説明

シリコン製造方法およびシリコン製造装置

【課題】炭素や酸素等の不純物を含有するシリコン粉末から、それを放電プラズマ焼結法によって焼結するだけでは達成できない高純度なシリコン材料を得ることができるシリコン製造方法を提供する。
【解決手段】放電プラズマ焼結法によりシリコン粉末を焼結させた後(ステップS02〜ステップS04)、その焼結したシリコン粉末を容器内で溶融させて(ステップS11〜ステップS12)、高純度なシリコン材料の溶融体(例えば、不純物濃度がppmオーダーの溶融シリコン)を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコンウエハ製造工程から発生するシリコン粉末から、高純度なシリコン材料を得るための技術に関する。
【背景技術】
【0002】
シリコンインゴットから、ワイヤーソーやバンドソーなどのスライス装置を使って半導体チップあるいは太陽電池の基材となるウエハを切り出す場合、シリコンインゴットの重量の約40%に及ぶ大量のシリコンスラッジ(切粉)が発生する。現状、このシリコンスラッジの一部は脱酸剤として利用されることもあるが、そのほとんどは再利用されることなく廃棄物として焼却、埋め立て処分されている。
【0003】
近年、環境への意識が高まる中、限られた資源の有効利用という観点から、現状では廃棄物扱いとされているシリコンスラッジのリサイクルの重要性が高まっている。シリコンスラッジを再資源化することができれば、成長著しい太陽電池産業へのシリコン材料の安定供給や、太陽電池のコストダウンに大きく貢献することができる。
【0004】
しかしながら、シリコンインゴットのスライス装置から排出されるシリコンスラッジは、スライス時に使用する加工液(クーラント)中に分散している。これを回収して再び高純度なシリコンに戻すためには、加工液からシリコンスラッジのみを遠心分離等の手段で分離した後に乾燥させ、その乾燥後のシリコンスラッジから不純物を除去する必要がある。この不純物の除去のための様々な処理は、量産実用性に対する採算面での妨げとなっていた。
【0005】
この採算性の問題を解決する手段として、放電プラズマ焼結装置を用いる方法が、先行事例として特許文献1に提案されている。この先行事例は、加工液(クーラント)から回収したシリコンスラッジを乾燥させて得たシリコン粉末を、放電プラズマ焼結装置によって高純度なシリコン材料へ加工する方法である。この先行事例の概要を、以下、図8を交えて説明する。
【0006】
加工液より分離して乾燥させたシリコン粉末は、表面に酸化皮膜(SiO)が形成されて酸化物となっている。そのため、シリコン粉末を単純に焼結しただけでは高純度なシリコン材料を得ることができない。
【0007】
そこで先行事例においては、図8に示すように、出発原材料であるシリコン粉末8を焼結ダイ6に充填し、真空チャンバー9内を真空にした後、特殊加圧機構を用いて上部パンチ4と下部パンチ5に上下方向から圧力Pをかけつつ、上部パンチ4および下部パンチ5のそれぞれに上部パンチ電極2と下部パンチ電極3を介して、パルス電源1からパルス電流を供給している。このようにすれば、酸化還元反応が起きて、容易に高純度なシリコンを得ることができると、特許文献1には説明されている。
【0008】
なお、上部パンチ電極2と下部パンチ電極3は電流が流れると同時に発熱するので、電流を流している間は、真空チャンバー9により冷却してその昇温を防いでいる。
【0009】
また、この先行事例においては、放電プラズマ焼結装置として、SPSシンテックス(株)製SPS−520を用い、焼結ダイ6には、黒鉛製の内径約20mm、高さ40mmのものを使用し、焼結ダイ6とシリコン粉末8の剥離に厚さ0.2mmのカーボンシートを用いている。焼結時には、上部パンチ4および下部パンチ5を通じてシリコン粉末8を加圧した状態で、さらにパルス電流を流して焼結ダイ6を800°Cまで昇温させ、5分間保持した後に電流を切って冷却させている。焼結の際の真空チャンバー9内の真空度は約3Paとしている。
【0010】
