説明

タイヤ

【課題】耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良したタイヤを提供する。
【解決手段】ゴム成分と充填材を含有し、かつ前記ゴム成分が、アミン系官能基変性ポリブタジエンゴムを30〜70質量%と天然ゴムとを含むゴム組成物をサイドゴムに用いたことを特徴とするタイヤ。変性ポリブタジエンゴムが、共役ジエン重合体の重合活性末端に、分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物を反応させ、変性してなるものであるタイヤ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤに関する。さらに詳しくは、本発明は、耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良したタイヤに関する。
【背景技術】
【0002】
従来、ラジアルタイヤの転がり抵抗の低減に対しては、トレッドゴムの低ヒステリシス損失化が一般的におこなわれている。トレッドゴムに関しては、走行によって摩耗しトレッドゴムが消失していくとその効果は少なくなっていく。いわゆる走行初期の転がり抵抗の低減はできるが走行末期までの効果は期待できない。
ラジアルタイヤのケース部材に関するヒステリシス損失の検討は従来より行われており、特にサイドゴムの低ヒステリシス損失化が転がり抵抗性の低減の効果が大きいことが知られている。
そのためには、カーボンブラック等の充填材の低充填化やカーボンブラックの低グレード化が低ヒステリシス損失化には効果的であるが、この方法ではサイドゴムの耐摩耗性(縁石こすれ性)の低下が問題となる。
一方、耐摩耗性(縁石こすれ性)の改良のためには、補強性の高い微粒径のカーボンブラックを使用することで可能となるが、微粒径にすることによって、ゴム成分中へのカーボンブラックの分散が悪くなり、ゴム組成物の混練り作業性が低下すると共に、加硫したゴム組成物の発熱が高くなるという問題があった。
【0003】
また、上記充填材の他に低ヒステリシス損失のゴム成分を用いることも最も一般的な手法として行われている。このような発熱性の低いゴム組成物を得るために、ゴム成分に対して、変性ゴムの技術開発が数多くなされてきた。例えば、有機リチウム化合物を用いたアニオン重合で得られるポリブタジエンゴムの重合活性末端を、充填材と相互作用する官能基を含有するアルコキシシラン誘導体で変性する方法等が提案されている。
しかし、これらの多くは重合体末端のリビング性が容易に確保できるポリマーへの適用であり、タイヤサイドゴムで特に重要なシス−1,4−ポリブタジエンについての変性改良は少なく、また、カーボンブラックやシリカを配合したゴム組成物における変性効果は必ずしも十分なものが得られていない。特に、シス−1,4−ポリブタジエンについては、カーボンブラック配合ゴムにおける変性効果は殆ど得られていないのが実状である。
【0004】
そこで、上記欠点を克服すべく、ポリブタジエンゴムと、分子内に窒素原子を有する特定の官能基含有化合物(変性剤)とを反応させ、カーボンブラックが分散し易い共役ジエン系重合体を得る製造方法(特許文献1参照)、リチウムアミド開始剤を用いて重合末端にアミノ基が導入された重合体(例えば、特許文献2参照)などが提案されており、シリカ配合については、アミノ基が導入されたジエン系ゴム(例えば、特許文献3参照)などが提案されている。
これらの方法で得られた重合体は、カーボンブラック配合・シリカ配合のそれぞれの配合において、種々の物性の改良をある程度までは達成できるものの、上記文献では、主に重合体にアミノ基を導入する方法については詳細に述べられており、重合体そのものの構造と各性能の関係については、一般的な事項以上には言及されていなかった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−139634号公報
【特許文献2】特開平7−53616号公報
【特許文献3】特開平9−71687号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、このような状況下で、耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良したタイヤを提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明者は、前記目的を達成するために鋭意研究を重ねた結果、特定の変性ポリブタジエンゴムを特定量含むゴム組成物をサイドゴムに用いたタイヤが、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち本発明は
[1] ゴム成分と充填材を含有し、かつ前記ゴム成分が、アミン系官能基変性ポリブタジエンゴムを30〜70質量%と天然ゴムとを含むゴム組成物をサイドゴムに用いたことを特徴とするタイヤ、
[2] 変性ポリブタジエンゴムが、アミン系官能基としてプロトン性アミノ基及び/又は保護化アミノ基を有する上記[1]のタイヤ、
[3]変性ポリブタジエンゴムが、さらに、ヒドロカルビルオキシシラン基を有する上記[1]又は[2]のタイヤ、
[4] 変性ポリブタジエンゴムが、プロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを有する上記[3]のタイヤ、
[5] 同一の重合末端に、プロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを有する上記[4]のタイヤ、
[6] プロトン性アミノ基及び/又は保護化アミノ基が、−NH2、−NHRa、−NL12及び−NRb3(ただし、Ra及びRbは、それぞれ炭化水素基を示し、L1、L2及びL3は、それぞれ水素原子又は解離し得る保護基を示す。)の中から選ばれる少なくとも一種の基である上記[2]〜[5]いずれかのタイヤ、
[7] 変性ポリブタジエンゴムが、共役ジエン重合体の重合活性末端に、分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物を反応させ、変性してなるものである上記[2]〜[6]いずれかのタイヤ、
[8] 分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物が、保護化第一アミノ基を有する2官能性ケイ素化合物である上記[7]のタイヤ、
【0008】
[9] 前記2官能性ケイ素原子を含む化合物が、一般式(I)
【化1】

(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、Aは反応性基、fは1〜10の整数を示す。)で表されるケイ素化合物、一般式(II)
【化2】

(式中、R7〜R11は、それぞれ独立に炭素数1〜20の炭化水素基、R12は炭素数1〜12のアルキレン基を示す。)で表されるケイ素化合物及び、一般式(III)
【化3】

(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、R13は炭素数1〜12のアルキレン基、Aは反応性基、fは1〜10の整数を示す。)で表されるケイ素化合物から選ばれる少なくとも一種である上記[8]のタイヤ、
[10] 一般式(I)におけるAがハロゲン原子、炭素数1〜20のヒドロカルビルオキシ基又はヒドロキシ基である上記[9]のタイヤ、
[11] 変性ポリブタジエンゴム重合体の重合活性末端に、分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物を反応させ、変性させたのち、周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかに属する元素の化合物からなる縮合促進剤の存在下で、前記化合物が関与する縮合反応を施したものである上記[1]〜[10]いずれかのタイヤ、
[12] 前記縮合促進剤が、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、又はアルミニウム(Al)の化合物からなり、前記縮合促進剤を構成する化合物は、前記元素のアルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩である上記[11]のタイヤ、
[13] 前記縮合促進剤が、チタンの化合物からなるチタン系縮合促進剤である上記[12]のタイヤ、
[14] チタン系縮合促進剤が、チタンのアルコキシド、カルボン酸塩及びアセチルアセトナート錯塩の中から選ばれる少なくとも一種である上記[13]のタイヤ、
[15] 前記充填材として、前記ゴム成分100質量部当たり、カーボンブラック15〜55質量部とシリカ40〜0質量部とを含むと共にカーボンブラックとシリカの合計量が15〜55質量部である上記[1]〜[14]いずれかのタイヤ、
[16] 前記カーボンブラックの窒素吸着比表面積40m2/g以上である上記[15]のタイヤ、
[17] 前記シリカに対して、シランカップリング剤を2〜20質量%含有する上記[15]のタイヤ、
[18] シランカップリング剤が、下記一般式(IV)
【化4】

