例えば、タングステン製、モリブデン製、黒鉛製の容器である。容器の形状は、特に制約を受けず、単純な平板などの形状でよい。また容器は円筒状で、原料フィルムを容器に巻きつける方法でも良い。容器の形状は、原料フィルムを保持できる限りにおいて、特に制約を受けないが、作製の容易さ、工業的入手の容易さという観点から、例えば、直方体や立方体の形状をしており、ブロック状、蓋などが有る弁当箱状などの形状が、好ましい。
【0090】
なお、使用される容器や、本明細書中に記載の容器(A)や容器(B)は、それぞれ独立に、容器内を密閉状態で使用してもよいし、密閉状態で使用しなくてもよい。
【0091】
密閉状態にする方法としては、それぞれの容器に、密閉状態が実現できるような覆いを設ける方法が考えられる。密閉状態の場合には、加温・降温された結果膨張・収縮した気体の存在に伴って、容器内部が、常圧に比べて加圧されている状態や、常圧に比べて減圧されている状態を達成しうる。
【0092】
密閉状態にしない方法は、それぞれの容器(容器(A)、容器(B)、それぞれ独立に)に覆い(例えば蓋など)を設けるものの、容器と覆い(例えば蓋など)との間を通じて、加温・降温された結果膨張・収縮した気体が、出入り可能な状態であるような状態を実現する方法などが有る。もちろん、容器(容器(A)、容器(B))をそのまま用いて、覆いを設けない方法も、密閉状態にしない方法の一態様である。
【0093】
本発明においては、容器の内部が、密閉されても、密閉されなくても良い。
【0094】
<黒鉛製容器>
本発明のような2500℃の温度領域まで通電によって加熱されるような用途では、取り扱いの容易さや、工業的な入手の容易さ等を勘案すると、使用される容器(A)や容器(B)としては、黒鉛製の容器が、特に好ましい。ここでいう黒鉛とは、上記の温度領域まで加熱することができる限りにおいて、黒鉛を主に含むような材料までを含む広い概念であるが、例えば、等方性黒鉛、押出製黒鉛、が挙げられ、電気伝導性、熱伝導性に優れ、均質性にも優れる等方性黒鉛が、電流を流しまた繰り返し用いる場合には好ましい。
【0095】
<直接通電可能な容器(B)が円筒である>について
本発明では、該容器(B)は特に形状の限定はないが、円筒であることが好ましい。これは、通電時に、円筒であるほうが、角筒であるよりも、電圧の偏りが生じにくいため、該容器(A)の全体にわたって均一な通電加熱に有利であるためである。容器(А)については特には形状の制限はないが、工業的な入手の容易さ等を勘案すると立方体、直方体などの角筒、もしくは円筒の形状で、操作上の利便性から蓋つきのものが良い。
【0096】
<原料フィルムが絶縁体>
また、製造工程の初期において原料フィルムが絶縁体であるとよい。というのは、炭化処理を通電加熱によって行われると、均一な炭化が起こり、その結果、黒鉛化中にフィルム内で部分的な電界集中を起すことなく、局所的な発熱が起こらず、表面及び内部で均一な黒鉛化が進行する。その結果として、熱伝導性の優れたグラファイトフィルムを得ることができる。
【0097】
<カーボン粉末>
本発明において用いられるカーボン粉末は、本発明のような2500℃の温度領域まで(通電によって)加熱される。
【0098】
ここでいうカーボン粉末とは、炭素を主に含む粉末である限りにおいて、特に限定されるものではない、広い概念である。例えば、有機物を主に含む物質や粉末や繊維を熱処理した後、粉末状に粉砕したものや、造粒したものでもよい。熱処理の温度は、200℃以上、好ましくは、500℃以上、さらに好ましくは1000℃以上や1500℃以上である。また、天然および/または人工のピッチ、コークス、カーボンブラックのような炭素を主に含む物質を用いてもよい。また、カーボン粉末は黒鉛であっても良い。ここでいう黒鉛とは、上記の温度領域まで加熱することができる限りにおいて、黒鉛を主に含むような材料までを含む広い概念であるが、例えば、グラファイトクロスを粉砕したもの、等方性黒鉛を粉砕したもの、押出製黒鉛を粉砕したもの、等が挙げられる。カーボン粉末の粉末形状、粒子径、粒子径分布などは、特に制限されるものではない。
【0099】
本発明のカーボン粉末は、下記に説明するカーボン粒子や、黒鉛粒子であってもよい。
【0100】
<黒鉛粒子>
本発明において用いられる黒鉛粒子は、本発明のような2500℃の温度領域まで(通電によって)加熱される。ここでいう黒鉛粒子の素材である黒鉛とは、上記の温度領域まで加熱することができる限りにおいて、黒鉛を主に含むような材料までを含む広い概念であるが、例えば、グラファイトクロスを粉砕したもの、等方性黒鉛を粉砕したもの、押出製黒鉛を粉砕したもの、カーボンブラック、等が挙げられる。黒鉛粒子の粒子形状、粒子径、粒子径分布などは、特に制限されるものではない。
【0101】
<カーボン粒子>
本発明において用いられるカーボン粒子は、本発明のような2500℃の温度領域まで(通電によって)加熱される。
【0102】
ここでいうカーボン粒子とは、炭素を主に含む粒子である限りにおいて、特に限定されるものではない、広い概念である。例えば、有機物を主に含む物質や粉末や繊維を熱処理した後、粒子状に粉砕したものや、造粒したものでもよい。熱処理の温度は、200℃以上、好ましくは、500℃以上、さらに好ましくは1000℃以上や1500℃以上である。
【0103】
素材の例示に関して、例えば、繊維に関して説明すると、有機繊維としては、植物繊維、動物繊維、再生繊維、半合成繊維および合成繊維から選ばれる繊維を単独あるいは混合したものが使用されうる。
【0104】
植物繊維としては、綿(コットン)、麻(亜麻、ラミー)が、例示される。
【0105】
動物繊維としては、絹、羊毛(カシミヤ、ウール、モヘア、キャメル)などの繊維が挙げられる。
【0106】
再生繊維としては、レーヨン、キュプラが、例示される。
【0107】
半合成繊維としては、アセテート、トリアセテート、プロミックスが、例示される。
【0108】
合成繊維としては、ナイロン、アラミド、アクリル、ビニロン、ビニリデン、ポリ塩化ビニル、ポリエステル、ポリエチレン、ポリプロピレン、ベンゾエート、ポリクラール、フェノール系、ポリウレタンなどの繊維が、例示される。
【0109】
上記の繊維の他に、植物繊維として、広葉樹パルプ針葉樹パルプ、などの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を含むものとする。さらに、古紙、損紙などから得られるパルプ繊維も含まれる。
【0110】
上記の各種繊維の定義は、繊維ハンドブック(日本化学繊維協会1993年度版)などを用いた。
【0111】
もちろん、有機繊維と下記の無機繊維の混合物であってもよい。無機繊維としては、ガラス繊維、炭素繊維、セラミック繊維およびウイスカーから選ばれる繊維を単独あるいは混合したものが使用されうる。
【0112】
上記のように、繊維に関して説明したが、カーボン粉末の原料は、上記に限らず、熱可塑性樹脂、熱硬化性樹脂、エポキシ樹脂であってもよい。
【0113】
また、カーボン粉末の一つの例示である黒鉛粉末の素材である黒鉛とは、上記の温度領域まで加熱することができる限りにおいて、黒鉛を主に含むような材料までを含む広い概念であるが、例えば、グラファイトクロスを粉砕したもの、等方性黒鉛を粉砕したもの、押出製黒鉛を粉砕したもの、カーボンブラック、等が挙げられる。
【0114】
カーボン粉末の粉末形状、粒子径、粒子径分布などは、特に制限されるものではない。
【0115】
また、カーボン粉末は、下記のような、熱可塑性樹脂や熱硬化性化合物を熱処理して得たものであっても良い。
【0116】
熱可塑性樹脂の具体例としては、例えば、ポリエチレン、ポリプロピレン、ポリイソプレン、ポリブタジエン、塩素化ポリエチレン、ポリ塩化ビニル、スチレン樹脂、耐衝撃性ポリスチレン、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、メチルメタクリレート−ブタジエン−スチレン樹脂(MBS樹脂)、メチルメタクリレート−アクリロニトリル−ブタジエン−スチレン樹脂(MABS樹脂)、アクリロニトリル−アクリルゴム−スチレン樹脂(AAS樹脂)、ポリメチル(メタ)アクリレート、ポリカーボネート、変性ポリフェニレンエーテル(PPE)、ポリアミド(脂肪族系及び/又は芳香族系)、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリフェニレンスルフィド、ポリイミド、ポリエーテルエーテルケトン、ポリスルホン、ポリアリレート、ポリエーテルケトン、ポリエーテルニトリル、ポリチオエーテルスルホン、ポリエーテルスルホン、ポリベンズイミダゾール、ポリカルボジイミド、ポリアミドイミド、ポリエーテルイミド、液晶ポリマー、複合プラスチック等を挙げることができる。
【0117】
熱硬化性化合物としては、エポキシ化合物、イソシアネート化合物、シアン酸エステル化合物、アクリルやメタクリルやビニル等のビニル基を有する化合物、キシレン樹脂、グアナミン樹脂、DFK樹脂、フェノール樹脂、フラン樹脂、ウレタン樹脂、マレイン酸樹脂、メラミン樹脂、ユリア樹脂等を例示することが出来る。
【0118】
エポキシ化合物としては例えば、エピコート828(ジャパンエポキシレジン株式会社製)等のビスフェノール樹脂、180S65(ジャパンエポキシレジン株式会社製)等のオルソクレゾールノボラック樹脂、157S70(ジャパンエポキシレジン株式会社製)等のビスフェノールAノボラック樹脂、1032H60(ジャパンエポキシレジン株式会社製)等のトリスヒドロキシフェニルメタンノボラック樹脂、ESN375等のナフタレンアラルキルノボラック樹脂、テトラフェニロールエタン1031S(ジャパンエポキシレジン株式会社製)、YGD414S(東都化成)、トリスヒドロキシフェニルメタンEPPN502H(日本化薬)、特殊ビスフェノールVG3101L(三井化学)、特殊ナフトールNC7000(日本化薬)、TETRAD−X、TETRAD−C(三菱瓦斯化学社製)等のグリシジルアミン型樹脂などがあげられる。