以上のように、シリコンウエハ製造工程から発生するシリコン粉末をリサイクルするための技術として、放電プラズマ焼結法によってシリコン粉末を焼結することで、高純度のシリコン材料を得る方法が提案されている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2008−247670号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、従来の方法で得られる焼結後のシリコン材料は、脱酸剤や合金原料として再利用する分には問題の無い純度となっているが、太陽電池や半導体チップの原料(例えば、ポリシリコンの原材料)として利用できる純度にはなっていない。例えばポリシリコンの原材料として使用するためには、シリコン材料に残留する不純物(例えば、炭素や酸素)の濃度は、ppmオーダーである必要がある。
【0013】
本発明は、炭素や酸素等の不純物を含有するシリコン粉末から、それを放電プラズマ焼結法によって焼結するだけでは達成できない高純度なシリコン材料を得ることができるシリコン製造方法およびシリコン製造装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
上記目的を達成するために、本発明のシリコン製造方法は、放電プラズマ焼結法により容器内のシリコン粉末を焼結させた後、前記容器に電流を流すことで前記シリコン粉末を前記容器内で溶融させ、溶融シリコンを生成することを特徴とする。
【0015】
また、上記目的を達成するために、本発明のシリコン製造装置は、容器と、前記容器の収容物を加圧するパンチと、前記容器に電流を流すための電源と、前記パンチの動作と前記電源の動作を制御する制御装置と、を備え、前記制御装置の制御によって、前記容器内のシリコン粉末を前記パンチで加圧しつつ、前記電源から前記容器に電流を流して、前記シリコン粉末を焼結させた後、前記電源から前記容器に電流を流し、焼結後の前記シリコン粉末を溶融させて、溶融シリコンを生成することを特徴とする。
【発明の効果】
【0016】
本発明によれば、炭素や酸素等の不純物を含有するシリコン粉末から、それを放電プラズマ焼結法によって焼結するだけでは達成できない高純度なシリコン材料を得ることができる。特に、シリコンウエハ製造工程から発生するシリコン粉末を出発原材料とする場合には、不純物の含有量をppmオーダーまで低減した高純度シリコン材料を得ることができる。
【図面の簡単な説明】
【0017】
【図1】本発明の実施の形態におけるシリコンのリサイクル装置の概略構成を示す図
【図2】放電プラズマ焼結法を用いた場合の黒鉛型温度とパンチの押し込み方向の変位量との関係を示す図
【図3】本発明の実施の形態における黒鉛型温度とパルス電流の関係を示す図
【図4】本発明の実施の形態におけるシリコン製造方法のフローチャート
【図5】放電プラズマ焼結法のフローチャート
【図6】(a)本発明の実施の形態における黒鉛型とパンチの焼結前の位置関係を示す外観図、(b)本発明の実施の形態における黒鉛型とパンチの焼結時の位置関係を示す外観図、(c)本発明の実施の形態における黒鉛型とパンチの溶融時の位置関係を示す外観図
【図7】(a)本発明の実施の形態における黒鉛型とパンチの焼結前の位置関係を示す断面図、(b)本発明の実施の形態における黒鉛型とパンチの焼結時の位置関係を示す断面図、(c)本発明の実施の形態における黒鉛型とパンチの溶融時の位置関係を示す断面図
【図8】特許文献1の放電プラズマ焼結装置を示す図
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について、図面を参照しながら説明する。但し、同じ構成要素には同じ符号を付して、重複する説明を省略する場合もある。また、図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示している。また図示された各構成要素の厚み、長さ等は、図面作成の都合上から実際とは異なる。なお、以下の実施の形態で示す数値は一例であって特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
【0019】
まず、放電プラズマ焼結法(Spark Plasma Sintering:SPS法)について簡単に説明する。
【0020】
従来の焼結法の一つに、ホットプレス工法がある。ホットプレス工法は、粉体に圧力をかけながら熱を加えて焼結させる焼結法である。放電プラズマ焼結法は、ホットプレス工法と同様に、粉体に圧力をかけながら熱を加えて焼結させる焼結法であるが、粉体を加熱するのに、パルス電流を用いて粉体相互の接触部に放電プラズマを発生させる点でホットプレス工法と異なる。
【0021】