[式中、R14はR19O−、R19C(=O)O−、R1920C=NO−、R1920N−又は−(OSiR1920m(OSiR181920)(ただし、R19及びR20は、それぞれ独立に水素原子又は炭素数1〜18の一価の炭化水素基、である。)R15はR14、水素原子又は炭素数1〜18の一価の炭化水素基、R16はR14、R15又は−[O(R21O)a]0.5 −基(ただし、R21は炭素数1〜18のアルキレン基、aは1〜4の整数である。)、R17は炭素数1〜18の二価の炭化水素基、R18は炭素数1〜18の一価の炭化水素基を示し、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。]で表される上記[17]のタイヤ
[19] ゴム成分が、(A)変性ポリブタジエンゴムを10〜70質量%と、天然ゴム90〜30質量%とからなる上記[1]〜[18]いずれかのタイヤ、及び
[20]重荷重用タイヤである上記[1]〜[19]いずれかのタイヤ、
を提供するものである。
【発明の効果】
【0009】
本発明は、耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良したタイヤを提供することができる。
【発明を実施するための形態】
【0010】
まず、本発明の変性ポリブタジエンゴムについて説明する。
[変性ポリブタジエンゴム]
本発明の変性ポリブタジエンゴム(以下、変性BRと称することがある。)は、アミン系官能基で変性されていることを要する。本発明の変性BRにおいて、アミン系官能基が導入される重合体の位置については特に制限はなく、重合末端であってもよく、ポリマー鎖の側鎖であってもよいが、アミン系官能基の導入しやすさや、重合体末端からエネルギー消失を抑制して低発熱性を改良し得るなどの観点から、重合末端であることが好ましい。
アミン系官能基としては、プロトン性アミノ基及び/又は保護化アミノ基を挙げることができる。また、当該変性BRにおいては、前記プロトン性アミノ基及び/又は保護化アミノ基と共に、さらにヒドロカルビルオキシシラン基を、重合体中に有するものが好ましい。
これらの官能基は、前記理由により、重合末端に導入されていることが好ましく、特に同一の重合末端に導入されていることが好ましい。
前記のプロトン性アミノ基、保護化アミノ基及びヒドロカルビルオキシシラン基、並びにベースのBR(以下、BR又は未変性BRと称する。)の変性に用いられるこれらの官能基を有する化合物(以下、変性剤と称することがある。)などについては、後で詳述する。
本発明の変性BRの製造方法としては、活性末端を有するBRを得たのち、その活性末端に、変性剤を反応させて、変性BRを製造する方法を採用することができる。
【0011】
(BRの製造)
本発明においては、活性末端を有するBRは、1,3−ブタジエンを単独重合して得られるものであり、その製造方法については特に制限はなく、溶液重合法、気相重合法、バルク重合法のいずれも用いることができるが、特に溶液重合法が好ましい。また、重合形式は、回分式及び連続式のいずれであってもよい。
【0012】
BRの活性末端に、保護化第一アミンを反応させて変性させるには、該BRは、少なくとも10%のポリマー鎖がリビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤とし、有機溶媒中で共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とをアニオン重合させる反応が挙げられる。
【0013】
上述のアニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位であるBRが得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位であるBRが得られる。
【0014】
前記ヒドロカルビルリチウムとしては、炭素数2〜20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t e r t−オクチルリチウム、n−デシルリチウム、フェニルリチウム、2−ナフチルリチウム、2−ブチルフェニルリチウム、4−フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応性生物等が挙げられるが、これらの中で、特にn−ブチルリチウムが好適である。
【0015】
一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウム−N−メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド等の環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
これらのリチウムアミド化合物は、一般に、二級アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in−Situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2〜20ミリモルの範囲で選定される。
【0016】
前記有機リチウム化合物を重合開始剤として用い、アニオン重合によってBRを製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有するポリブタジエンが得られる。
【0017】
前記炭化水素系溶剤としては、炭素数3〜8のものが好ましく、例えばプロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、n−ヘキサン、シクロヘキサン、プロペン、1−ブテン、イソブテン、トランス−2−ブテン、シス−2−ブテン、1−ペンテン、2−ペンテン、1−へキセン、2−へキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
また、溶媒中の単量体濃度は、好ましくは5〜50質量%、より好ましくは10〜30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は55質量%以下の範囲が好ましい。
【0018】
また、所望により用いられるランダマイザーとはポリブタジエンのミクロ構造の制御、例えばブタジエン−スチレン共重合体におけるブタジエン部分の1,2結合、イソプレン重合体における3,4結合の増加等、あるいは共役ジエン化合物一芳香族ビニル化合物共重合体における単量体単位の組成分布の制御、例えばブタジエン−スチレン共重合体におけるブタジエン単位、スチレン単位のランダム化等の作用を有する化合物のことである。このランダマイザーとしては、特に制限はなく、従来ランダマイザーとして一般に使用されている公知の化合物の中から任意のものを適宜選択して用いることができる。具体的には、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、オキソラニルプロパンオリゴマー類[特に2,2−ビス(2−テトラヒドロフリル)−プロパンを含む物等]、トリエチルアミン、ピリジン、N−メチルモルホリン、N,N,N’,N’−テトラメチルエチレンジアミン、1,2−ジピぺリジノエタン等のエーテル類及び三級アミン類等を挙げることができる。また、カリウム−t−アミレート、カリウム−t−ブトキシド等のカリウム塩類、ナトリウム−t−アミレート等のナトリウム塩類も用いることができる。
【0019】
これらのランダマイザーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その使用量は、リチウム化合物1モル当たり、好ましくは0.01〜1000モル当量の範囲で選択される。
この重合反応における温度は、好ましくは0〜150℃、より好ましくは20〜130℃の範囲で選定される。重合反応は、発生圧力下で行うことができるが、通常は単量体を実質的に液相に保つに十分な圧力で操作することが望ましい。すなわち、圧力は重合される個々の物質や、用いる重合媒体及び重合温度にもよるが、所望ならばより高い圧力を用いることができ、このような圧力は重合反応に関して不活性なガスで反応器を加圧する等の適当な方法で得られる。
【0020】
(BRの変性)
本発明においては、このようにして得られた活性末端を有するBRの該活性末端に、所定の変性剤を反応させて、重合末端にアミン系官能基、例えばプロトン性アミノ基及び/又は保護化アミノ基を、好ましくはプロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを導入する。より好ましくは同一の重合末端に前記のプロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを導入する。
前記プロトン性アミノ基及び/又は保護化ミノ基としては、例えば−NH2、−NHRa、−NL12及び−NRb3(ただし、Ra及びRbは、それぞれ炭化水素基を示し、L1、L2及びL3は、それぞれ水素原子又は解離し得る保護基を示す。)の中から選ばれる少なくとも一種の基を挙げることができる。
前記のRa、Rbで示される炭化水素基としては、各種のアルキル基、アルケニル基、アリール基、アラルキル基を挙げることができる。L1、L2、L3としては、容易に解離し得る保護基であればよく、特に制限はなく、後述で説明するような基を挙げることができる。
【0021】
<変性剤>
本発明においては、変性BRとして、同一の重合末端にプロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを有するものが好ましく、したがって変性剤としては、同一分子内に保護化第一アミノ基を有する2官能性ケイ素化合物を用いることが好ましい。
同一分子内に保護化第一アミノ基を有する2官能性ケイ素化合物としては、例えば一般式(I)、一般式(II)及び一般式(III)で示される化合物を挙げることができる。
【0022】
【化5】