【0119】
またイソシアネート化合物として例えば、脂肪族、脂環族または芳香族のジイソシアネ−ト等があり、例えば1,4−テトラメチレンジイソシアネ−ト、1,5−ペンタメチレンジイソシアネ−ト、1,6−ヘキサメチレンジイソシアネ−ト、2,2,4−トリメチル−1,6−へキサメチレンジイソシアネ−ト、リジンジイソシアネ−ト、3−イソシアネ−トメチル−3,5,5−トリメチルシクロヘキシルイソシアネ−ト(イソホロンジイソシアネ−ト)、1,3−ビス(イソシアネ−トメチル)−シクロヘキサン、4,4’−ジシクロヘキシルメタンジイソシアネ−ト、トリレンジイソシアネ−ト、4,4’−ジフェニルメタンジイソシアネ−ト、1,5−ナフタレンジイソシアネ−ト、トリジンジイソシアネ−ト、キシリレンジイソシアネ−ト等を挙げることが出来る。
【0120】
さらに、イソシアネ−ト化合物として、脂肪族、脂環族または芳香族のイソシアネ−トから誘導されるもの、例えばイソシアヌレ−ト変性イソシアネ−ト、ビュレット変性イソシアネ−ト、ウレタン変性イソシアネ−ト等であってもよい。また、イソシアネ−ト化合物のイソシアネ−ト基をブロック剤でブロックしたブロックイソシアネ−トなどであってもよい。
【0121】
前記のブロック化剤としては例えば、アルコ−ル系、フェノ−ル系、活性メチレン系、メルカプタン系、酸アミド系、酸イミド系、イミダゾ−ル系、尿素系、オキシム系、アミン系、重亜硫酸塩、イミン系、イミド系化合物、ピリジン系化合物等があり、これらを単独あるいは、混合して使用してもよい。具体的なブロック化剤としては、アルコ−ル系としてメタノ−ル、エタノ−ル、プロパノ−ル、ブタノ−ル、2エチルヘキサノ−ル、メチルセロソルブ、ブチルセロソルブ、メチルカルビト−ル、ベンジルアルコ−ル、シクロヘキサノ−ル等、フェノ−ル系として、フェノ−ル、クレゾ−ル、エチルフェノ−ル、ブチルフェノ−ル、ノニルフェノ−ル、ジノニルフェノ−ル、スチレン化フェノ−ル、ヒドロキシ安息香酸エステル等、活性メチレン系として、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等、メルカプタン系として、ブチルメルカプタン、ドデシルメルカプタン等、酸アミド系として、アセトアニリド、酢酸アミド、ε−カプロラクタム、δ−バレロラクタム、γ−ブチロラクタム等、酸イミド系として、コハク酸イミド、マレイン酸イミド、イミダゾ−ル系として、イミダゾ−ル、2−メチルイミダゾ−ル、尿素系として、尿素、チオ尿素、エチレン尿素等、オキシム系として、ホルムアルデヒドオキシム、アセトアルデヒドオキシム、アセトオキシム、メチルエチルケトオキシム、シクロヘキサノンオキシム等、アミン系として、ジフェニルアミン、アニリン、カルバゾール等、イミン系として、エチレンイミン、ポリエチレンイミン等、重亜硫酸塩として、重亜硫酸ソ−ダ等、ピリジン系として、2−ヒドロキシピリジン、2−ヒドロキシキノリン等が挙げられる。
【0122】
アクリルやメタクリルやビニル等のビニル基を有する化合物等としては、ビスフェノールF EO変性(n=2〜50)ジアクリレート、ビスフェノールA EO変性(n=2〜50)ジアクリレート・ビスフェノールS EO変性(n=2〜50)ジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、エチレングリコールジアクリレート、ペンタエリスリトールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート、テトラメチロールプロパンテトラアクリレート、テトラエチレングリコールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、エチレングリコールジメタクリレート、ペンタエリスリトールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールヘキサメタクリレート、テトラメチロールプロパンテトラメタクリレート、テトラエチレングリコールジメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、β−メタクロイルオキシエチルハイドロジェンフタレート、β−メタクロイルオキシエチルハイドロジェンサクシネート、3−クロロ−2−ヒドロキシプロピルメタクリレート、ステアリルメタクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、β−アクリロイルオキシエチルハイドロジェンサクシネート、ラウリルアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、1,3−ブチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、2−ヒドロキシ−1,3−ジメタクロキシプロパン、2,2−ビス[4−(メタクロキシエトキシ)フェニル]プロパン、2,2−ビス[4−(メタクロキシ・ジエトキシ)フェニル]プロパン、2,2−ビス[4−(メタクロキシ・ポリエトキシ)フェニル]プロパン、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、2,2−ビス[4−(アクリロキシ・ジエトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシ・ポリエトキシ)フェニル]プロパン、2−ヒドロキシ−1−アクリロキシ3−メタクロキシプロパン、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、メトキシジプロピレングリコールメタクリレート、メトキシトリエチレングリコールアクリレート、ノニルフェノキシポリエチレングリコールアクリレート、ノニルフェノキシポリプロピレングリコールアクリレート、1−アクリロイルオキシプロピル−2−フタレート、イソステアリルアクリレート、ポリオキシエチレンアルキルエーテルアクリレート、ノニルフェノキシエチレングリコールアクリレート、ポリプロピレングリコールジメタクリレート、1,4−ブタンジオールジメタクリレート、3−メチル−1,5−ペンタンジオールジメタクリレート、1,6−メキサンジオールジメタクリレート、1,9−ノナンジオールメタクリレート、2,4−ジエチル−1,5−ペンタンジオールジメタクリレート、1,4−シクロヘキサンジメタノールジメタクリレート、ジプロピレングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、2,2−水添ビス[4−(アクリロキシ・ポリエトキシ)フェニル]プロパン、2,2−ビス[4−(アクリロキシ・ポリプロポキシ)フェニル]プロパン、2,4−ジエチル−1,5−ペンタンジオールジアクリレート、エトキシ化トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、イソシアヌル酸トリ(エタンアクリレート)、ペンタスリトールテトラアクリレート、エトキシ化ペンタスリトールテトラアクリレート、プロポキシ化ペンタスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールポリアクリレート、イソシアヌル酸トリアリル、グリシジルメタクリレート、グリシジルアリルエーテル、1,3,5−トリアクリロイルヘキサヒドロ−s−トリアジン、トリアリル−1,3,5−ベンゼンカルボキシレート、トリアリルアミン、トリアリルシトレート、トリアリルフォスフェート、アロバービタル(5,5−ジアリルバルビツル酸)、ジアリルアミン、ジアリルジメチルシラン、ジアリルジスルフィド、ジアリルエーテル、ザリルシアルレート、ジアリルイソフタレート、ジアリルテレフタレート、1,3−ジアリロキシ−2−プロパノール、ジアリルスルフィドジアリルマレエート、4,4’−イソプロピリデンジフェノールジメタクリレート、4,4’−イソプロピリデンジフェノールジアクリレート等が好ましいが、これらに限定されない。架橋密度を向上するためには、特に2官能以上のモノマーを用いることが望ましい。
【0123】
なお、熱硬化性化合物として、1種類の化合物を用いても良いし、数種を混合して用いてもよい。
【0124】
シアン酸エステル化合物とは、シアン酸エステルを分子内にもっていれば特に限定されないが、以下のように例示することができる。
【0125】
シアン酸エステルの例としては、1,3−ジシアネートベンゼン、1,4−ジシアネートベンゼン、1,3,5−トリシアネートベンゼン1,3−ジシアネートナフタレン、1,4−ジシアネートナフタレン、1,6−ジシアネートナフタレン、1,8−ジシアネートナフタレン、2,6−ジシアネートナフタレン、2,7−ジシアネートナフタレン、1,3,6−トリシアネートナフタレン、2,2−ビス(3,5−ジシクロ−4−シアネートフェニル)プロパン、トリス(4−シアネートフェニル)ホスファイト、トリス(4−シアネートフェニル)ホスフェート、およびフェノール樹脂とハロゲン化シアンとの反応により得られるベンゼン多核体のポリシアネート化合物等が挙げられる。例示したシアン酸エステルを加熱してオリゴマー化したものも同様に使用することができる。
【0126】
シアン酸エステル化合物として、1種類の化合物を用いても良いし、数種を混合して用いてもよい。
【0127】
<ポリイミドフィルム>