放電プラズマ焼結法では、黒鉛製のメス型(黒鉛型)の内部に粉体を充填した後、パンチと呼ばれるオス型でメス型内に充填された粉体に圧力を加えると同時に、10ボルト前後のパルス電圧をかける。このパルス電圧により、数百アンペア以上の電流をマイクロ秒間隔のパルス状で流すことで、メス型自体を発熱させると共に、メス型内部の粉体に直接パルス通電して粉体相互の接触部に火花放電を発生させる。このメス型自体の発熱と、火花放電により瞬時に発生する放電プラズマの高エネルギー(ジュール熱と電磁エネルギー)の熱拡散および電界拡散とが相俟って、粉体が結合されて焼結体になる。
【0022】
パルス電流にて焼結を行うのは、電流のON(印加)とOFFを交互に繰り返すことで、粉体間の電流の経路を効率的に拡散させるためである。
【0023】
放電プラズマ焼結法によれば、低温から2000°C以上の超高温領域において、ホットプレス工法等の従来法に比べ、200°C〜500°Cほど低い温度域での焼結が可能となる。さらに、放電プラズマ焼結法によれば、昇温および保持を含めた焼結までの時間を、ホットプレス工法等の従来法に比べ、5分〜20分ほど短くできる。放電プラズマ焼結法は、焼結に要する時間が短いことから粉体自体の結晶成長が抑制されるため、緻密で均質な焼結体が得られることも大きな特徴である。
【0024】
続いて、加工液より回収したシリコン粉末を放電プラズマ焼結装置で焼結した焼結体に関し、その焼結体に含まれる不純物の含有量を調べた実験の結果について記す。
【0025】
実験材料として今回使用したシリコン粉末について、焼結前の炭素および酸素の含有量を燃焼法にて測定した結果、酸素は26.1%、炭素は3.6%であった。ここで、不純物である炭素および酸素の含有量のうち酸素量が突出して多いのは、加工液より回収したシリコンスラッジはフィルタープレス機により水分搾取を行った後に大気雰囲気中に放置した状態で長時間保管されていたので、表面に自然酸化膜が発生したためであると推定される。また、シリコン粉末の表面の色が赤褐色(錆色)であったことからも、その表面に酸化膜が形成されていることを確認できた。
【0026】
この出発原材料であるシリコン粉末を黒鉛型(メス型)に2.3g充填し、ハンドプレス機にて軽く加圧して固めた後に、放電プラズマ焼結装置により非酸化性雰囲気下で焼結を行った。黒鉛型の大きさは、内径20mm、外径50mm、高さ40mmである。また、パンチ(黒鉛製)の大きさは、外形20mm、長さ20mmである。
【0027】
図2に、放電プラズマ焼結法を用いた場合の黒鉛型温度とパンチの押し込み方向の変位量との関係を示す。図2において、黒丸のグラフが黒鉛型温度[°C]を表しており、黒四角のグラフがパンチの押し込み方向の変位量[mm]を表している。また、横軸は経過時間[分]である。ここで、黒鉛型温度は、黒鉛型の型枠外温度である。
【0028】
図2からも分かるように、黒鉛型温度が1100°Cに到達した時間の前後(経過時間10.5分付近〜経過時間12分付近)でパンチの押し込み方向の変位量が大きく変化している。これは、黒鉛型に充填された粉体が、粉の状態から焼結状態へ変化したことを示していると考えられる。今回の実験では、黒鉛型の型外枠温度を、1100°C程度の温度で5分程度維持(経過時間11.5分付近〜経過時間16.5分付近)した後に、冷却した。焼結後の断面を観察すると、灰色の金属色となっており、焼結体になったことが確認できた。
【0029】
放電プラズマ焼結法を用い、上記の条件で作製した焼結体の酸素と炭素の含有量を燃焼法で分析した結果、酸素が3.9%、炭素が3.2%であった。酸素については減少が確認できたが、炭素については際立った減少は確認できなかった。酸素と炭素の含有量を低減させるため、焼結温度である黒鉛型温度1100°Cの維持時間を5分から30分の間で変更して焼結を行ったが、いずれの維持時間においても、焼結後の酸素と炭素の含有量に大差は無かった。
【0030】
以上が、放電プラズマ焼結法についての説明である。
【0031】
一方、先述したように、焼結後の材料をインゴット材料に戻すためには、更に高純度なものを得る方法が求められており、単に放電プラズマ焼結法によって焼結した場合の純度では、不十分である。具体的には、高純度なインゴット材料として、例えば、不純物濃度をppmオーダーまで低減させることが必要である。
【0032】
本実施の形態は、不純物濃度をppmオーダーまで低減させるものである。以下、本実施の形態について説明する。