【0023】
(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、Aは反応性基、好ましくはハロゲン原子又は炭素数1〜20のアルコキシ基、fは1〜10の整数を示す。)
【0024】
【化6】

【0025】
式中、R7〜R11は、それぞれ独立に炭素数1〜20の炭化水素基、R12は炭素数1〜12のアルキレン基を示す。
【0026】
【化7】

(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、R13は炭素数1〜12のアルキレン基、Aは反応性基、fは1〜10の整数を示す。)
【0027】
上記式(I)〜(III)において、それぞれ独立に炭素数1〜20の一価の炭化水素基の具体例としては、例えばメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,tert−ブチル基,各種ペンチル基,各種ヘキシル基,各種オクチル基,各種デシル基,各種ドデシル基,各種テトラデシル基,各種ヘキサデシル基,各種オクタデシル基,各種イコシル基,シクロペンチル基,シクロヘキシル基,ビニル基,プロぺニル基,アリル基,ヘキセニル基,オクテニル基,シクロペンテニル基,シクロヘキセニル基,フェニル基,トリル基,キシリル基,ナフチル基,ベンジル基,フェネチル基,ナフチルメチル基等が挙げられる。中でも炭素数1〜4のメチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,tert−ブチル基等が好ましく、エチル基、メチル基、tert−ブチル基がより好ましい。
炭素数1〜12の2価の炭化水素基としては、炭素数1〜12のアルキレン基、炭素数6〜12のアリーレン基、炭素数7〜12のアリーレンアルキレン基等が挙げられる。
上記炭素数1〜12アルキレン基は、直鎖状、分枝状のいずれであってもよく、具体的には、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基、デカメチレン基等の直鎖状アルキレン基、プロピレン基、イソブチレン基、2-メチルトリメチレン基、イソペンチレン基、イソへキシレン基、イソオクチレン基、2-エチルへキシレン基、イソデシレン基などの分枝状のアルキレン基が挙げられる。
炭素数6〜12のアリーレン基としては、例えばフェニレン基、メチルフェニレン基、ジメチルフェニレン基、ナフチレン基、等が挙げられ、炭素数7〜12のアリーレンアルキレン基としては、例えばフェニレンメチレン基、フェニレンエチレン基、キシリレン基等が挙げられる。中でも炭素数1〜4のアルキレン基が好ましく、特にトリメチレン基が好ましい。
【0028】
Aの反応性基は、ハロゲン原子、炭素数1〜20のヒドロカルビロキシ基又はヒドロキシ基が好ましく、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられるが、中でも塩素が好ましい。
炭素数1〜20のヒドロカルビロキシ基としては、炭素数1〜20のアルコキシ基、炭素数6〜20のアリーロキシ基、炭素数7〜20のアラルキルオキシ基などを挙げることができる。
上記炭素数1〜20のアルコキシ基としては、メトキシ基、エトキシ基,n−プロポキシ基、n−ブトキシ基、イソブトキシ基,sec−ブトキシ基、tert−ブトキシ基、各種ヘキソキシ基、各種オクトキシ基、各種デシロキシ基、各種ドデシロキシ基,各種テトラデシロキシ基、各種ヘキサデシロキシ基、各種オクタデシロキシ基、各種イコシロキシ基などが挙げられる。炭素数6〜20のアリーロキシ基としては、例えばフェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基等が挙げられ、炭素数7〜20のアラルキルオキシ基としては、例えば、ベンジロキシ基、フェネチロキシ基、ナフチルメトキシ基等が挙げられる。これらの中で炭素数1〜4のアルコキシ基が好ましく、特にエトキシ基が好ましい。
また、あらかじめ加水分解により得られた珪素原子に結合するヒドロキシ基は、アルコキシ基に比べ、補強性充填材、特にシリカと反応する場合、シリカとの反応性はより高くなり、ゴム組成物中のシリカの分散性が向上し、且つゴム組成物の低発熱性が向上するという大きな効果を奏する。更に、加水分解によりヒドロキシ基を生成する特性基がアルコキシ基である場合は揮発性有機化合物(VOC、特にアルコール)を発生するが、ヒドロキシ基は発生しないので、作業環境上好ましい。
その他の反応性基としては、カルボニル基、酸無水物残基、各ジヒドロイミダゾリニル基、N−メチルピロリドニル基、イソシアネート基等を含有する基が挙げられる。
また、式(I)のR3,R4およびR5の2つが結合してそれらが結合している珪素原子と一緒になって、4〜7員環を形成してもよく、同様に式(II)のR9,R10およびR11の2つが結合してそれらが結合している珪素原子と一緒になって、4〜7員環を形成してもよい。この4〜7員環としては炭素数4〜7のメチレン基を有するものを挙げることができる。
【0029】
保護された第一アミノ基及びケイ素原子に結合したアルコキシ基を少なくとも有する2官能性ケイ素原子を含む化合物としては、例えばN,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン、および1−トリメチルシリル−2−エトキシ−2−メチル−1−アザ−2−シラシクロペンタンなどを挙げることができる。
また、前記Aがハロゲン原子である化合物として例えば、N,N−ビス(トリメチルシリル)アミノプロピルメチルメトキシクロロシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルエトキシクロロシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルメトキシクロロシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルエトキシクロロシランなどが挙げられる。
好ましくは、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、1−トリメチルシリル−2−エトキシ−2−メチル−1−アザ−2−シラシクロペンタンである。
これらの変性剤は、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。またこの変性剤は部分縮合物であってもよい。
ここで、部分縮合物とは、変性剤のSiORの一部(全部ではない)が縮合によりSiOSi結合したものをいう。
上記の変性反応においては、使用する重合体は、少なくとも10%のポリマー鎖がリビング性を有するものが好ましい。
【0030】