ポリイミドフィルムは、他の有機材料を原料とする原料フィルムよりもフィルムの炭化、黒鉛化が進行しやすいため、フィルムの電気伝導度が低温で均一に高くなりやすく、かつ電気伝導度そのものも高くなりやすい。その結果、電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する場合には、フィルム部分に炭素化の進行に伴って均一に電流が流れ、表面及び内部での均一な発熱が起こり、厚みが薄い場合に加え、厚い場合においても熱伝導性の高いグラファイトとなる。また、出来上がるグラファイトの結晶性が優れ、耐熱性にも優れたものとなるため、電界が集中し局所的な加熱が生じたとしても破損することなく、品質の高いグラファイトとなる。
【0128】
<ポリイミドフィルムと複屈折>
本発明に用いられるポリイミドフィルムにおいて、分子の面内配向性に関連する複屈折Δnは、フィルム面内のどの方向に関しても0.08以上、好ましくは0.10以上、さらに好ましくは0.12以上、最も好ましくは0.14以上である。
【0129】
<原料フィルムと複屈折>
複屈折が高くなるほど、フィルムの炭化(炭素化)、黒鉛化が進行しやすいため、フィルムの電気伝導度が高くなりやすい。その結果、電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程では、フィルム部分に炭素化の進行に応じた電気抵抗の変化に応じて均一に電流が流れ、また炭素化の進行に伴いフィルムに流れる電流量が増え、表面及び内部での均一な発熱が起こるため、均一な黒鉛化が進行しやすくなる。またフィルム面内で均一に電気伝導度が高くなるため、フィルム内で部分的な電界集中を起すことなく、局所的な発熱が起こらず、結果として表面及び内部で均一な黒鉛化が進行する。
【0130】
また、低温で炭化(炭素化)及び黒鉛化が進行するために、低温の熱処理中からフィルムの電気伝導度が高くなり、表面及び内部での均一な発熱が起こり、均一な黒鉛化が進行しやすくなる。
【0131】
また、複屈折が高くなるほど、結晶性に優れ、耐熱性にも優れたものとなるため、電界が集中し局所的な加熱が生じたとしても破損することなく、品質の高いグラファイトフィルムとなる。
【0132】
また、原料の厚みが厚くなったとしても、表面と内部で均一に黒鉛化が進行するため、熱伝導性の優れたグラファイトが得られる。
【0133】
また、複屈折が高くなるほど、得られるグラファイトフィルムの熱伝導性が顕著に改善される。従って、通電の結果生じる熱から与えられ、原料フィルムに結果として与えられる最高処理温度を下げることが可能となり、消費電力の低減が可能となる。短時間の熱処理でも品質の高いグラファイトフィルムとなる。
【0134】
複屈折が高くなると黒鉛化しやすくなる理由は明らかではないが、グラファイト化のためには分子が再配列する必要があり、複屈折の高い分子配向性に優れたポリイミドフィルムでは分子の再配列が最小で済むことから、ポリイミドフィルムの中でも、より配向性に優れたポリイミドフィルムの方が、比較的低温の通電処理による熱発生に伴う最高処理温度で、厚みが厚くても、結晶性の高いグラファイトフィルムになると推測される。
【0135】
<複屈折>
ここでいう複屈折とは、フィルム面内の任意方向の屈折率と厚み方向の屈折率との差を意味し、フィルム面内の任意方向Xの複屈折Δnxは次式(数式1)で与えられる。
【0136】
【数1】

【0137】
図6と図7において、複屈折の具体的な測定方法が図解されている。図6の平面図において、フィルム1から細いくさび形シート2が測定試料として切り出される。このくさび形シート2は一つの斜辺を有する細長い台形の形状を有しており、その一底角が直角である。このとき、その台形の底辺はX方向と平行な方向に切り出される。図7は、このようにして切り出された測定試料2を斜視図で示している。台形試料2の底辺に対応する切り出し断面に直角にナトリウム光4を照射し、台形試料2の斜辺に対応する切り出し断面側から偏光顕微鏡で観察すれば、干渉縞5が観察される。この干渉縞の数をnとすれば、フィルム面内X方向の複屈折Δnxは、次式(数式2)で表される。
【0138】
【数2】

【0139】
ここで、λはナトリウムD線の波長589nmであり、dは試料2の台形の高さに相当する試料の幅3である。
【0140】
なお、前述の「フィルム面内の任意方向X」とは、例えばフィルム形成時における材料流れの方向を基準として、X方向が面内の0゜方向、45゜方向、90゜方向、135゜方向のどの方向においても、の意味である。
【0141】
<ポリイミドフィルムの熱的性質、機械的性質、物理的性質、化学的性質>
また、本発明に用いられるグラファイトの原料となるポリイミドフィルムは、100〜200℃の範囲において2.5×10-5/℃未満の平均線膨張係数を有しているとよい。線膨張係数が2.5×10-5/℃未満であれば、熱処理中の伸びが小さく、スムースに黒鉛化が進行し、脆くなく、種々の特性に優れたグラファイトを得ることができる。 このようなポリイミドフィルムを原料に用いることで、グラファイトへの転化が2400℃から始まり、2700℃で十分結晶性の高いグラファイトに転化が生じ得る。なお、その線膨張係数は、2.0×10-5/℃以下であることがより好ましい。
【0142】
なお、原料フィルムの線膨張係数は、TMA(熱機械分析装置)を用いて、まず試料を10℃/分の昇温速度で350℃まで昇温させた後に一旦室温まで空冷し、再度10℃/分の昇温速度で350℃まで昇温させ、2回目の昇温時の100℃〜200℃における平均線膨張係数を測定することによって得られる。具体的には、熱機械分析装置(TMA:セイコー電子製SSC/5200H;TMA120C)を用いて、3mm幅×20mm長のサイズのフィルム試料を所定の治具にセットし、引張モードで3gの荷重をかけて窒素雰囲気下で測定が行われる。
【0143】
また、本発明に用いられるポリイミドフィルムは、その弾性率が2.5GPa以上、好ましくは3.4GPa以上であれば、グラファイト化をより容易に行い得るということから好ましい。すなわち、弾性率が2.5GPa以上、好ましくは3.4GPa以上であれば、熱処理中のフィルムの収縮によるフィルムの破損を防止することができ、種々の特性に優れたグラファイトを得ることができる。
【0144】
なお、フィルムの弾性率は、ASTM−D−882に準拠して測定することができる。ポリイミドフィルムのより好ましい弾性率は3.0GPa以上であり、好ましくは4.0GPa以上であり、さらに好ましくは5.0GPa以上である。フィルムの弾性率が2.5GPaより小さければ、熱処理中のフィルムの収縮で破損および変形しやすくなり、得られるグラファイトの結晶性は劣り、密度および熱伝導性が劣る傾向にある。
【0145】
フィルムの吸水率は、下記のごとく測定した。フィルムを絶乾するために、100℃で30分乾燥して、25μm厚み10cm角のサンプルを作製した。この重量を測定してA1とする。25μm厚み10cm角のサンプルを蒸留水に23℃で24時間浸漬し、表面の水を拭いて除去し直ちに重量を測定した。この重量をA2とする。下記式より吸水率を求めた。
【0146】
吸水率(%)=(A2−A1)÷A1×100
<ポリイミドフィルムの作製方法>
本発明で用いられるポリイミドフィルムは、ポリイミド前駆体であるポリアミド酸の有機溶液をイミド化促進剤と混合した後、エンドレスベルトまたはステンレスドラムなどの支持体上に流延し、それを乾燥および焼成してイミド化させることにより製造され得る。
【0147】
本発明に用いられるポリアミド酸の製造方法としては公知の方法を用いることができ、通常は、芳香族酸二無水物の少なくとも1種とジアミンの少なくとも1種が実質的に等モル量で有機溶媒中に溶解させられる。そして、得られた有機溶液は酸二無水物とジアミンの重合が完了するまで制御された温度条件下で攪拌され、これによってポリアミド酸が製造され得る。このようなポリアミド酸溶液は、通常は5〜35wt%、好ましくは10〜30wt%の濃度で得られる。この範囲の濃度である場合に、適当な分子量と溶液粘度を得ることができる。
【0148】
重合方法としてはあらゆる公知の方法を用いることができるが、例えば次のような重合方法(1)−(5)が好ましい。
【0149】
(1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて重合する方法。
【0150】
(2)芳香族テトラカルボン酸二無水物とこれに対して過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマを得る。続いて、芳香族テトラカルボン酸二無水物に対して実質的に等モルになるように芳香族ジアミン化合物を用いて重合させる方法。
【0151】
これは、請求項17で記載した、ジアミンと酸二無水物を用いて前記酸二無水物を両末端に有するプレポリマを合成し、前記プレポリマに前記とは異なるジアミンを反応させてポリアミド酸を合成する方法と同様である。
【0152】
(3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマを得る。続いて、このプレポリマに芳香族ジアミン化合物を追加添加後に、芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族テトラカルボン酸二無水物を用いて重合する方法。
【0153】
(4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解および/または分散させた後に、その酸二無水物に対して実質的に等モルになるように芳香族ジアミン化合物を用いて重合させる方法。
【0154】
(5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて重合する方法。