【0033】
本実施の形態のシリコン製造方法を実施する装置構成の概要を図1に示す。本実施の形態のシリコン製造方法は、非酸化性雰囲気下において、放電プラズマ焼結法により出発原材料であるシリコン粉末12を焼結させた後、その焼結したシリコン粉末(焼結体)を、黒鉛型11内で溶融させて、高純度なシリコン材料の溶融体を生成する方法である。ここで、黒鉛型11は容器の一例である。なお、以下の説明において、本実施の形態のシリコン製造方法の一連の工程は、図示しない制御装置を用いて制御される。
【0034】
図1は、本実施の形態におけるシリコンのリサイクル装置(シリコン製造装置の一例である)の概略構成を示している。図1に示すように、本実施の形態のシリコンのリサイクル装置は、黒鉛型11と、パンチ13と、黒鉛型11にパルス電流を流すためのパルス電源17とを備える。そして、このシリコンのリサイクル装置を用い、非酸化性雰囲気下において、黒鉛型11にパルス電流を流しつつ、黒鉛型11内に充填されたシリコン粉末12をパンチ13により加圧することで焼結させた後、さらに黒鉛型11にパルス電流を流し、焼結後のシリコン粉末(焼結体)を溶融させて、高純度なシリコン材料の溶融体(以下、溶融シリコンと称す)を生成する。
【0035】
本実施の形態によれば、黒鉛型11にパルス電流を流して焼結後のシリコン粉末(焼結体)を溶融させることで、炭素や酸素等の不純物を含有するシリコン粉末12から、不純物濃度をppmオーダーまで低減した高純度シリコン材料を得ることができる。シリコン材料の不純物濃度をppmオーダーまで削減することで、ウエハの原材料となるポリシリコンの製造に利用可能な高純度なシリコン材料を供給することが可能となる。
【0036】
また、本実施の形態では、黒鉛型11内部の溶融シリコンを、加圧により、黒鉛型11に形成された湯道(後述する)を通じて外部へ流して回収している。このようにすることで、溶融シリコンを効率よく回収することができる。なお、本実施の形態のように、シリコン粉末を溶融させながら加圧することは、単に溶融シリコンの回収の効率を上げるだけでなく、溶融シリコンの純度を上げることにも影響していると考えられる。
【0037】
なお、本実施の形態では、出発原材料であるシリコン粉末12を充填した黒鉛型11の内部で、焼結後のシリコン粉末(焼結体)を溶融させている。このようにすれば、焼結体を溶融するのに他の容器へ移し変える必要がなくなる。
【0038】
また、本実施の形態では、放電プラズマ焼結法によりシリコン粉末12を黒鉛型11内部で焼結させた後もパルス電流を流し続けることで、同一の黒鉛型11内で、シリコン粉末の焼結体を経て溶融シリコンに連続的に変化させている。このようにすれば、出発原材料を同一箇所で溶融体まで変化させることができるので、処理時間の短縮化を図ることができる。
【0039】
つまり、本実施の形態では、放電プラズマ焼結装置を利用して、黒鉛型11内に充填されたシリコン粉末12が焼結状態となった後もパルス電流を流し続け、黒鉛型11内でシリコン粉末の焼結体から溶融シリコンへ変化させることにより、不純物濃度をppmオーダーまで除去した高純度シリコン材料を製造している。また、溶融シリコンが流れる湯道を黒鉛型11に設けることで、溶融シリコンを効率的に回収することを可能にしている。以下、これらについて、さらに詳述する。
【0040】
本実施の形態では、上述した放電プラズマ焼結法の焼結実験と同様に、黒鉛製のメス型(黒鉛型11)とオス型(パンチ13,14)を用いた。黒鉛型11に充填する出発原材料には、シリコンウエハ製造工程より発生したシリコン粉末12を用いた。シリコン粉末12の充填量は2.3gであり、焼結前のシリコン粉末12の不純物含有量は酸素が2.2%で炭素は5%であった。
【0041】
黒鉛型11内にシリコン粉末12を充填後、ハンドプレス機で固めて、非酸化性雰囲気下で、放電プラズマ焼結法により焼結を行った後、さらにパルス通電した。
【0042】
図3に、本実施の形態における黒鉛型温度とパルス電流の関係を示す。図3において、黒丸のグラフが黒鉛型温度[°C]を表しており、黒三角のグラフがパルス電流[A]を表している。また、横軸は経過時間[分]である。黒鉛型温度は、黒鉛型の型枠外温度である。
【0043】
単に放電プラズマ焼結法を用いた場合の焼結実験(図2参照)と比較して、本実施の形態のシリコン製造方法は、黒鉛型11の温度を1350°C程度で10分程度維持(経過時間14分付近〜経過時間24分付近)した後に、1450°C程度で5分程度維持(経過時間28分付近〜経過時間33分付近)している点が異なる。