上記変性剤による変性反応において、該変性剤の使用量は、好ましくは0.5〜200mmol/kg・BRである。同含有量は、さらに好ましくは1〜100mmol/kg・BRであり、特に好ましくは2〜50mmol/kg・BRである。ここで、BRとは、製造時または製造後、添加される老化防止剤などの添加剤を含まないポリマーのみの質量を意味する。変性剤の使用量を上記範囲にすることによって、充填材の分散性に優れ、加硫後の破壊特性、摩耗特性、低発熱性が改良される。
なお、上記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法などが挙げられるが、一括して添加する方法が好ましい。
また、変性剤は、重合開始末端、重合終了末端、重合体主鎖、側鎖のいずれに結合していてもよいが、重合体末端からエネルギー消失を抑制して低発熱性を改良しうる点から、重合開始末端あるいは重合終了末端に導入されていることが好ましい。
【0031】
<縮合促進剤>
本発明では、前記した変性剤として用いる保護化第一アミノ基を有するアルコキシシラン化合物が関与する縮合反応を促進するために、縮合促進剤を用いることが好ましい。
このような縮合促進剤としては、第三アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかの属する元素を一種以上含有する有機化合物を用いることができる。さらに縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)及びアルミニウム(Al)からなる群から選択される少なくも一種以上の金属を含有する、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
ここで用いる縮合促進剤は、前記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端に保護された第一アミノ基を有するヒドロカルビロキシ基が導入されない場合がある。
縮合促進剤の添加時期としては、通常、変性反応開始5分〜5時間後、好ましくは変性反応開始15分〜1時間後である。
【0032】
具体的な縮合促進剤としては、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−メチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘキサンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ヘキサンジオラト)チタン、テトラキス(1,3−ペンタンジオラト)チタン、テトラキス(2−メチル−1,3−ペンタンジオラト)チタン、テトラキス(2−エチル−1,3−ペンタンジオラト)チタン、テトラキス(2−プロピル−1,3−ペンタンジオラト)チタン、テトラキス(2−ブチル−1,3−ペンタンジオラト)チタン、テトラキス(1,3−ヘプタンジオラト)チタン、テトラキス(2−メチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−プロピル−1,3−ヘプタンジオラト)チタン、テトラキス(2−ブチル−1,3−ヘプタンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、テトラメトキシチタン、テトラエトキシチタン、テトラ−n−プロポキシチタン、テトライソプロポキシチタン、テトラ−n−ブトキシチタン、テトラ−n−ブトキシチタンオリゴマー、テトライソブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン、ビス(オレート)ビス(2−エチルヘキサノエート)チタン、チタンジプロポキシビス(トリエタノールアミネート)、チタンジブトキシビス(トリエタノールアミネート)、チタントリブトキシステアレート、チタントリプロポキシステアレート、チタントリプロポキシアセチルアセトネート、チタンジプロポキシビス(アセチルアセトネート)、チタントリプロポキシ(エチルアセトアセテート)、チタンプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタントリブトキシアセチルアセトネート、チタンジブトキシビス(アセチルアセトネート)、チタントリブトキシエチルアセトアセテート、チタンブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタンテトラキス(アセチルアセトネート)、チタンジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)チタンオキサイド、ビス(ラウレート)チタンオキサイド、ビス(ナフテート)チタンオキサイド、ビス(ステアレート)チタンオキサイド、ビス(オレエート)チタンオキサイド、ビス(リノレート)チタンオキサイド、テトラキス(2−エチルヘキサノエート)チタン、テトラキス(ラウレート)チタン、テトラキス(ナフテート)チタン、テトラキス(ステアレート)チタン、テトラキス(オレエート)チタン、テトラキス(リノレート)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)、チタンオキサイドビス(テトラメチルヘプタンジオネート)、チタンオキサイドビス(ペンタンジオネート)、チタンテトラ(ラクテート)などが挙げられる。中でも、テトラキス(2−エチル−1,3−ヘキサンジオラト)チタン、テトラキス(2−エチルヘキソキシ)チタン、チタンジ−n−ブトキサイド(ビス−2,4−ペンタンジオネート)が好ましい。
【0033】
また、縮合促進剤としては、例えば、トリス(2−エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム、テトラ(2−エチルヘキソキシ)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2−エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2−エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等を挙げることができる。
【0034】
また、トリエトキシアルミニウム、トリ−n−プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ−n−ブトキシアルミニウム、トリ−sec−ブトキシアルミニウム、トリ−tert−ブトキシアルミニウム、トリ(2−エチルヘキソキシ)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2−エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等を挙げることができる。
【0035】
上述の縮合促進剤の内、チタン系縮合促進剤が好ましく、チタン金属のアルコキシド、チタン金属のカルボン酸塩、又はチタン金属のアセチルアセトナート錯塩が特に好ましい。この縮合促進剤の使用量としては、前記化合物のモル数が、反応系内に存在するヒドロカルビロキシ基総量に対するモル比として、0.1〜10となることが好ましく、0.5〜5が特に好ましい。縮合促進剤の使用量を前記範囲にすることによって縮合反応が効率よく進行する。