【0155】
これらの中でも(2)、(3)に示すプレポリマを経由するシーケンシャル制御(シーケンスコントロール)(ブロックポリマー同士の組み合わせ・ブロックポリマー分子同士の繋がりの制御)をして重合する方法が好ましい。というのは、この方法を用いることで、複屈折が大きく、線膨張係数が小さいポリイミドフィルムが得られやすく、このポリイミドフィルムを熱処理することにより、結晶性が高く、密度および熱伝導性が優れたグラファイトを得やすくなるからである。また、規則正しく、制御されることで、芳香環の重なりが多くなり、低温の熱処理でもグラファイト化が進行しやすくなると推定される。また複屈折を高めるために、イミド基含有量を増やすと、樹脂中の炭素比率が減り、黒鉛処理後の炭素化収率が減るが、シーケンシャル制御をして合成されるポリイミドフィルムは、樹脂中の炭素比率を落とすことなく、複屈折を高めることが出来るために好ましい。
【0156】
本発明においてポリイミドの合成に用いられ得る酸二無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、およびそれらの類似物を含み、それらを単独でまたは任意の割合の混合物で用いることができる。
【0157】
本発明においてポリイミドの合成に用いられ得るジアミンとしては、4,4’−オキシジアニリン、p−フェニレンジアミン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル(4,4’−オキシジアニリン)、3,3’−ジアミノジフェニルエーテル(3,3’−オキシジアニリン)、3,4’−ジアミノジフェニルエーテル(3,4’−オキシジアニリン)、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼンおよびそれらの類似物を含み、それらを単独でまたは任意の割合の混合物で用いることができる。
【0158】
特に、線膨張係数を小さくして弾性率を高くかつ複屈折を大きくし得るという観点から、本発明におけるポリイミドフィルムの製造では、下記式(1)で表される酸二無水物を原料に用いることが好ましい。
【0159】
【化1】

【0160】
ここで、R1は、下記の式(2)〜式(14)に含まれる2価の有機基の群から選択されるいずれかであって、
【0161】
【化2】

【0162】
ここで、R2、R3、R4、およびR5の各々は−CH3、−Cl、−Br、−F、または−OCH3の群から選択されるいずれかであり得る。
【0163】
上述の酸二無水物を用いることによって比較的低吸水率のポリイミドフィルムが得られ、このことはグラファイト化過程において水分による発泡を防止し得るという観点からも好ましい。
【0164】
特に、酸二無水物におけるR1として式(2)〜式(14)に示されているようなベンゼン核を含む有機基を使用すれば、得られるポリイミドフィルムの分子配向性が高くなり、線膨張係数が小さく、弾性率が大きく、複屈折が高く、さらには吸水率が低くなるという観点から好ましい。
【0165】
さらに線膨張係数を小さく、弾性率を高く、複屈折を大きく、吸水率を小さくするためには、本発明におけるポリイミドの合成に下記式(15)で表される酸二無水物を原料に用いればよい。
【0166】
【化3】

【0167】
特に、2つ以上のエステル結合でベンゼン環が直線状に結合された構造を有する酸二無水物を原料に用いて得られるポリイミドフィルムは、屈曲鎖を含むけれども全体として非常に直線的なコンフォメーションをとりやすく、比較的剛直な性質を有する。その結果、この原料を用いることによってポリイミドフィルムの線膨張係数を小さくすることができ、例えば1.5×10-5/℃以下にすることができる。また、弾性率は500kgf/mm2以上に大きくすることができ、吸水率は1.5%以下に小さくすることができる。
【0168】
さらに線膨張係数を小さく、弾性率を高く、複屈折を大きくするためには、本発明におけるポリイミドは、p−フェニレンジアミンを原料に用いて合成されることが好ましい。
【0169】
また、本発明においてポリイミドの合成に用いられる最も適当なジアミンは4,4’−オキシジアニリンとp−フェニレンジアミンであり、これらの単独または2者の合計モルが全ジアミンに対して40モル%以上、さらには50モル%以上、さらには70モル%以上、またさらには80モル%以上であることが好ましい。さらに、p−フェニレンジアミンが10モル%以上、さらには20モル%以上、さらには30モル%以上、またさらには40モル%以上を含むことが好ましい。これらのジアミンの含有量がこれらのモル%範囲の下限値未満になれば、得られるポリイミドフィルムの線膨張係数が大きく、弾性率が小さく、複屈折が小さくなる傾向になる。但し、ジアミンの全量をp−フェニレンジアミンにすると、発泡の少ない厚みの厚いポリイミドフィルムを得るのが難しくなるため、4,4’−オキシジアニリンを使用するのが良い。
【0170】
本発明においてポリイミドフィルムの合成に用いられる最も適当な酸二無水物はピロメリット酸二無水物および/または式(15)で表されるp−フェニレンビス(トリメリット酸モノエステル酸二無水物)であり、これらの単独または2者の合計モルが全酸二無水物に対して40モル%以上、さらには50モル%以上、さらには70モル%以上、またさらには80モル%以上であることが好ましい。これら酸二無水物の使用量が40モル%未満であれば、得られるポリイミドフィルムの線膨張係数が大きく、弾性率が小さく、複屈折が小さくなる傾向になる。
【0171】
また、ポリイミドフィルム、ポリアミド酸、ポリイミド樹脂に対して、カーボンブラック、グラファイト等の添加剤を添加しても良い。
【0172】
ポリアミド酸を合成するための好ましい溶媒は、アミド系溶媒であるN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミドが特に好ましく用いられ得る。
【0173】
次に、ポリイミドの製造方法には、前駆体であるポリアミド酸を加熱でイミド転化する熱キュア法、またはポリアミド酸に無水酢酸等の酸無水物に代表される脱水剤やピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類をイミド化促進剤として用いてイミド転化するケミカルキュア法のいずれを用いてもよい。中でも、イソキノリンのように沸点の高いものほど好ましい。というのは、フィルム作製中の初期段階では蒸発せず、乾燥の最後の過程まで、触媒効果が発揮されやすいため好ましい。特に、得られるフィルムの線膨張係数が小さく、弾性率が高く、複屈折が大きくなりやすく、また比較的低温で迅速なグラファイト化が可能で、品質のよいグラファイトを得ることができるという観点からケミカルキュアの方が好ましい。特に、脱水剤とイミド化促進剤を併用することは、得られるフィルムの線膨張係数が小さく、弾性率が大きく、複屈折が大きくなり得るので好ましい。また、ケミカルキュア法は、イミド化反応がより速く進行するので加熱処理においてイミド化反応を短時間で完結させることができ、生産性に優れた工業的に有利な方法である。
【0174】
具体的なケミカルキュアによるフィルムの製造においては、まずポリアミド酸溶液に化学量論以上の脱水剤と触媒からなるイミド化促進剤を加えて、支持板、PET等の有機フィルム、ドラム、またはエンドレスベルト等の支持体上に流延または塗布して膜状にし、有機溶媒を蒸発させることによって自己支持性を有する膜を得る。次いで、この自己支持性膜をさらに加熱して乾燥させつつイミド化させてポリイミド膜を得る。この加熱の際の温度は、150℃から550℃の範囲内にあることが好ましい。加熱の際の昇温速度には特に制限はないが、連続的もしくは段階的に、徐々に加熱して最高温度がその所定温度範囲内になるようにするのが好ましい。加熱時間はフィルム厚みや最高温度によって異なるが、一般的には最高温度に達してから10秒から10分の範囲が好ましい。さらに、ポリイミドフィルムの製造工程中に、収縮を防止するためにフィルムを固定したり延伸したりする工程を含めば、得られるフィルムの線膨張係数が小さく、弾性率が高く、複屈折が大きくなりやすい傾向にあるので好ましい。
【0175】
<ポリイミドフィルムを含む、原料フィルムのグラファイト化>
グラファイト化処理では、熱処理により炭素化した後、グラファイト構造に転化させられるが、その際には炭素−炭素結合の開裂と再結合が起きなければならない。グラファイト化をできる限り起こしやすくするためには、その開裂と再結合が最小のエネルギーで起こるようにする必要がある。出発原料フィルム(例えば、上記に列記した高分子フィルム、特にポリイミドフィルム)の分子配向は炭素化フィルム中の炭素原子の配列に影響を与え、その分子配向はグラファイト化の際に炭素−炭素結合の開裂と再結合化のエネルギーを少なくする効果を生じ得る。したがって、高度な分子配向が生じやすくなるように分子設計を行うことによって、比較的低温でのグラファイト化が可能になる。この分子配向の効果は、フィルム面に平行な二次元的分子配向とすることによって一層顕著になる。
【0176】
グラファイト化反応における第二の特徴は、原料フィルムが厚ければ低温でグラファイト化が進行しにくいということである。したがって、厚い原料フィルムをグラファイト化する場合には、表面層ではグラファイト構造が形成されているのに内部ではまだグラファイト構造になっていないという状況が生じ得る。原料フィルムの分子配向性はフィルム内部でのグラファイト化を促進し、結果的により低温で良質のグラファイトへの転化を可能にする。
【0177】