【0044】
図4は、本実施の形態におけるシリコン製造方法を示すフローチャートである。また、本実施の形態におけるシリコン製造方法と放電プラズマ焼結法との違いを明確にするために、放電プラズマ焼結法のみを用いた場合のフローチャートを図5に示す。
【0045】
まず、図5に示す放電プラズマ焼結法の各工程を説明する。なお、図5のフローチャートに示す工程を実現する放電プラズマ焼結装置には、一般的な放電プラズマ焼結装置を用いた。
【0046】
まず、黒鉛型に出発原材料であるシリコン粉末を充填する(図5のステップS01)。そして、上部パンチを黒鉛型に押し込み30MPaで加圧すると共にパルス通電し、黒鉛型を1100°Cに昇温させ(図5のステップS02)、この状態を10分間保持する(図5のステップS03)。
【0047】
このように加圧とパルス通電を保持することにより、黒鉛型内のシリコン粉末は焼結体に変化する(図5のステップS04)。なお、焼結は、例えば真空等の非酸化性雰囲気下で行う。
【0048】
焼結時の温度は出発原材料に固有の温度であり、シリコンの場合は1000°Cから1400°Cの温度範囲で良好な焼結状態が得られる。シリコンの場合、温度が1000°Cを下回ると、焼結が十分に進行しない。焼結が十分に進行しないと、黒鉛型から取り出した時に形状が崩れる、黒鉛型内部にシリコン粉末が残って焼結後の強度が十分得られない等の不具合が生じる。一方、1400°Cより高い温度で焼結を行った場合、黒鉛型内部のシリコンの状態が焼結状態(固体)から溶融状態に変化するため、焼結後のシリコンの形状の維持が困難になる。
【0049】
焼結が完了したら加圧とパルス通電を止めて(図5のステップS05)、上部パンチを上方へ移動させ、黒鉛型内部から焼結体となったシリコン材料を取り出す(図5のステップS06)。
【0050】
このように放電プラズマ焼結法のみによって製造されたシリコン材料は、焼結体であるため型崩れすることなく形状が安定しており、粉体と比較して運搬および加工も容易に行える。しかしながら、不純物の一例としての酸素と炭素は、焼結前から大きく減少しておらず、依然として数%オーダーで残留している。このように不純物を多く含むシリコン材料は、半導体や太陽電池に利用することはできない。すなわち、放電プラズマ焼結法のみによって製造されたシリコン材料は、半導体や太陽電池に利用することはできない。
【0051】
続いて、図4に示すシリコン製造方法の各工程について説明する。本実施の形態は、図4に示す各工程を行うことで、高純度なシリコン材料を製造するものである。
【0052】
図4のフローチャートに示す工程を実現するためのシリコン製造装置として、図1に示すシリコンのリサイクル装置を用いた。図1に示すシリコンのリサイクル装置の基本的な構成は一般的な放電プラズマ焼結装置と同様である。ただし、本実施の形態は、出発原材料を焼結させた後にもパルス電流を黒鉛型11に流す点と、溶融シリコンが流れる湯道(後述する)が黒鉛型11に形成されている点が、一般的な放電プラズマ焼結装置と大きく異なる。ただし、図1には、湯道は図示していない。
【0053】
まず、黒鉛型11に出発原材料であるシリコン粉末12を充填する(図4のステップS01)。なお、黒鉛型11の大きさは、内径20mm、外径50mm、高さ40mmである。
【0054】
次に、上部パンチ13を黒鉛型11に押し込んで30MPaで加圧すると共に、パルス電源17からパルス通電して、黒鉛型11を1350°Cに昇温させる(図4のステップS02)。そして、この状態を10分間保持する(図4のステップS03)。なお、図4のステップS02において、パルス電源17からのパルス通電は、上部パンチ13に加圧軸15を介してON−OFF直流パルス電流を供給することで上部通電し、下部パンチ14に加圧軸16を介してON−OFF直流パルス電流を供給することで下部通電して行っている。
【0055】
このように加圧とパルス通電を保持することにより、黒鉛型11内のシリコン粉末12は、焼結体に変化する(図4のステップS04)。なお、焼結時には、真空チャンバー18内部を真空状態にして非酸化性雰囲気にしておく。
【0056】