【0036】
本発明における縮合反応は、上述の縮合促進剤と、水蒸気又は水の存在下で進行する。水蒸気の存在下の場合として、スチームストリッピングによる脱溶媒処理が挙げられ、スチームストリッピング中に縮合反応が進行する。
また、縮合反応を水溶液中で行ってもよく、縮合反応温度は85〜180℃が好ましく、さらに好ましくは100〜170℃、特に好ましくは110〜150℃である。
縮合反応時の温度を前記範囲にすることによって、縮合反応を効率よく進行完結することができ、得られる変性ポリブタジエンゴムの経時変化によるポリマーの老化反応等による品質の低下等を抑えることができる。
【0037】
なお、縮合反応時間は、通常、5分〜10時間、好ましくは15分〜5時間程度である。縮合反応時間を前記範囲にすることによって縮合反応を円滑に完結することができる。
なお、縮合反応時の反応系の圧力は、通常、0.01〜20MPa、好ましくは0.05〜10MPaである。
縮合反応を水溶液中で行う場合の形式については特に制限はなく、バッチ式反応器を用いても、多段連続式反応器等の装置を用いて連続式で行ってもよい。また、この縮合反応と脱溶媒を同時に行っても良い。
本発明の変性ポリブタジエンゴムの変性剤由来の第一アミノ基は、上述のように脱保護処理を行うことによって生成する。上述したスチームストリッピング等の水蒸気を用いる脱溶媒処理以外の脱保護処理の好適な具体例を以下に詳述する。
すなわち、第一アミノ基上の保護基を加水分解することによって遊離した第一アミノ基に変換する。これを脱溶媒処理することにより、第一アミノ基を有する変性ポリブタジエンゴムを得ることができる。なお、該縮合処理を含む段階から、脱溶媒して乾燥ポリマーまでのいずれかの段階において必要に応じて変性剤由来の保護された第一アミノ基の脱保護処理を行うことができる。
【0038】
本発明において得られる変性ポリブタジエンゴムのムーニー粘度(ML1+4、100℃)は、好ましくは10〜150、より好ましくは20〜80である。ムーニー粘度の値を上記範囲にすることによって、混練り作業性および加硫後の機械的特性のすぐれたゴム組成物を得ることができる。
本発明における変性ポリブタジエンゴムは、重合体中にプロトン性アミノ基及び/又は保護化アミノ基、好ましくはこれらのアミン系官能基とヒドロカルビルオキシシラン基とを有し、前記のプロトン性アミノ基や保護化アミノ基の解離基は、カーボンブラックやシリカに対して良好な相互作用を有しており、一方ヒドロカルビルオキシシラン基は、特にシリカに対して優れた相互作用を有している。当該変性ポリブタジエンゴムを含むゴム組成物は、サイドゴムに用いた場合、耐摩耗性(縁石こすれ性)を維持すると共に、低転がり抵抗性のタイヤを得ることができる。
【0039】
次に本発明のタイヤのサイドに用いられるゴム組成物について説明する。
[ゴム組成物]
上記のゴム組成物は、ゴム成分と充填材を含有し、かつ前記ゴム成分が、アミン系官能基変性ポリブタジエンゴムを30〜70質量%と天然ゴムとを含むことが必要である。
(ゴム成分)
本発明のタイヤのサイドに用いられるゴム組成物は、ゴム成分として、当該変性BRを30〜70質量%含むことを要する。ゴム成分中の該変性BRの好ましい含有量は40〜60質量%である。さらに、ゴム成分として、天然ゴムを含むことが必要である。天然ゴムの好ましい含有量は、70〜30質量%、より好ましくは60〜40質量%である。ゴム成分中の変性BR及び天然ゴムの量を上記範囲にすることによって、所望の物性を有するゴム組成物を得ることが出来る。
また、天然ゴムを配合することによって組成物の機械的特性を改良すると共に、組成物の混練り作業性を改善する。
さらに、本発明におけるゴム組成物には、本発明の目的が損なわれない範囲で、所望により、ゴム成分として合成イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、エチレン−α−オレフィン共重合ゴム、エチレン−α−オレフィン−ジエン共重合ゴム、アクリロニトリル−ブタジエン共重合ゴム、クロロブレンゴム、ハロゲン化プチルゴムおよびこれらの混合物などを加えることができる。また、その一部が多官能型、例えば四塩化スズ、四塩化珪素のような変性剤を用いることにより分岐構造を有しているものでもよい。
【0040】
(充填材)
本発明のタイヤのサイドに用いられるゴム組成物において、充填材として、補強性充填材を含有することが必要である。補強性充填材としては、通常カーボンブラックやシリカ等が挙げられる。前記カーボンブラックは、そのゴム層の力学的性能を高め、加工性等を改善させるものである限り、I2吸着量、CTAB比表面積、窒素吸着比表面積、DBP吸着量等の範囲を適宜選択した公知のカーボンブラックを使用することができる。
中でも、窒素吸着比表面積が40m2/g以上のカーボンブラックが好ましい。その上限については、特に制限はないが、通常80m2/gである。
具体的なカーボンブラックの種類としては、例えば、ISAF、HAF、FEF等の公知のものを適宜選択して使用することができる。低発熱性と耐摩耗性(縁石こすり性)のバランスを考慮すると、HAF、FEFが好ましく、特にFEFが好ましい。
【0041】
また、シリカは、狭義の二酸化珪素のみを示すものではなく、ケイ酸系充填材を意味し、具体的には、無水ケイ酸の他に、含水ケイ酸、ケイ酸カルシウム、ケイ酸アルミニウム等のケイ酸塩を含む。中でも耐摩耗性の優れた湿式シリカが好ましい。このようなシリカとしては、東ソー・シリカ社製「ニプシールAQ」、BET205m2/gが挙げられる。
前記充填材として、前記ゴム成分100質量部当たり、カーボンブラック15〜55質量部とシリカ40〜0質量部とを含むと共に、カーボンブラックとシリカの合計量が15〜55質量部であることが好ましく、より好ましくは20〜50質量部である。充填材の量を上記範囲にすることによって耐摩耗性を維持し、組成物の混練作業性の低下を抑制する。
【0042】
(シランカップリング剤)
本発明のゴム組成物においては、補強用充填材としてシリカを用いる場合、その補強性及び低発熱性をさらに向上させる目的で、シランカップリッグ剤を配合することができる。好ましいシランカップリング剤の配合量は、シランカップリング剤の種類などにより異なるが、シリカに対して、好ましくは2〜20質量%の範囲で選定される。この量が2質量%未満ではカップリング剤としての効果が充分に発揮されにくく、また、20質量%を超えるとゴム成分のゲル化を引き起こすおそれがある。カップリング剤としての効果およびゲル化防止などの点から、このシランカップリング剤の好ましい配合量は、5〜15質量%の範囲である。
【0043】
好ましいシランカップリング剤としては、下記一般式(IV)
【0044】
【化8】