原料フィルムの表面層と内部とでほぼ同時にグラファイト化が進行するということは、内部から発生するガスのために表面層に形成されたグラファイト構造が破壊されるという事態を避けることにも役立ち、より厚いフィルムのグラファイト化を可能にする。本発明において作製される原料フィルム(例えば、上記に列記した高分子フィルム、特にポリイミドフィルム)は、まさにこのような効果を生じるのに最適な分子配向を有していると考えられる。
【0178】
<グラファイトフィルムの厚み>
本発明の製造方法で作製されるグラファイトフィルムの厚みは、20μm以上、好ましくは50μm以上、さらに好ましくは90μm以上であると良い。特に90μm以上になると、熱輸送量が増えるために、発熱機器から熱を逃がしやすくなり、温度上昇を抑えることが可能となる。
【0179】
<グラファイトフィルムの熱拡散率>
本発明の製造方法で作製されるグラファイトフィルムの熱拡散率は、5.0×10-42/S以上、好ましくは8.0×10-42/S以上、さらに好ましくは9.0×10-42/S以上であると良い。5.0×10-42/S以上になると、熱伝導性が高いために、発熱機器から熱を逃がしやすくなり、発熱機器の温度上昇を抑えることが可能となる。一方、5.0×10-42/S未満になると、熱伝導性が悪いために、発熱機器から熱を逃がすことができなくなり、発熱機器の温度上昇を抑えることができなくなる。
【0180】
本発明の実施例で後述するように、90μm以上の厚みを有し、かつ、熱拡散率が8×10-42/S以上であることを特徴とする、グラファイトフィルム(原料フィルムが225μmの場合)を実現できている。
【0181】
以上のように、本発明において製造工程中に原料フィルムに電圧を印加し通電することで加熱する工程を含むグラファイトフィルムの製造方法を用いれば、従来よりも熱伝導性に優れたグラファイトを得ることができ、また従来グラファイト化が困難であった厚いフィルムのグラファイト化が可能となる。具体的には、厚さが例えば125μm、175μm、200μmや225μm程度のフィルムにおいても、適当な熱処理を選択することにより、良質なグラファイトへの転化が可能となる。
【0182】
<用途など>
本発明の製造方法で作製されるグラファイトフィルムは、熱伝導性、電気伝導性が高いために、例えば、サーバー、サーバー用パソコン、デスクトップパソコン等の電子機器、ノートパソコン、電子辞書、PDA、携帯電話、ポータブル音楽プレイヤー等の携帯電子機器、液晶ディスプレイ、プラズマディスプレイ、LED、有機EL、無機EL、液晶プロジェクタ、時計等の表示機器、インクジェットプリンタ(インクヘッド)、電子写真装置(現像装置、定着装置、ヒートローラ、ヒートベルト)等の画像形成装置、半導体素子、半導体パッケージ、半導体封止ケース、半導体ダイボンディング、CPU、メモリ、パワートランジスタ、パワートランジスタケース等の半導体関連部品、リジッド配線板、フレキシブル配線板、セラミック配線板、ビルドアップ配線板、多層基板等の配線基板(以上左記の配線板とは、プリント配線板なども含む)、真空処理装置、半導体製造装置、表示機器製造装置等の製造装置、断熱材、真空断熱材、輻射断熱材等の断熱装置、DVD(光ピックアップ、レーザー発生装置、レーザー受光装置)、ハードディスクドライブ等のデータ記録機器、カメラ、ビデオカメラ、デジタルカメラ、デジタルビデオカメラ、顕微鏡、CCD等の画像記録装置、充電装置、リチウムイオン電池、燃料電池等のバッテリー機器等の放熱材料、放熱部品、冷却部品、温度調節部品、電磁シールド部品として好適である。
【0183】
<使用形態など>
また、使用において、発熱体、ヒートシンク、ヒートパイプ、水冷冷却装置、ペルチェ素子、筐体、ヒンジとの固定、熱拡散性、放熱性、取り扱い性を改善するために、片面および/または両面に樹脂層、セラミック層、金属層、絶縁層、導電層を形成しても良い。
【0184】
以下において、本発明の種々の実施例がいくつかの比較例と共に説明される。
【0185】
本発明は、以下の発明を包含する。
【0186】
第1は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムをグラファイト化するグラファイトフィルムの製造方法であって、電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化する工程を含むことを特徴とする、グラファイトフィルムの製造方法、である。
【0187】
第2は、製造工程の初期において前記原料フィルムが絶縁体であることを特徴とする、上記第1記載のグラファイトフィルムの製造方法、である。
【0188】
第3は、前記の、電圧を印加し直接通電可能な容器が、黒鉛製容器であることを特徴とする、上記第1または上記第2に記載のグラファイトフィルムの製造方法、である。
【0189】
第4は、上記第3に記載のグラファイトフィルムの製造方法であって、さらに、前記黒鉛製容器と原料フィルムとの間および/または前記黒鉛製容器の外部周辺に、カーボン粉末が充填されている状態で、前記通電がなされることを特徴とする、グラファイトフィルムの製造方法、である。
【0190】
第5は、高分子フィルムおよび/または炭素化した高分子フィルムからなる原料フィルムをグラファイト化するグラファイトフィルムの製造方法であって、通電可能な容器(A)内に該原料フィルムを保持し、さらに該容器(A)を通電可能な容器(B)内に保持し、全体に通電しながらグラファイト化する工程を含むことを特徴とする、グラファイトフィルムの製造方法、である。
【0191】
第6は、上記第5記載のグラファイトフィルムの製造方法であって、前記容器(B)の周辺に、カーボン粉末が存在している状態で、前記通電がなされることを特徴とする、グラファイトフィルムの製造方法、である。
【0192】
第7は、上記第5〜6のいずれかに記載のグラファイトフィルムの製造方法であって、前記容器(A)と前記容器(B)の間に、カーボン粉末が存在している状態で、前記通電がなされることを特徴とする、グラファイトフィルムの製造方法、である。
【0193】
第8は、前記容器(A)と前記容器(B)が接触していないことを特徴とする、上記第5〜7のいずれかに記載のグラファイトフィルムの製造方法、である。
【0194】
第9は、前記容器(B)が円筒であることを特徴とする、上記第5〜8のいずれかに記載の、グラファイトフィルムの製造方法、である。
【0195】
第10は、原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度が0度より大きく180度未満であることを特徴とする、上記第5〜9のいずれかに記載のグラファイトフィルムの製造方法、である。
【0196】
第11は、前記容器(A)および/または前記容器(B)が、黒鉛製容器であることを特徴とする、上記第5〜10のいずれかに記載のグラファイトフィルムの製造方法、である。
【0197】
第12は、製造工程の初期において前記原料フィルムが絶縁体であることを特徴とする、上記第5〜11記載のグラファイトフィルムの製造方法、である。
【0198】
第13は、前記高分子フィルムが、ポリイミド、ポリアミド、ポリオキサジアゾール、ポリベンゾチアゾール、ポリベンゾビスチアゾール、ポリベンゾオキサゾール、ポリベンゾビスオキサゾール、ポリパラフェニレンビニレン、ポリベンゾイミダゾール、ポリベンゾビスイミダゾール、ポリチアゾールのうちから選ばれた少なくとも一種類以上の高分子からなることを特徴とする、上記第1〜12のいずれかに記載のグラファイトフィルムの製造方法、である。
【0199】
第14は、前記高分子フィルムが、複屈折0.08以上のポリイミドフィルムであることを特徴とする、上記第13に記載のグラファイトフィルムの製造方法、である。
【0200】
第15は、前記高分子フィルムが、複屈折0.12以上のポリイミドフィルムであることを特徴とする、上記第13に記載のグラファイトフィルムの製造方法、である。
【0201】
第16は、前記ポリイミドフィルムが、ピロメリット酸二無水物、p−フェニレンジアミンを含むポリアミド酸を、脱水剤とイミド化促進剤とを用いてイミド化して作製されるポリイミドフィルムであることを特徴とする、上記第13〜15のいずれかに記載のグラファイトフィルムの製造方法、である。
【0202】
第17は、前記ポリイミドフィルムが、ジアミンと酸二無水物を用いて前記酸二無水物を両末端に有するプレポリマを合成し、前記プレポリマに前記とは異なるジアミンを反応させてポリアミド酸を合成し、前記ポリアミド酸をイミド化して作製されるポリイミドフィルムであることを特徴とする、上記第13〜16のいずれかに記載のグラファイトフィルムの製造方法、である。
【0203】
第18は、上記第1〜17のいずれかに記載の製造方法で製造されたことを特徴とする、グラファイトフィルム、である。
【0204】
第19は、上記第1〜17のいずれかに記載の製造方法で製造されたことを特徴とする、グラファイトフィルムであって、原料フィルム25cm2以上、面方向の熱拡散率が5×10-42/S以上、かつ、面方向の熱拡散率のバラツキが40%以下であることを特徴とする、グラファイトフィルム、である。
【0205】
第20は、上記第19に記載のグラファイトフィルムであって、90μm以上の厚みを有することを特徴とする、グラファイトフィルム、である。
【実施例】
【0206】
(ポリイミドフィルムAの作製方法)
4,4’−オキシジアニリンの1当量を溶解したDMF(ジメチルフォルムアミド)溶液に、ビロメリット酸二無水物の1当量を溶解してポリアミド酸溶液(18.5wt%)を得た。
【0207】
この溶液を冷却しながら、ポリアミド酸に含まれるカルボン酸基に対して、1当量の無水酢酸、1当量のイソキノリン、およびDMFを含むイミド化触媒を添加し脱泡した。次にこの混合溶液が、乾燥後に所定の厚さになるようにアルミ箔上に塗布された。アルミ箔上の混合溶液層は、熱風オーブン、遠赤外線ヒーターを用いて乾燥された。
【0208】
出来上がり厚みが75μmの場合におけるフィルム作製用の乾燥条件を示す。アルミ箔上の混合溶液層は、熱風オーブンで120℃において240秒乾燥されて、自己支持性を有するゲルフィルムにされた。そのゲルフィルムはアルミ箔から引き剥がされ、フレームに固定された。さらに、ゲルフィルムは、熱風オーブンにて120℃で30秒、275℃で40秒、400℃で43秒、450℃で50秒、および遠赤外線ヒーターにて460℃で23秒段階的に加熱されて乾燥された。
【0209】
以上のようにして、厚さ25、50、75、125、225μmのポリイミドフィルム(ポリイミドフィルムA:弾性率3.1GPa、吸水率2.5%、複屈折0.10、線膨張係数3.0×10-5/℃)が製造された。なお、その他厚みのフィルムを作製する場合には、厚みに比例して焼成時間が調整された。例えば厚さ、225μmのフィルムの場合には、75μmの場合よりも焼成時間を3倍に設定した。また、厚みか厚い場合には、ポリイミドフィルムの溶媒やイミド化触媒蒸発による発泡を防ぐために低温での焼成時間を十分とる必要がある。
【0210】
実際のグラファイト化においては、上記方法と同様にして作製された(株)カネカ製・アピカルAHの厚さ25、50、75、125、225μmのポリイミドフィルムを用いた。
【0211】
(ポリイミドフィルムBの作製方法)
ポリアミド酸に4,4’−オキシジアニリンの1当量,p−フェニレンジアミンの1当量を溶解したDMF(ジメチルフォルムアミド)溶液に、ピロメリット酸二無水物の2当量を溶解して得られたポリアミド酸を用いた以外は実施例1と同様にして厚さ25、50、75、125、225μmのポリイミドフィルム(ポリイミドフィルムB:弾性率4.9GPa、吸水率3.0%.複屈折0.14.線膨張係数1.5×10-5/℃)が製造された。
【0212】
(ポリイミドフィルムCの作製方法)
ポリアミド酸に4,4’−オキシジアニリンの3当量を溶解したDMF溶液にピロメリット酸二無水物の4当量を溶解して、両末端に酸無水物を有するプレポリマが合成された後、そのプレポリマを含む溶液にp−フェニレンジアミンの1当量を溶解することによって得られたポリアミド酸を用いた以外はポリイミドフィルムAと同様にして厚さ25、50、75、125、225μmのポリイミドフィルム(ポリイミドフィルムC:弾性率4.1GPa、吸水率2.1%、複屈折0.14、線膨張係数1.6×10-5/℃)が製造された。
【0213】
実際の黒鉛化においては、上記方法と同様にして作製された(株)カネカ製・アピカルNPIの厚さ25、50、75、125、225μmのポリイミドフィルムを用いた。
【0214】
(ポリイミドフィルムDの作製方法)
4,4’−オキシジアニリンの1当量を溶解したDMF(ジメチルフォルムアミド)溶液に、ピロメリット酸二無水物の1当量を溶解することによって得られたポリアミド酸を用い、触媒を添加されていないポリアミド酸溶液が、乾燥後に所定の厚さになるようにアルミ箔上に塗布された。アルミ箔上の混合溶液層は、熱風オーブンで120℃において10分乾燥されて、自己支持性を有するゲルフィルムにされた。そのゲルフィルムはアルミ箔から引き剥がされ、フレームに固定された。さらに、ゲルフィルムは、熱風オーブンにて120℃から400℃まで1時間かけて昇温して乾燥され、厚さ25、50、75、125、225μmのポリイミドフィルム(ポリイミドフィルムD:弾性率2.9GPa、吸水率2.5%、複屈折0.08、線膨張係数3.5×10-5/℃)が製造された。
【0215】
(実施例1)
ポリイミドフィルムAを黒鉛板に挟み、電気炉を用いて窒素雰囲気下で、1000℃まで昇温された後、1000℃で1時間熱処理して炭化処理(炭素化処理)が行われた。この炭素化フィルムを炭素化フィルムA’とする。
【0216】
得られた炭素化フィルムA’を縦6cm×横6cm×厚み5mmの板状の平滑なグラファイトで上から挟んだ状態で、直方体状の黒鉛容器内に保持した状態で、容器をコークスを主成分とするカーボン粉末で覆い、雰囲気加熱ではなく、容器及びカーボン粉末全体に直流電圧を通電することで3000℃まで加熱し、グラファイトフィルムが作製された。
【0217】
(実施例2)
ポリイミドフィルムBを用いて、実施例1と同様に一旦炭素化処理をし炭素化フィルムB’を経由して、ひきつづいて実施例1と同様に通電することで、グラファイトフィルムが作製された。
【0218】
(実施例3)
ポリイミドフィルムCを用いて、実施例1と同様に一旦炭素化処理をし炭素化フィルムC’を経由して、ひきつづいて実施例1と同様に通電することで、グラファイトフィルムが作製された。
【0219】
(実施例4)
実施例1で得られた炭素化フィルムA’を黒鉛容器内に保持した状態で、容器に直接通電して3000℃まで加熱し、グラファイトフィルムが作製された。
【0220】
(実施例5)
実施例3で得られた炭素化フィルムC’を黒鉛容器内に保持した状態で、容器に直接通電して3000℃まで加熱し、グラファイトフィルムが作製された。
【0221】
(実施例6)
実施例1で得られたポリイミドフィルムAを黒鉛容器内に保持した状態で、容器をカーボン粉末で覆い、容器及びカーボン粉末全体に通電して3000℃まで加熱し、グラファイトフィルムが作製された。
【0222】
(実施例7)
実施例3で得られたポリイミドフィルムCを黒鉛容器内に保持した状態で、容器をカーボン粉末で覆い、容器及びカーボン粉末全体に通電して3000℃まで加熱し、グラファイトフィルムが作製された。
【0223】
(比較例1)
実施例1で得られたポリイミドフィルムAを黒鉛板に挟み、グラファイトヒーターを有する超高温炉を用いて減圧下で1000℃まで昇温され炭素化処理が行われた。引き続いて、超高温炉を用いて0.09MPaの減圧アルゴン雰囲気下で3000℃まで昇温され、その最高温度で1時間保持された。その後に冷却され、グラファイトフィルムが得られた。
【0224】
実施例1〜7、比較例1で得られたグラファイトフィルムの熱拡散率が表1に示されている。
【0225】
【表1】

【0226】
グラファイト化の進行状況は、フィルム面方向の熱拡散率を測定することによって判定され、熱拡散率が高いほど、グラファイト化が顕著であることを意味している。熱拡散率は、光交流法による熱拡散率測定装置(アルバック理工(株)社から入手可能な「LaserPit」)を用いて、20℃の雰囲気下、10Hzにおいて測定された。
【0227】
実施例1〜7で得られたグラファイトフィルムの熱拡散率は、いずれの水準も8.0×10-42/S以上と高い熱伝導性を示した。原料厚みが薄くなるほど、高い傾向にあるものの、最も厚みの厚い例(225μm)でも熱拡散率は8.0×10-42/Sを有しており、原料フィルムの厚みが25μmや50μm等に比べて厚みが厚くなっても十分グラファイト化が進行していた。これら実施例では、電圧を印加し直接通電可能な容器内に、該原料フィルムを保持し、該容器に電圧を印加し通電しながらグラファイト化するため、原料フィルムに通電して加熱を行っているため、原料フィルムそのものの発熱が寄与し、フィルムの内部と表面で均一に加熱され、またフィルム周辺からも十分均一に加熱が行なわれるため、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができたと考える。さらに、125μmや225μm程度の、従来より厚い原料フィルムを用いた場合にも、フィルムの内部、表面、周辺から均一に加熱されるため、表面と内部が同時に黒鉛化し、表層に分解ガスの発生を妨げる黒鉛層が形成されず、内部の分解ガスが抜けやすくなり、分解ガスによるフィルム破損が起こらず、厚みの厚い電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができたと考える。
【0228】
一方、比較例1で得られたグラファイトフィルムの熱拡散率は、ポリイミドフィルムAの厚みが厚くなるに従い低下し、最も厚みが厚い225μmのポリイミドフィルムを出発原料に用いたものでは、熱処理後フィルムが破損していた。比較例1では加熱を不活性ガス雰囲気及び減圧下で行っているため、ヒーターと接触している部分や雰囲気ガスの熱伝導、ヒーターからの輻射熱によって原料フィルムの表面からおこなわれ、フィルムの内部と表面で不均一に黒鉛化が進行し、フィルム全体としての熱伝導性が低下したと考えられる。特に、原料フィルムが厚い場合には、表面から黒鉛化が進行することで、内部からの分解ガスが出にくくなり、無理な分解ガス放出により、フィルムが破壊したと考えられる。
【0229】
実施例1〜3で得られたグラファイトフィルムでは、実施例1、2、3の順で優れていた。実施例2と3が実施例1よりも優れていた理由としては、実施例2と3の方が出発原料の面配向が高かったためと考えられる。実施例3が実施例2に比べて優れていたのは、実施例3では出発原料がシーケンスコントロールされて製造されているため、黒鉛化中の分子の再配列を容易にしたものと考える。また、出発原料の面配向度合いが高いほど炭素比率が高いために、分解ガスの発生量が少なく、スムースに黒鉛化が進行したものと考える。実施例5が実施例4より、実施例7が実施例6よりも優れていたのは同様の理由と考えられる。
【0230】
実施例1が実施例4より、また実施例3が実施例5より優れていた理由としては、実施例1、3では容器に直接通電するのではなく、容器を覆ったカーボン粉末から通電したため、炭化が均一に起こり、品質の高いグラファイトになったと考えられる。
【0231】