ここで、本実施の形態における焼結時の温度について説明する。図5に示す放電プラズマ焼結法では焼結時の温度は1100°Cであったが、図4に示す本実施の形態における焼結時の温度は1350°Cという高温である。本実施の形態において、焼結時の温度が1350°Cという高温であるのは、不純物である酸素をより削減するためである。
【0057】
すなわち、黒鉛型11に充填された出発原材料であるシリコン粉末12は、前述の通り、その表面が酸化膜(SiO)で覆われている。このように酸化膜で覆われている状態では、この酸化膜が断熱材の効果を果たすため、黒鉛型11からシリコン粉末12への熱伝導が極めて悪くなる。そのため、表面に酸化膜が残った状態では、焼結が十分に行われないおそれがある。この酸化膜は不純物である酸素を多量に含む物質であるため、それを除去した後に焼結させることが望ましい。そこで、本実施の形態の焼結プロセスでは、黒鉛型11の温度を1350°Cで10分間維持させることにより、SiO膜に含まれる酸素を還元反応によって除去している。この還元反応は、 SiO+Si→2SiO という反応式で記される。よって、酸素は、SiOという気体状態で除去されるものと推定できる。
【0058】
ここで、黒鉛型11の1350°Cでの保持時間については、シリコン粉末12の充填量や焼結前のシリコン粉末12の酸素含有量により変化するため、実験などにより適切な時間を求める必要がある。
【0059】
以上説明したように、図5に示す放電プラズマ焼結法のフローチャートでは、シリコン粉末が焼結すると黒鉛型から焼結体となったシリコンを取り出したが、本実施の形態では、黒鉛型11内のシリコン粉末が焼結体となった後も、30MPaで加圧したままパルス電流を流し続けて、黒鉛型11の温度を1450°Cまで昇温させている。さらに、本実施の形態では、この状態を5分間保持している(図4のステップS11)。この処理により、黒鉛型11内部のシリコン材料の焼結体が溶融シリコンへ変化する(図4のステップS12)。なお、溶融時においても、真空チャンバー18内部を真空状態にして非酸化性雰囲気にしておく。また、ここでは、加圧したままパルス電流を流したが、条件によっては、加圧せずにパルス電流を流して溶融させた後、加圧してもよい。
【0060】
このように、本実施の形態では、シリコン粉末12の表面を覆うSiO膜を除去して焼結体とした後に、更にパルス電流を流し続けて黒鉛型11の温度を1450°Cに昇温させている。このようにすることで、今度は、シリコンの炭素成分を、黒鉛型11内に若干残留する酸素と酸化反応させて除去することができる。
【0061】
以上のように本実施の形態を用いて製造されたシリコンについて、その不純物を燃焼法にて測定した結果、酸素は10ppm、炭素は120ppmであり、焼結前の含有量に対して大幅に不純物を減少させることができた。
【0062】
上記の本実施の形態のプロセスにおいて、1450°Cに黒鉛型11を加熱した場合、黒鉛型11内のシリコン粉末12は、シリコンの融点である1410°Cより高温に加熱される。そのため、既に述べたように、シリコンは、黒鉛型11の内部で焼結状態から溶融状態に変化する(図4のステップS12)。
【0063】
本実施の形態では、黒鉛型11を1350°Cから1450°Cへ昇温させる時にも、シリコンに30MPaの圧力を付加している。シリコンに圧力を付加した状態で黒鉛型11内部のシリコンが融点を超えて焼結体から溶融状態へ変化すると、シリコンのヤング率の低下により上部パンチ13が黒鉛型11にさらに押し込まれる。上部パンチ13が黒鉛型11にさらに押し込まれると、黒鉛型11内部の溶融シリコンが押し出しされ、上部パンチ13と黒鉛型11の隙間から溶融シリコンが滲み出てくる(図4のステップS13)。
【0064】
本実施の形態では、図6(a)〜図6(c)および図7(a)〜図7(c)に示すように、溶融シリコン21が黒鉛型11と上部パンチ13との隙間から勢いよく噴出して飛び散ることを防ぐため、黒鉛型11の内面と端面に溶融シリコン21が流れる湯道19を設けている。黒鉛型11内部からこの湯道19を通って流れ出た溶融シリコン21は、漏れたり飛び散ったりすることなく黒鉛型11の外部に設置された回収容器20に回収される(図4のステップS14)。
【0065】
溶融シリコン21の回収が完了したら、加圧とパルス通電を止めて(図4のステップS05)、上部パンチ13を上方へ移動させる。
【0066】
続いて、本実施の形態における溶融シリコンの回収方法について、図6(a)〜図6(c)および図7(a)〜図7(c)を参照して説明する。