【0045】
で表される保護化メルカプトシランからなるシランカップリング剤が用いられる。
一般式(IV)において、R14はR19O−、R19C(=O)O−、R1920C=NO−、R1920N−又は−(OSiR1920m(OSiR181920)(ただし、R19及びR20は、それぞれ独立に水素原子又は炭素数1〜18の一価の炭化水素基である。)、R15はR14、水素原子又は炭素数1〜18の一価の炭化水素基、R16はR14、R15又は−[O(R21O)a0.5 −基(ただし、R21は炭素数1〜18のアルキレン基、aは1〜4の整数である。)、R17は炭素数1〜18の二価の炭化水素基、R18は炭素数1〜18の一価の炭化水素基を示し、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。
前記一般式(IV)において、炭素数1〜18の一価の炭化水素基としては、例えば炭素数1〜18のアルキル基、炭素数2〜18のアルケニル基、炭素数6〜18のアリール基、炭素数7〜18のアラルキル基等を挙げることができる。ここで、上記アルキル基及びアルケニル基は直鎖状、枝分かれ状、環状のいずれであってもよく、前記アリール基及びアラルキル基は、芳香環上に低級アルキル基などの置換基を有していてもよい。
【0046】
前記炭素数1〜18の一価の炭化水素基の具体例としては、メチル基,エチル基,n−プロピル基,イソプロピル基,n−ブチル基,イソブチル基,sec−ブチル基,tert−ブチル基,ペンチル基,ヘキシル基,オクチル基,デシル基,ドデシル基,シクロペンチル基,シクロヘキシル基,ビニル基,プロぺニル基,アリル基,ヘキセニル基,オクテニル基,シクロペンテニル基,シクロヘキセニル基,フェニル基,トリル基,キシリル基,ナフチル基,ベンジル基,フェネチル基,ナフチルメチル基等が挙げられる。
前記一般式(IV)において、R21で表される炭素数1〜18のアルキレン基は、直鎖状、枝分かれ状、環状のいずれであってもよいが、特に直鎖状のものが好適である。この直鎖状のアルキレン基の例としては、メチレン基,エチレン基,トリメチレン基,テトラメチレン基,ペンタメチレン基,ヘキサメチレン基,オクタメチレン基,デカメチレン基,ドデカメチレン基等が挙げられる。
また、R17で表される炭素数1〜18の二価の炭化水素基としては、例えば炭素数1〜18のアルキレン基、炭素数2〜18のアルケニレン基、炭素数5〜18のシクロアルキレン基、炭素数6〜18のシクロアルキルアルキレン基、炭素数6〜18のアリーレン基、炭素数7〜18のアラルキレン基を挙げることができる。前記アルキレン基及びアルケニレン基は、直鎖状、枝分かれ状のいずれであってもよく、前記シクロアルキレン基、シクロアルキルアルキレン基、アリーレン基及びアラルキレン基は、環上に低級アルキル基などの置換基を有していてもよい。
このR17としては、炭素数1〜6のアルキレン基が好ましく、特に直鎖状アルキレン基、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基を好ましく挙げることができる。
前記一般式(IV)で表されるシランカップリング剤の例としては、3−ヘキサノイルチオプロピルトリエトキシシラン、3−オクタノイルチオプロピルトリエトキシシラン、3−デカノイルチオプロピルトリエトキシシラン、3−ラウロイルチオプロピルトリエトキシシラン、2−ヘキサノイルチオエチルトリエトキシシラン、2−オクタノイルチオエチルトリエトキシシラン、2−デカノイルチオエチルトリエトキシシラン、2−ラウロイルチオエチルトリエトキシシラン、3−ヘキサノイルチオプロピルトリメトキシシラン、3−オクタノイルチオプロピルトリメトキシシラン、3−デカノイルチオプロピルトリメトキシシラン、3−ラウロイルチオプロピルトリメトキシシラン、2−ヘキサノイルチオエチルトリメトキシシラン、2−オクタノイルチオエチルトリメトキシシラン、2−デカノイルチオエチルトリメトキシシラン、2−ラウロイルチオエチルトリメトキシシランなどを挙げることができる。
本発明においては、前記シランカップリング剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
さらに、当該シランカップリング剤とポリマーをカップリングするためにDPG(ジフェニルグアニジン)などに代表されるプロトンドナーを脱保護化剤として最終混練工程に配合することが好ましい。その使用量は、ゴム成分100質量部に対し、0.1〜5.0質量部が好ましく、更に好ましくは0.2〜3.0質量部である。
【0047】
さらに、従来より使用されているシランカップリング剤も適用することができる。
シランカップリング剤としては、例えばビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−卜リエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィドなどが挙げられるが、これらの中で補強性改善効果などの点から、ビス(3−トリエトキシシリルプロピル)ポリスルフィドおよび3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好適である。
これらのシランカップリング剤は、1種を単独で用いてもよく、2種以上組み合わせて用いてもよい。
【0048】
(ゴム組成物の調製)
本発明におけるゴム組成物には、本発明の目的が損なわれない範囲で、所望により、通常ゴム工業界で用いられる各種薬品、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸などを含有させることができる。
上記加硫剤としては、硫黄等が挙げられ、その使用量は、ゴム成分100質量部に対し、硫黄分として0.1〜10.0質量部が好ましく、さらに好ましくは1.0〜5.0質量部である。0.1質量部未満では加硫ゴムの破壊強度、耐摩耗性、低発熱性が低下するおそれがあり、10.0質量部を超えるとゴム弾性が失われる原因となる。
【0049】
本発明で使用できる加硫促進剤は、特に限定されるものではないが、例えば、M(2−メルカプトベンゾチアゾール)、DM(ジベンゾチアジルジスルフィド)、CZ(N−シクロヘキシル−2−ベンゾチアジルスルフェンアミド)等のチアゾール系、あるいはDPG(ジフェニルグアニジン)等のグアニジン系の加硫促進剤等を挙げることができ、その使用量は、(A)ゴム成分100質量部に対し、0.1〜5.0質量部が好ましく、さらに好ましくは0.2〜3.0質量部である。
【0050】
また、本発明におけるゴム組成物で使用できるプロセス油としては、例えばパラフィン系、ナフテン系、アロマチック系等を挙げることができる。引張強度、耐摩耗性を重視する用途にはアロマチック系が、ヒステリシスロス、低温特性を重視する用途にはナフテン系又はパラフィン系が用いられる。その使用量は、(A)ゴム成分100質量部に対して、0〜100質量部が好ましく、100質量部を超えると加硫ゴムの引張強度、低発熱性が悪化する傾向がある。
【0051】
本発明におけるゴム組成物は、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られ、成形加工後、加硫を行い、タイヤサイドに用いられる。
【0052】
[タイヤ]
本発明のタイヤは、前記ゴム組成物を用いて通常の方法によって製造される。すなわち、必要に応じて、上記のように各種薬品を含有させたゴム組成物が未加硫の段階でサイドに加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
このようにして得られた本発明のタイヤは、耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良することができる。
【実施例】
【0053】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、重合体の物性及び諸特性は、下記の方法に従って測定した。
《未変性又は変性BRの物性》
<ミクロ構造の分析法>
赤外法(モレロ法)により、ビニル結合含有量(%)を測定した。
<数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定>
GPC[東ソー製、HLC−8020]により検出器として屈折計を用いて測定し、単分散ポリスチレンを標準としたポリスチレン換算で示した。なお、カラムはGMHXL[東ソー製]で、溶離液はテトラヒドロフランである。
<ムーニー粘度(ML1+4,100℃)の測定>
JIS K6300に従って、Lローター、予熱1分、ローター作動時間4分、温度100℃で求めた。
【0054】
《加硫ゴム物性の評価》
(1)耐摩耗性(縁石こすれ性)の測定
JIS K6264に準拠し、ピコ摩耗試験機で測定した。比較例1を100として指数で表した。数値の大きいほうが耐摩耗性がよいことを示す。
《タイヤ性能の評価(タイヤサイズ11R22.5)》
(1)転がり抵抗の評価
正規の荷重、内圧で80km/hでの転がり抵抗を測定し、コントロール対比の軸トルクを指数で表した、数値の小さいほうが転がり抵抗が低いことを示す。