実施例6が実施例1より、また実施例7が実施例3より優れていた理由としては、実施例6、7では出発フィルムにポリイミドフィルムを用いており、炭化過程より通電により加熱されたため、炭化が均一に起こり、品質の高いグラファイトになったと考えられる。
【0232】
表1に示すとおり、実施例1〜7で得られたグラファイトフィルムは原料フィルムの40〜50%の厚みに減少しており、十分黒鉛化が進行していることが確認できた。なお、表1に記載したフィルムの厚みは、レーザーホロゲージを使用して測定したものを、10点平均の値を四捨五入してμmの単位で記載した。
【0233】
また、実施例1〜7の内、原料フィルムが225μm厚みの場合、90μm以上の厚みを有し、かつ、熱拡散率が8.0×10-42/S以上であるグラファイトフィルムが実現できた。
【0234】
(実施例8)
炭化処理により得られた炭素化フィルムA’(ポリイミドフィルムの厚み75μm、100cm2(縦100mm×横100mm))を、縦150mm×横140mm×厚み4mmの板状の平滑なグラファイトで上下から挟んだ状態で、図8に示す縦180mm×横170mm×厚み60mmの直接通電可能な黒鉛容器(容器(A))内に、保持した。該容器(A)は、図9に模式的に示すように原料フィルムの面方向が直接通電可能な円筒容器(B)(さらに詳細に説明すると具体的には、図10に模式的に示すような、直接通電可能な、蓋付きの円筒容器(B))の円筒の高さ方向と平行になるように保持し、該容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、また図11に示すように該容器(A)を該容器(B)と接触しないように、保持した。図11に示すように該容器(B)の外部周辺をカーボン粉末で覆った状態で、電圧を該容器(B)の円筒の直径方向(原料フィルムの面方向と平行)に印加し、通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0235】
なお前述した図10は、容器(B)に蓋をする前の模式図である。なお、本実施例では、蓋をしても、容器(B)の中は密閉状態にはならない。すなわち、蓋と容器(B)との間を通じて、膨張・収縮した気体が、出入り可能な状態である。
【0236】
なお、以下の実施例では同様に容器(B)の蓋を使用した。すなわち、以下の実施例では同様に実際には、本実施例のような状態で(すなわち、蓋と容器(B)との間を通じて、膨張・収縮した気体が、出入り可能な状態で)、蓋を使用したものである。
【0237】
ただし、以下の実施例では簡単のために、容器(B)の蓋を図示しないこととする。
【0238】
(実施例9)
炭素化フィルムB’(ポリイミドフィルムの厚み75μm、100cm2(縦100mm×横100mm))を使用すること以外は実施例8と同様にして、グラファイトフィルムが作製された。
【0239】
(実施例10)
炭素化フィルムC’(ポリイミドフィルムの厚み75μm、100cm2(縦100mm×横100mm))を使用すること以外は実施例8と同様にして、グラファイトフィルムが作製された。
【0240】
(実施例11)
炭素化フィルムD’(ポリイミドフィルムの厚み75μm、100cm2(縦100mm×横100mm))を使用すること以外は実施例8と同様にして、グラファイトフィルムが作製された。
【0241】
(実施例12)
図12に示すように容器(B)内に、該容器(A)と該容器(B)が接触するように、保持すること以外は、実施例8と同様にして、グラファイトフィルムが作製された。
【0242】
(実施例13)
図13に示すように容器(A)と容器(B)の間に何も充填しないこと以外は、実施例12と同様にして、グラファイトフィルムが作製された。
【0243】
(実施例14)
図14に示すように原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度が、45度であること以外は、実施例8と同様にして、グラファイトフィルムが作製された。
【0244】
(実施例15)
炭化処理により、得られた炭素化フィルムA’を実施例8と同様に原料フィルムを容器(A)内に保持し、図15に示すように、容器(A)内に保持された原料フィルムの面方向が円筒の容器(B)の円筒の高さ方向と垂直になるように保持し、容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図16に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、図16に示すように該容器(B)の外部周辺をカーボン粉末で覆った状態で、電圧を該容器(B)の円筒の直径方向(原料フィルムの面方向と平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0245】
(実施例16)
炭化処理により得られた炭素化フィルムA’を実施例8と同様に原料フィルムを容器(A)内に保持し、図17に示すように原料フィルムの面方向が円筒の容器(B)の円筒の高さ方向と平行になるように保持し、容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図18に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、図18に示すように該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の直径方向(原料フィルムの面方向とは垂直)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、0度である。
【0246】
(実施例17)
炭化処理により、得られた炭素化フィルムA’を実施例8と同様に原料フィルムを容器(A)内に保持し、図19に示すように原料フィルムの面方向が円筒の容器(B)の円筒の高さ方向と平行になるように保持し、容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図20に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、図20に示すように該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の円筒の高さ方向(原料フィルムの面方向とは平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0247】
(実施例18)
炭化処理により、得られた炭素化フィルムA’を実施例8と同様に原料フィルムを容器(A)内に保持し、図21に示すように原料フィルムの面方向が円筒の容器(B)の円筒の高さ方向と垂直になるように保持し、容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図22に示すように円筒の容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、実施例8と同様に該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の円筒の高さ方向(原料フィルムの面方向とは垂直)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、0度である。
【0248】
(実施例19)
炭化処理により、得られた炭素化フィルムA’を実施例8と同様に原料フィルムを容器(A)内に保持し、図23に示すような角筒の容器(B)内に該容器(A)を保持し、さらに該容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、該容器(A)と該容器(B)が接触しないように、保持した。図24に示すように該容器(B)の外部周辺をカーボン粉末で覆った状態で、原料フィルムの面方向(角筒(B)の長辺と平行な方向)に電圧を印加し、通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0249】
(実施例20)
炭化処理により、得られた炭素化フィルムA’(ポリイミドフィルムの厚み225μm)を実施例8と同様に原料フィルムを容器(A)内に、また実施例8と同様に容器(A)を容器(B)内に保持し、該原料フィルムを保持した該容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図11に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、実施例8と同様に該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の直径方向(原料フィルムの面方向と平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0250】
(実施例21)
炭化処理により、得られた炭素化フィルムC’(ポリイミドフィルムの厚み225μm)を実施例8と同様に原料フィルムを容器(A)内に、また実施例8と同様に容器(A)を容器(B)内に保持し、該原料フィルムを保持した該容器(A)の外部周辺をカーボン粉末で覆い(容器(A)と容器(B)の間にカーボン粉末を充填し)、図11に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、実施例8と同様に該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の直径方向(原料フィルムの面方向と平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0251】
(実施例22)
得られた厚み75μmのポリイミドフィルムAを実施例8と同様に原料フィルムを容器(A)内に、また実施例8と同様に容器(A)を容器(B)内に保持し、該原料フィルムを保持した該容器(A)の外部周辺をカーボン粉末で覆い、図11に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、実施例8と同様に該容器(B)の外部周辺をカーボン粉末で覆った状態で、該容器(B)の直径方向(原料フィルムの面方向と平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0252】
(実施例23)
炭化処理により、得られた炭素化フィルムA’(ポリイミドフィルムの厚み75μm)を実施例8と同様に原料フィルムを容器(A)内に、また実施例8と同様に容器(A)を容器(B)内に保持し、該原料フィルムを保持した該容器(A)の外部周辺をカーボン粉末で覆い、図11に示すように容器(B)内に該容器(A)と該容器(B)が接触しないように、保持した。引き続いて、該容器(B)の外部周辺をカーボン粉末で覆わず、該容器(B)の直径方向(原料フィルムの面方向と平行)に通電することで、3000℃まで加熱し、グラファイトフィルムが作製された。原料フィルムへの通電方向を示す直線と、原料フィルムの面方向に対する法線との、成す角度は、90度である。
【0253】
実施例8〜23、比較例1で得られたグラファイトフィルムの熱拡散率の値、原料、原料厚み、容器(A)と容器(B)のセット方法、電圧印加方法、熱拡散率のバラツキ、表面状態の均一性が表2に示されている。原料厚みとは、炭素化する前の高分子フィルムの厚みである表2に示されている面方向の熱拡散率のバラツキは、得られたグラファイトフィルムの熱拡散率の最大値(MAX)と最小値(MIN)の差を、全体平均(MEAN)と比較した時のずれの百分率を意味し、次の式で表される。バラツキ=(MAX−MIN)/(MEAN)×100[%]。表中の、例えば「<10%」とは、10%未満であることを表す。
【0254】
表2に示している表面状態は、目視および粉落ち程度で表面状態の均一性を確認し、均一性の特に優れたものを「◎」、均一性の優れたものを「○」、少し劣るものを「△」とした。
【0255】
【表2】

【0256】
実施例11を除く、実施例で得られたグラファイトフィルムの熱拡散率は、すべての水準で8.0×10-42/S以上と高い熱伝導性を示した。
【0257】
雰囲気加熱により作製された比較例1のグラファイトよりも、通電加熱により作製された実施例8〜23のグラファイトのほうが熱拡散率の値がすべての水準において高い。また、実施例20および実施例21で、原料厚みが225μmであっても、本発明の通電加熱によるグラファイト化により、表面状態が良好なグラファイトフィルムが作製された。
【0258】
実施例8〜23では、直接通電可能な容器内に、原料フィルムを保持し、カーボン粉末を介して電圧を印加し、通電しながらグラファイト化するため、炭素化の度合いに応じて原料フィルム内にも通電され、該原料フィルム自身が発熱する。結果、原料フィルムそのものの発熱が寄与し、フィルムの内部と表面で均一に加熱され、またフィルム周辺からも十分均一に加熱が行なわれるため、従来よりも電気伝導性、熱伝導性に優れたグラファイトフィルムを得ることができたと考える。
【0259】
同じ通電方法である実施例8〜11で得られたグラファイトフィルムでは、実施例8〜10、9、8、11の順で熱拡散率の値が優れていた。実施例8〜11のなかで、実施例10がもっとも優れていた理由は、出発原料がシーケンスコントロールされ製造されているため、面配向が高く、黒鉛化中の分子の再配列を容易にしたものと考える。実施例10ではまた、出発原料の面配向度合いが高いほど炭素比率が高いために、分解ガスの発生量が少なく、スムースに黒鉛化が進行したものと考える。実施例21が実施例20より優れた理由も同様であると考える。
【0260】
同じ出発原料である実施例8、12、13では、実施例8がもっとも優れたグラファイトであった。実施例8では、容器(A)と容器(B)が接触していないが、実施例12では、容器(A)と容器(B)が接触している。実施例8では、容器(A)と容器(B)が接触していないために、電圧を印加時に、容器(A)は容器(A)の外部周辺を覆ったカーボン粉末から、均一な通電を受け、優れたグラファイトが作製されたと考える。一方で、実施例12では、容器(A)と容器(B)が接触しているために、印加時に、容器(A)の外部周辺を覆ったカーボン粉末からと、容器(A)と容器(B)との接触部からの通電が生じ、容器(A)には、実施例8ほどには均一な通電が達成されるのが困難と考えられ、このために、均一な通電が達成される実施例8で優れたグラファイトが作製されたと推測する。また、実施例13では、容器(A)の外部周辺にカーボン粉末が充填されておらず、印加時の容器(A)への通電は、容器(A)と容器(B)との接触部からのみであり、このために、容器(A)には、実施例8ほどには均一な通電は達成されるのが困難と考えられ、カーボン粉末が充填されている実施例8、および実施例12で実施例13より優れたグラファイトが作製されたと考える。
【0261】
実施例8、実施例14および実施例16で得られたグラファイトフィルムは、特に熱拡散率に着目すると実施例8が最も優れ、次に実施例14、次に実施例16が優れていた。実施例14では原料フィルムへの通電方向を示す直線と原料フィルムの面方向に対する法線との、成す角が45度、実施例16では成す角が0度であるが、実施例8では、成す角が90度である。この角度の違いが、優れたグラファイトフィルムを達成する理由であると考えられる。すなわち、上記の成す角度が90度である実施例8で均一な通電加熱が有利であるためと考えられる。実施例17が実施例18より熱拡散率において優れた理由も、同様であると考える。
【0262】
実施例8が実施例17より優れていた理由は、以下のようであると考える。すなわち、実施例8では通電面が容器(B)の円筒の直径方向であるのに対して、実施例17では通電面が容器(B)の高さ方向である。電圧の偏りがない通電には実施例8の方が有利であるためと考えられる。
【0263】
実施例8が実施例19より優れていた理由は、以下のようであると考える。すなわち、容器(B)の形状が、実施例8では円筒であるのに対して、実施例19では角筒であるためである。印加通電したときに、角筒であるよりも円筒であるほうが、電圧の偏りなく通電が可能であるためであると考えられる。
【0264】
実施例8が実施例23より優れていた理由としては、実施例8では容器(B)に直接通電するのではなく、容器(B)を覆ったカーボン粉末から通電したため、炭化が均一に起こり、品質の高いグラファイトになったと考えられる。
【0265】
実施例10が実施例21より表面の均一性において優れていた理由としては、実施例10のほうが原料フィルムの厚みが薄く、このために、実施例21に比較して、通電加熱によるグラファイト化が表面付近と内部付近とで均一に進行するため品質の優れたグラファイトフィルムが作製されたと考える。とはいえ、従来、原料フィルムの厚みが225μmのような厚いフィルムであって、原料フィルム25cm2以上、熱拡散率が5×10-42/S以上、かつ、面内の熱拡散率のバラツキが40%以下であるような例は実現されていないため、本発明は、従来技術に比べて、大変優位である。
【0266】
すべての実施例で、バラツキが20%以下でグラファイトフィルムが作製されたが、これは、通電加熱による均一な原料フィルムへの加熱が達成され、および本発明における容器形状に起因して、著しい通電時の電圧の偏りが発生しなかったためであると考える。
【0267】
実施例10で、通電加熱により非常に均一な表面状態を持つグラファイトフィルムが作製されたが、これは、原料フィルムの配向性が高いこと、容器(A)と容器(B)が接触していないこと、前記成す角が90度であるため、と考える。
【符号の説明】
【0268】
1 ポリイミドフィルム
2 くさび形シート
3 くさび形シートの幅
4 ナトリウム光
5 干渉縞
11 原料フィルムを保持するための、平滑な通電可能な平板
12 容器(A)
13 原料フィルムを保持した容器(A)
21 円筒の容器(B)
22 角筒の容器(B)
23 蓋
31 容器(A)と容器(B)の間に充填された、カーボン粉末
32 容器(B)の外部周辺に充填された、カーボン粉末



【特許請求の範囲】
【請求項1】
厚さ75μm以上のポリイミドフィルムを熱処理して得られるグラファイトフィルムであって、面方向の熱拡散率が8×10−4/S以上、かつ、面方向の熱拡散率のバラツキが20%以下であることを特徴とする、グラファイトフィルム。
【請求項2】
厚さ31μm以上のグラファイトフィルムであって、面方向の熱拡散率が8×10−4/S以上、かつ、面方向の熱拡散率のバラツキが20%以下であることを特徴とする、グラファイトフィルム。
【請求項3】
面方向の熱拡散率のバラツキが15%未満であることを特徴とする、請求項1又は2に記載のグラファイトフィルム。
【請求項4】
90μm以上の厚みを有することを特徴とする、請求項1〜3のいずれか1項に記載のグラファイトフィルム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2012−12297(P2012−12297A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2011−201095(P2011−201095)
【出願日】平成23年9月14日(2011.9.14)
【分割の表示】特願2006−514712(P2006−514712)の分割
【原出願日】平成17年6月9日(2005.6.9)
【出願人】(000000941)株式会社カネカ (3,932)
【Fターム(参考)】