【0067】
図6(a)〜図6(c)および図7(a)〜図7(c)は、本実施の形態におけるパンチの動作を示しており、図6(a)〜図6(c)は外観図、図7(a)〜図7(c)は断面斜視図である。具体的には、図6(a)および図7(a)は、黒鉛型11に上部パンチ13が挿入される直前の状態を示している。図6(b)および図7(b)は、上部パンチ13が黒鉛型11に挿入されて焼結が開始している状態を示している。図6(c)および図7(c)は、溶融シリコン21が湯道19を通って流れ出る際の状態を示している。特に図7(c)は、溶融シリコン21が黒鉛型11の内面に設けられた湯道19を通って上部へ押し出される様子を示している。
【0068】
図6(a)および図7(a)に示すように、黒鉛型11の上方に配置された上部パンチ13が、図6(b)および図7(b)に示すように下降することにより、黒鉛型11内部に充填されたシリコン粉末12(図示せず)は、黒鉛型11内部で圧縮される。また、本実施の形態では、これと同時に、黒鉛型11にパルス電流が供給される。これにより、黒鉛型11の温度が上昇すると同時に、シリコン粉末12の表面の酸化皮膜が除去されて、焼結が開始される。
【0069】
さらにパルス電流を流し続けて黒鉛型11の温度をシリコンの融点である1410°C以上の1450°Cまで昇温させることにより、黒鉛型11内部のシリコンは焼結状態から溶融状態となる。
【0070】
更に上部パンチ13の下降を進めることで、溶融シリコン21は、図7(c)に示すように、黒鉛型11と上部パンチ13との間に設けられた湯道19を通って黒鉛型11の上面まで押し上げられる。
【0071】
湯道19は、型形状が本実施の形態における黒鉛型11のように円形である場合、型の中心に対して点対称に配置することが望ましい。この配置は、溶融シリコン21の流れを均一に分散させることに有効である。本実施の形態では、円形の黒鉛型11の中心に対して、120°等配の3箇所に、湯道19を配置している。
【0072】
湯道19の断面の大きさは、ある程度の範囲内にする必要がある。例えば、湯道19の断面積が大きく、湯道の19の容積がシリコン粉末12の充填量(体積)より大きすぎる場合は、溶融シリコン21を黒鉛型11から押し出す際に、上部パンチ13と下部パンチ14とが接触するまで押し込んでも、溶融シリコン21のほとんどが湯道19内に溜まり黒鉛型11の外に溢れ出ないことがあり、溶融シリコン21の効率的な回収ができないことが想定される。また、湯道19の断面積が小さく、湯道19の容積がシリコン粉末12の充填量に対して小さすぎる場合は、溶融シリコン21を黒鉛型11から押し出す際に、狭い断面積を溶融シリコン21が通過するため、湯道19を通って黒鉛型11から溢れ出る溶融シリコン21の勢いが強くなり、周囲への飛び散りなどによって回収が困難になることが想定される。
【0073】
そのため、本実施の形態では、黒鉛型11における湯道19の断面の大きさは、縦2mm、横2mmとした。
【0074】
本実施の形態における湯道19は、黒鉛型11の材質が黒鉛であるため、キー溝加工に使用するスロッターマシンにて形成した。なお、金型を用いて、湯道19の形状をあらかじめ有した黒鉛型11を成型することも可能である。
【0075】
溶融シリコン21は、湯道19に沿って回収容器20を配置することで、安定した回収が可能である。また、回収容器20の内部形状を、適宜設計することで、所望の形状に硬化したシリコンを得ることができる。
【0076】
なお、本実施の形態では、真空チャンバー18内を真空にして非酸化性雰囲気としたが、窒素ガス、アルゴンガス、水素ガスあるいはこれらの混合ガス等でチャンバー内を充満させて非酸化性雰囲気にしてもよい。
【0077】
以上のように、本実施の形態のシリコン製造方法は、非酸化性雰囲気下において、黒鉛型にパルス電流を流すと共にパンチを押し込み、黒鉛型に充填されているシリコン粉末を加熱焼結させた後、さらにパルス電流を流して、焼結したシリコン粉末を黒鉛型内部で溶融させながら、黒鉛型にパンチを押し込み、黒鉛型に形成された湯道から溶融シリコンを押し出して、高純度のシリコン材料を得る。
【0078】
また、本実施の形態のシリコンのリサイクル装置は、黒鉛型と、パンチと、黒鉛型にパルス電流を流すためのパルス電源とを備え、非酸化性雰囲気下において、シリコン粉末が充填された黒鉛型にパンチを押し込むと共にパルス電流を流してシリコン粉末を加熱焼結させた後、さらにパルス電流を流して、焼結したシリコン粉末を黒鉛型内部で溶融させながら、黒鉛型にパンチを押し込み、黒鉛型に形成された湯道から溶融シリコンを押し出して、高純度のシリコン材料を得る。