【0055】
製造例1 未変性ポリブタジエンゴム(A)の製造
乾燥し、窒素置換された800ミリリットルの耐圧ガラス容器にブタジエンのシクロヘキサン溶液(16%)、をブタジエン単量体50gになるように注入しこれにジテトラヒドロフリルプロパン0.44ミリモルを加えこれに0.48mmolのn−ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行なった。1,3−ブタジエンの反応転化率は、ほぼ100%であった。この重合体溶液を、2,6−ジ−tert−ブチル−p−クレゾール1.3gを含むメタノール溶液に抜き取り重合を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、ポリブタジエンを得た。得られたポリブタジエンについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を測定した。その結果、ビニル結合量は30%、Mwは210、000、Mw/Mnは1.1であった。
【0056】
<変性剤の合成>
合成例1:N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランの合成
窒素雰囲気下、攪拌機を備えたガラスフラスコ中のジクロロメタン溶媒400ml中にアミノシラン部位として36gの3−アミノプロピルメチルジエトキシシラン(Gelest社製)を加えた後、さらに保護部位として塩化トリメチルシラン(Aldrich社製)48ml、トリエチルアミン53mlを溶液中に加え、17時間室温下で攪拌し、その後反応溶液をエバポレーターにかけることにより溶媒を取り除き、反応混合物を得、さらに得られた反応混合物を665Pa条件下で減圧蒸留することにより、130〜135℃留分としてN,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランを40g得た。
合成例2:N,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシランの合成
窒素雰囲気下、攪拌機を備えたガラスフラスコ中のジクロロメタン溶媒400ml中にアミノシラン部位として41gの3−アミノプロピルトリエトキシシラン(Gelest社製)を加えた後、さらに保護部位として塩化トリメチルシラン(Aldrich社製)48ml、トリエチルアミン53mlを溶液中に加え、17時間室温下で攪拌し、その後反応溶液をエバポレーターにかけることにより溶媒を取り除き、組成反応溶液を得、さらに得られた反応溶液を5mm/Hg条件下で減圧蒸留することにより、125〜130℃留分としてN,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシランを40g得た。
合成例3:N,N−ビス(トリメチルシリル)アミノプロピルジメチルエトキシシランの合成
アミノシラン部位として3−アミノプロピルジメチルエトキシシラン(Gelest社製)を30g用いた以外は、合成例1に準拠して行い、N,N−ビス(トリメチルシリル)アミノプロピルジメチルエトキシシランを得た。
【0057】
製造例2 変性ポリブタジエンゴム(B)の製造
乾燥し、窒素置換された800ミリリットルの耐圧ガラス容器にブタジエンのシクロヘキサン溶液(16%)ブタジエン単量体50gになるように注入しこれにジテトラヒドロフリルプロパン0.44ミリモルを加え、さらにn−ブチルリチウム0.48ミリモルを加えた後、50℃で1.5時間重合を行った。重合の添加率はほぼ100%であった。
この重合系にテトラエトキシシラン0.43ミリモルを加えたのち、さらに50℃で30分間変性反応を行った。その後、重合系に2,6−ジ−t−ブチル−p−クレゾール(BHT)のイソプロパノール5質量%溶液加えて反応停止を行い、さらに常法に従い乾燥することによって変性ポリブタジエンゴム(B)を得た。得られたポリブタジエンについてミクロ構造(ビニル結合量)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を測定した。その結果、ビニル結合量は14%、Mwは210,000、Mw/Mnは1.1であった。
【0058】
製造例3 変性ポリブタジエンゴム(C)の製造
重合例2においてテトラエトキシシランの替わりに変性剤として、合成例1で得られたN,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシランを用いた以外は製造例2と同様にして変性ポリブタジエンゴム(C)を得た。
【0059】
製造例4 変性ポリブタジエンゴム(D)の製造
重合例2においてトリエトキシシランの替わりに変性剤として、合成例2で得られたN,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシランを用いた以外は製造例2と同様にして変性ポリブタジエンゴム(D)を得た。
【0060】
製造例5 変性ポリブタジエンゴム(E)の製造
重合例2においてトリエトキシシランの替わりに変性剤として、合成例3で得られたN,N−ビス(トリメチルシリル)アミノプロピルジメチルエトキシシランを用いた以外は製造例2と同様にして変性ポリブタジエンゴム(E)を得た。
【0061】
製造例6 変性ポリブタジエンゴム(F)の製造
窒素置換された内容積800ミリリットルのオートクレーブ反応器に、1,3−ブタジエンのシクロヘキサン溶液(16質量%)を1,3−ブタジエン単量体50gとなるよう仕込んだ。これにジテトラヒドロフリルプロパン0.44ミリモルを加え後、n−ブチルリチウム0.48ミリモルを添加した後、50℃で1.5時間重合を行った。
重合転化率が99%に達した時点で、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン0.43ミリモルを加えて、さらに50℃で変性反応を30分間行った。この後、重合体溶液に、2,6−ジ−tert−ブチル−p−クレゾールのイソプロパノール5質量%溶液0.5ミリリットルを添加し反応の停止を行った。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し変性ポリブタジエンゴム(F)を得た。
【0062】
製造例7 変性ポリブタジエンゴム(G)の製造
製造例6において変性反応を終えたのち、重合体溶液に、縮合促進剤のビス(2−エチルヘキサノエート)スズ1.26ミリモル及び水1.26ミリモルを加えた後、50℃で30分間縮合反応を行った。この後、重合溶液にさらに2,6−ジ−tert−ブチル−p−クレゾールのイソプロパノール5質量%溶液0.5ミリリットルを添加し反応の停止を行った。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し変性ポリブタジエンゴム(G)を得た。
【0063】
製造例8 変性ポリブタジエンゴム(H)の製造
製造例3において変性反応を終えたのち、重合体溶液に、縮合促進剤のテトラキス(2−エチルヘキシルオキシ)チタンを1.26ミリモル及び水1.26ミリモルを加えた後、50℃で30分間縮合反応を行った。この後、重合溶液にさらに2,6−ジ−tert−ブチル−p−クレゾールのイソプロパノール5質量%溶液0.5ミリリットルを添加し反応の停止を行った。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し変性ポリブタジエンゴム(H)を得た。
【0064】
製造例9 変性ポリブタジエンゴム(I)の製造
製造例3において変性反応を終えたのち、重合体溶液に、縮合促進剤のビス(2−エチルヘキサノエート)スズを1.26ミリモル及び水1.26ミリモルを加えた後、50℃で30分間縮合反応を行った。この後、重合溶液にさらに2,6−ジ−tert−ブチル−p−クレゾールのイソプロパノール5質量%溶液0.5ミリリットルを添加し反応の停止を行った。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し変性ポリブタジエンゴム(I)を得た。
【0065】
製造例10 変性ポリブタジエンゴム(J)の製造
製造例3において変性反応を終えたのち、重合体溶液に、縮合促進剤のビス(2−エチルヘキサノエート)酸化ジルコニウムを1.26ミリモル及び水1.26ミリモルを加えた後、50℃で30分間縮合反応を行った。この後、重合溶液にさらに2,6−ジ−tert−ブチル−p−クレゾールのイソプロパノール5質量%溶液0.5ミリリットルを添加し反応の停止を行った。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し変性ポリブタジエンゴム(J)を得た。
【0066】
実施例1〜3及び比較例1〜2
第1表に示す5種類の未変性及び変性ポリブタジエンゴムをもちいて第2表に記載の配合組成を有する種のゴム組成物を調製し、タイヤサイズ11R22.5のサイドゴムに適用し、それぞれ転がり抵抗の評価を行った。また、加硫ゴム物性として耐摩耗性(縁石こすれ性)の評価を行った。評価結果を第1表に示す。
【0067】
【表1】

[注]
*1.無変性BR(A):製造例1のゴムを用いた
*2.変性BR(B):製造例2のゴムを用いた
*3.変性BR(C):製造例3のゴムを用いた
*4.変性BR(D):製造例4のゴムを用いた
*5.変性BR(E):製造例5のゴムを用いた
【0068】
【表2】

[注]
*6.カーボンブラックISAF:東海カーボン社製「シースト6」
*7.老化防止剤6PPD:大内新興化学工業社製「ノクセラー6C」
*8.加硫促進剤CZ:大内新興化学工業社製「ノクセラーCZ」
【0069】
実施例4〜5及び比較例3〜4
第3表に示す5種類の未変性及び変性ポリブタジエンゴムをもちいて第4表に記載の配合組成を有する種のゴム組成物を調製し、タイヤサイズ11R22.5のサイドゴムに適用し、それぞれ転がり抵抗の評価を行った。また、加硫ゴム物性として耐摩耗性(縁石こすれ性)の評価を行った。評価結果を第3表に示す。
【0070】
【表3】

[注]
*9.変性SBR(F):製造例6のゴムを用いた
【0071】
【表4】

[注]
*10.カーボンブラック N330::東海カーボン社製「シースト3」
【0072】
実施例5〜7及び比較例5〜6
第5表に示す5種類の未変性及び変性ポリブタジエンゴムをもちいて第6表に記載の配合組成を有する種のゴム組成物を調製し、タイヤサイズ11R22.5のサイドゴムに適用し、それぞれ転がり抵抗の評価を行った。また、加硫ゴム物性として耐摩耗性(縁石こすれ性)の評価を行った。評価結果を第5表に示す。
【0073】
【表5】

[注]
11.変性SBR(G):製造例7のゴムを用いた
12.変性SBR(H):製造例8のゴムを用いた
13.変性SBR(I):製造例9のゴムを用いた
14.変性SBR(J):製造例10のゴムを用いた
【0074】
【表6】

[注]
*15.カーボンブラック FEF:旭カーボン社製「旭#60」
【産業上の利用可能性】
【0075】
本発明のタイヤは、耐摩耗性(縁石こすれ性)を損なうことなく、転がり抵抗性(低発熱性)を著しく改良した。タイヤであり、トラック、バス用タイヤ等に好適に適用することができる。

【特許請求の範囲】
【請求項1】
ゴム成分と充填材を含有し、かつ前記ゴム成分が、アミン系官能基変性ポリブタジエンゴムを30〜70質量%と天然ゴムとを含むゴム組成物をサイドゴムに用いたことを特徴とするタイヤ。
【請求項2】
変性ポリブタジエンゴムが、アミン系官能基としてプロトン性アミノ基及び/又は保護化アミノ基を有する請求項1に記載のタイヤ。
【請求項3】
変性ポリブタジエンゴムが、さらに、ヒドロカルビルオキシシラン基を有する請求項1又は2に記載のタイヤ。
【請求項4】
変性ポリブタジエンゴムが、プロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを有する請求項3に記載のタイヤ。
【請求項5】
同一の重合末端に、プロトン性アミノ基及び/又は保護化アミノ基とヒドロカルビルオキシシラン基とを有する請求項4に記載のタイヤ。
【請求項6】
プロトン性アミノ基及び/又は保護化アミノ基が、−NH2、−NHRa、−NL12及び−NRb3(ただし、Ra及びRbは、それぞれ炭化水素基を示し、L1、L2及びL3は、それぞれ水素原子又は解離し得る保護基を示す。)の中から選ばれる少なくとも一種の基である請求項3〜5のいずれかに記載のタイヤ。
【請求項7】
変性ポリブタジエンゴムが、共役ジエン重合体の重合活性末端に、分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物を反応させ、変性してなるものである請求項4〜6のいずれかに記載のタイヤ。
【請求項8】
分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物が、保護化第一アミノ基を有する2官能性ケイ素化合物である請求項8に記載のタイヤ。
【請求項9】
前記2官能性ケイ素原子を含む化合物が、一般式(I)
【化1】

(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、Aは反応性基、fは1〜10の整数を示す。)で表されるケイ素化合物、一般式(II)
【化2】

(式中、R7〜R11は、それぞれ独立に炭素数1〜20の炭化水素基、R12は炭素数1〜12のアルキレン基を示す。)で表されるケイ素化合物及び、一般式(III)
【化3】

(式中、R1、R2は、それぞれ独立に炭素数1〜20の炭化水素基、R3〜R5は、それぞれ独立に炭素数1〜20の炭化水素基、R6は炭素数1〜12のアルキレン基、R13は炭素数1〜12のアルキレン基、Aは反応性基、fは1〜10の整数を示す。)で表されるケイ素化合物から選ばれる少なくとも一種である請求項8に記載のタイヤ。
【請求項10】
一般式(I)におけるAがハロゲン原子、炭素数1〜20のヒドロカルビルオキシ基又はヒドロキシ基である請求項9に記載のタイヤ。
【請求項11】
変性ポリブタジエンゴム重合体の重合活性末端に、分子内に保護化アミノ基とヒドロカルビルオキシシラン基とを有する化合物を反応させ、変性させたのち、周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかに属する元素の化合物からなる縮合促進剤の存在下で、前記化合物が関与する縮合反応を施したものである請求項1〜10のいずれかに記載のタイヤ。
【請求項12】
前記縮合促進剤が、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、又はアルミニウム(Al)の化合物からなり、前記縮合促進剤を構成する化合物は、前記元素のアルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩である請求項11に記載のタイヤ。
【請求項13】
前記縮合促進剤が、チタンの化合物からなるチタン系縮合促進剤である請求項12に記載のタイヤ。
【請求項14】
チタン系縮合促進剤が、チタンのアルコキシド、カルボン酸塩及びアセチルアセトナート錯塩の中から選ばれる少なくとも一種である請求項13に記載のタイヤ。
【請求項15】
前記充填材として、前記ゴム成分100質量部当たり、カーボンブラック15〜55質量部とシリカ40〜0質量部とを含むと共にカーボンブラックとシリカの合計量が15〜55質量部である請求項1〜14のいずれかに記載のタイヤ。
【請求項16】
前記カーボンブラックの窒素吸着比表面積40m2/g以上である請求項15に記載のタイヤ。
【請求項17】
前記シリカに対して、シランカップリング剤を2〜20質量%含有する請求項15に記載のタイヤ。
【請求項18】
シランカップリング剤が、下記一般式(IV)
【化4】

[式中、R14はR19O−、R19C(=O)O−、R1920C=NO−、R1920N−又は−(OSiR1920m(OSiR181920)(ただし、R19及びR20は、それぞれ独立に水素原子又は炭素数1〜18の一価の炭化水素基、である。)R15はR14、水素原子又は炭素数1〜18の一価の炭化水素基、R16はR14、R15又は−[O(R21O)a]0.5 −基(ただし、R21は炭素数1〜18のアルキレン基、aは1〜4の整数である。)、R17は炭素数1〜18の二価の炭化水素基、R18は炭素数1〜18の一価の炭化水素基を示し、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。]で表される請求項17に記載のタイヤ。
【請求項19】
ゴム成分が、変性ポリブタジエンゴムを30〜70質量%と、天然ゴム70〜30質量%とからなる請求項1〜18のいずれかに記載のタイヤ。
【請求項20】
重荷重用タイヤである請求項1〜19のいずれかに記載のタイヤ。

【公開番号】特開2009−280805(P2009−280805A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2009−107940(P2009−107940)
【出願日】平成21年4月27日(2009.4.27)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】