【0079】
以上説明した実施の形態によれば、シリコンウエハ製造工程より発生するシリコン粉末を、放電プラズマ焼結法を用いて非酸化性雰囲気下にて焼結および溶融させることで、再利用可能な高純度シリコン材料を製造することができる。特に、これまでは廃棄物として処分されていたシリコンウエハ製造工程から発生するシリコンスラッジを、太陽電池や半導体の原材料であるポリシリコンの製造に使用可能な高純度シリコンに再生することができる。このように、これまで廃棄物として処分されていたシリコン粉末をポリシリコン原材料としてリサイクルすることにより、ポリシリコン原材料の製造コストの削減、ポリシリコン原材料の安定供給に貢献することが可能となる。
【0080】
また、黒鉛型(メス型)内部のシリコン粉末が焼結状態から溶融状態に変化した後も、更にパンチ(オス型)を押し下げることで、溶融シリコンを黒鉛型から押し出し、かつ溶融シリコンが流れるための湯道を黒鉛型に形成したことにより、黒鉛型の内部に溜まった溶融シリコンを効率よく取り出すことが可能となる。
【産業上の利用可能性】
【0081】
本発明は、シリコンウエハ製造工程から発生するシリコン粉末を、シリコンウエハの原材料となるポリシリコンの製造時に問題となる不純物の含有量がppmオーダーまで低減された高純度のシリコン材料に再生することが可能であり、成長著しい太陽電池産業へのシリコン材料の供給に利用可能である。
【符号の説明】
【0082】
1、17 パルス電源
2 上部パンチ電極
3 下部パンチ電極
4、13 上部パンチ
5、14 下部パンチ
6 焼結ダイ
8 シリコン粉末
9、18 真空チャンバー
11 黒鉛型
12 シリコン粉末
15、16 加圧軸
19 湯道
20 回収容器
21 溶融シリコン

【特許請求の範囲】
【請求項1】
放電プラズマ焼結法により容器内のシリコン粉末を焼結させた後、前記容器に電流を印加することで前記シリコン粉末を前記容器内で溶融させ、溶融シリコンを生成することを特徴とするシリコン製造方法。
【請求項2】
前記容器内で、焼結した前記シリコン粉末を加圧しながら溶融させ、前記容器に形成された湯道を通じて前記溶融シリコンを前記容器の外部へ流すことを特徴とする請求項1に記載のシリコン製造方法。
【請求項3】
前記容器として黒鉛型を用いることを特徴とする請求項1もしくは2に記載のシリコン製造方法。
【請求項4】
前記容器に供給する電流としてパルス電流を用いることを特徴とする請求項1ないし3のいずれかに記載のシリコン製造方法。
【請求項5】
非酸化性雰囲気下において、前記容器内のシリコン粉末を焼結後、溶融させて、溶融シリコンを生成することを特徴とする請求項1ないし4のいずれかに記載のシリコン製造方法。
【請求項6】
シリコンウエハ製造工程より発生したシリコン粉末を用い、請求項1ないし5のいずれかに記載のシリコン製造方法を用いてシリコンをリサイクルするシリコンのリサイクル方法。
【請求項7】
容器と、
前記容器の収容物を加圧するパンチと、
前記容器に電流を流すための電源と、
前記パンチの動作と前記電源の動作を制御する制御装置と、
を備え、前記制御装置の制御によって、前記容器内のシリコン粉末を前記パンチで加圧しつつ、前記電源から前記容器に電流を流して、前記シリコン粉末を焼結させた後、前記電源から前記容器に電流を流し、焼結後の前記シリコン粉末を溶融させて、溶融シリコンを生成することを特徴とするシリコン製造装置。
【請求項8】
前記容器に形成された湯道を通じて前記容器の外部へ前記溶融シリコンを流すことを特徴とする請求項7に記載のシリコン製造装置。
【請求項9】
前記容器として黒鉛型を用いることを特徴とする請求項7もしくは8に記載のシリコン製造装置。
【請求項10】
前記電源から前記容器に供給する電流としてパルス電流を用いることを特徴とする請求項7ないし9のいずれかに記載のシリコン製造装置。
【請求項11】
非酸化性雰囲気下において、前記容器内の前記シリコン粉末を焼結後、溶融させて、前記溶融シリコンを生成することを特徴とする請求項7ないし10のいずれかに記載のシリコン製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate