説明

ツインタンクウォータオンウォータ濾過システム

フィルタ部材と、2つの貯蔵容器とを含む、ウォータオンウォータ濾過システム。システムは、第1の貯蔵容器を、第1の貯蔵容器が濾過水で充填される充填状態にし、同時に、第2の貯蔵容器を、第2の貯蔵容器内に保持される濾過水が濾過システムの出力として送達されるサービス状態にするように制御される、複数個の弁を含む。濾過システムは、比較的小さなフィルタ部材及び比較的小さな貯蔵容器を使用する一方で、濾過水の一定の出力を供給し、一定の需要を満たすように構成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、濾過システムに関し、より具体的には、濾過システムにおける流体貯蔵及び流量制御に関する。
【背景技術】
【0002】
居住用及び商用利用のために設計された水濾過システムは、ますます一般的となっている。この普及は、入力水から望ましくない物質を除去して、出力水を様々な最終用途で消費するためにより安全にする必要性から生じている。
【0003】
2つの一般的な水濾過システムは、1)容器内の空気セルによって作り出される逆圧に逆らって密閉された圧力容器に生成水を排出するシステム(エアオンウォータシステム)、並びに2)逆圧がない状態で、密閉された圧力容器に、及び容器から生成水を除去するように別個の水源によって圧縮することができる可撓性の水セルに生成水を排出するシステム(ウォータオンウォータシステム)である。
【0004】
エアオンウォータシステムは、空気セルの逆圧にさらされ、これは、本質的に、システムの濾過部分(例えば、逆浸透膜)にわたる圧力差を低減し、それによって一定時間に作られる濾過生成水の品質及び量を低下させる。生成水の品質は、典型的に、単一の濾過部分及び単一の貯蔵容器を含む家庭用システムにおいて起こるように、生成水が頻繁に取り出され、少量が置換される場合に、特に劣る。更に、貯蔵容器から空気セル推進水が空にされる際、空気セルは、徐々に圧力を失い、生成水の分注流量は減少する。
【0005】
大部分の空気セルシステムは、貯蔵タンクがいっぱいであり、典型的に管路圧力の60%〜70%に到達する際、給水流、したがって低速流出廃水の更なる生成を停止する自動遮断弁を含む。この技術は、廃水を減少させる一方、生成水の量及び品質、並びにその分注流量の低下をもたらし得る。
【発明の概要】
【発明が解決しようとする課題】
【0006】
ウォータオンウォータシステムは、エアオンウォータシステムの短所の多くに対処することができる。ウォータオンウォータシステムは、典型的に、ほぼ同一の寸法の2つの水充填区画を含む、圧力容器を含む。区画間の物理的分離は、第1の区画内の水圧が第2の区画内の水圧に影響を与えるように、移動可能であるか、又は可撓性である。それぞれの区画は、1つの区画を、他方が空になる一方で、充填することができるように、異なる流体源によってアクセスされる。したがって、区画にわたって、圧力低下はほとんど又はまったく生じない。生成水が容器から引き出される際、両方の区画は加圧される。次いで、生成水が1つの区画を充填し、他方の区画から排水管に水を追い出す際、両方の区画は減圧される。
【課題を解決するための手段】
【0007】
本開示は、ウォータオンウォータ濾過システムに関する。一例示的な濾過システムは、フィルタ部材と、2つの貯蔵容器とを含む。システムは、貯蔵容器のうちの1つが濾過水で充填され(充填状態)、一方で、他方の貯蔵容器に保持される濾過水が使用のために送達される(サービス状態)ように制御される、複数個の弁を含む。貯蔵容器のそのような配設を伴う濾過システムは、比較的小さなフィルタ部材及び比較的小さな貯蔵容器を使用する一方で、一定の需要を満たすように濾過水の出力を供給するのに有用であり得る。
【0008】
上の要約は、本明細書に開示される本発明の観点のそれぞれの開示される実施形態又は全ての実施を説明することを意図するものではない。下の詳細な説明の図面は、本発明のある観点がどのように実行されるかの例である特徴を、より具体的に説明する。特定の実施形態が図示及び説明されるが、この開示がそのような実施形態又は構成に限定されないことを理解されたい。
【図面の簡単な説明】
【0009】
【図1】本開示の原理による、一例示的な濾過システムの特徴を図示する概略図。
【図2】図1に示される濾過システムと関連して使用される、一例示的なウォータオンウォータ貯蔵容器の概略断面図。
【図3】図1に示される濾過システムの態様を図示する概略回路図。
【図4】本開示の原理に従う、別の例示的な濾過システムの特徴を図示する概略図。
【図5】図4に示される濾過システムと関連して使用される、別の例示的なウォータオンウォータ貯蔵容器の概略断面側面図。
【図6A】図4に示される濾過システムを制御するために使用されるソフトウェアプログラムのラダーロジック表を描写する図。
【図6B】図4に示される濾過システムを制御するために使用されるソフトウェアプログラムのラダーロジック表を描写する図。
【発明を実施するための形態】
【0010】
図面を参照して様々な実施形態について説明するが、いくつかの図面で同じ参照番号はアセンブリの同様な部品を表す。様々な実施形態の参照が、本明細書に添付の請求項の範囲を限定することはない。加えて、本明細書に記載されたいかなる実施例も、限定することを意図するものではなく、添付の請求項の多くの可能な実施形態のいくつかを示すものにすぎない。
【0011】
以下の記載は、本発明の態様が実施され得る好適な環境の簡潔な概略的説明を提供することを意図するものである。要求されないが、本発明は、水濾過システム、例えば、居住用及び商用利用のためのウォータオンウォータ逆浸透濾過システムの一般文脈において説明される。いくつかの例示的な濾過システムの構造、作出、及び使用、並びに方法は、以下に説明される。
【0012】
本明細書に開示される例示的な実施形態は、本明細書に強調される用途の他に、多数の濾過システム用途への幅広い用途を有する。そのような別の用途及び環境が考えられる一方、そのような特定の用途は、添付の図面を参照して本明細書に記載される実施形態から特に利益が得られるため、逆浸透濾過システムへの特徴の適用に重点が置かれる。
【0013】
本明細書に開示される実施例は、ツイン貯蔵容器、ウォータオンウォータ濾過システムを目的とする。水送達に、典型的なシステムが圧縮空気を利用する一方、ウォータオンウォータシステムは、給圧の形態の位置エネルギーを利用する。開示される実施例の一態様は、2つの交互送達貯蔵容器が存在するものである。容器のうちの1つは、充填モード(また、充填状態とも称される)であり、一方で、他方の容器は、送達モード(また、サービス状態とも称される)である。この種類の交互容器システムは、濾過水を作製及び貯蔵し、一方で、システムが同時に濾過水を分注する能力を提供する。
【0014】
好ましくは所定の供給圧力で、一定又はほぼ一定の濾過水の流量を提供する能力は、外食産業等の多くの用途で重要である。2つの貯蔵容器を使用する結果、フィルタ部材(例えば、逆浸透フィルタ)は、比較的一定の速度で、最大能力で動作することができる。したがって、本明細書に開示される実施例のフィルタ部材の寸法及び関連空間要件を、同一の、又は類似する出力能力を有する他の濾過システムと比較して、大幅に小さくすることができる。更に、1つの容器が充填状態であり、一方で、他方がサービス状態である交互貯蔵容器の使用は、組み合わせられた際にさえ、類似する出力能力を有する濾過システムより小さな空間要件を有する2つのタンクで機能することができる。したがって、本明細書に開示される特徴を実装する際、所与の出力能力の濾過システムの全体寸法及び関連空間要件を、同程度の単一の貯蔵容器濾過システムより小さくすることができる。二重貯蔵容器ウォータオンウォータシステムの使用の更なる効果は、濾過部材にわたる水のほぼ一定の流量、及び濾過部材にわたる比較的高い圧力差による、システム内の総溶解固形分(TDS)クリープの減少である。
【0015】
ウォータオンウォータ濾過システムは、より一般的に利用されるウォータオンエアシステムと比較して、多くの利点を有する。ウォータオンウォータ設計の1つの利点は、濾過水の分注時の改善された流量である。場合によっては、ウォータオンウォータシステムは、典型的なエアオンウォータシステムの1.5〜3倍、又はそれを超える流量を生成することができる。また、ウォータオンウォータシステムは、典型的に、平均でウォータオンエアシステムの少なくとも2倍の分注時の改善された送達圧力を提供することもできる。また、改善された送達圧力は、貯蔵容器へ、又は貯蔵容器からの水の流量を増加することができるため、ウォータオンエアシステムと比較して、増加した生成を提供することもできる。広くは、また、ウォータオンウォータシステムは、それらが、生成される濾過水の単位ごとにより少ない廃水(排水する水)を生成するため、改善された効率も有する。ウォータオンウォータシステムは、圧縮空気源を必要とせず、したがって、より小さな寸法及び空間要件を有することができる。ウォータオンウォータシステムのこれら及び他の利点により、ウォータオンウォータシステムは、本明細書に開示される発明の原理の実装に有利な産業上の利用分野となる。
【0016】
いくつかの他の種類の濾過システムは、ウォータオンエアシステムと同じ短所のうちのいくつかを有する。例えば、タンクのない濾過システムは、比較的大量の濾過水を生成する能力を有する、大きな濾過部材を利用する。大きな濾過部材は、高価であり、大きな空間を必要とする可能性がある。また、濾過水の生成を最大化するために、濾過部材にわたる圧力低下は増加されなければならず、結果として、タンクのないウォータオンウォータシステムの送達側に、低出力圧力をもたらす。
【0017】
図1〜図3の例示的なシステム
次に、図1〜図3を参照して、一例示的な濾過システム10が説明される。濾過システム10は、濾過部材12と、第1及び第2のウォータオンウォータ貯蔵容器14、16と、給水管路18と、排水管路20と、サービス又は出力管路22と、迂回管路24と、タンク管路25とを含む。また、濾過システム10は、第1及び第2の圧力センサP、Pと、水圧アキュムレータP(例えば、ハイドロニューマティックタンク)と、複数個の一方向弁Sと、複数個の制御弁S1〜S8と、も含む。
【0018】
給水管路18は、濾過部材12と第1及び第2の貯蔵容器14、16のそれぞれの送達側とに流体連通で接続される。排水管路20は、濾過部材12と第1及び第2の貯蔵容器14、16のそれぞれの送達側とに流体連通で接続される。サービス又は出力管路22は、第1及び第2の貯蔵容器14、16の充填側又は濾過水側と迂回管路24とに流体連通で接続される。迂回管路24は、以下に説明される特定の状況下で、フィルタ部材12と第1及び第2の貯蔵容器14、16とを迂回するように、給水管路18とサービス管路22とに流体連通で接続される。タンク管路25は、濾過部材12と第1及び第2の貯蔵容器14、16とに流体連通で接続される。
【0019】
図2を参照すると、第1及び第2の貯蔵容器14、16のそれぞれは、第1のコンテナ30と、第2のコンテナ32と、第1のコンテナ30に流体連通している第1の入力/出力開口部34と、第2のコンテナ32に流体連通している第2の入力/出力開口部36とを含む。第1のコンテナ30は、濾過水空間31を画定する、可撓性バッグ部材(また、袋とも称される)として示される。また、外側コンテナとも称される第2のコンテナは、送達水空間33を画定する。
【0020】
圧力センサP、Pは、濾過水貯蔵空間31内、及び/又は空間31に流体連通で接続される管路(即ち、フィルタ部材12から第1の貯蔵容器14に濾過水を送達する管路、又は第1の貯蔵容器からサービス管路22に濾過水を送達する管路)内の圧力状況を監視する。
【0021】
また、濾過システム10は、圧力センサP、Pに電気的に接続された制御システム26と、弁S1〜S8と、濾過システム10の他の制御可能な特徴と、も含む。制御システム26は、圧力センサP、Pから受信される圧力信号、及び濾過システムの他の特徴又は外部システムから受信される他の信号(例えば、出力管路22での流量の需要を示す信号)に応じて、弁S1〜S8の開閉を制御する。弁S1〜S8は、圧力センサP、Pによってシステム圧力における変化が確認されるまで、図1に示されるように、普通、常開(NO)状態又は常閉(NC)状態のいずれかに維持される。図1は、弁S1、S4、S6、及びS8を常開として、並びに弁S2、S3、S5、及びS7を常閉として図示する。常開弁が作動される際(例えば、制御システム26からの電気的刺激で)、常開弁は、開放状態から閉鎖状態に変化する。同様に、常閉弁が作動される際、常閉弁は、閉鎖状態から開放状態に変化する。
【0022】
濾過システム10は、典型的に、第1の貯蔵容器14の第1のコンテナ30内の濾過水の圧力を監視する第1の圧力センサPによってトリガされる。この圧力が所定の低レベルで感知される際、弁S1〜S8は、濾過部材12からの濾過水が、第1の貯蔵容器14に送達され、第1のコンテナ30内に貯蔵されるように設定される。貯蔵容器14の反対側(第2のコンテナ32)は、好ましくは大気圧で、排水するように同時に開放している。更に、第2の貯蔵容器16の第2のコンテナ32は、第2の貯蔵容器16から水圧アキュムレータPCに、及び最終的にはサービス管路22に濾過水を吐出するように、第2の貯蔵容器16の第1のコンテナ30を圧縮する、給水管路18からの給水を受け取るために同時に開放している。第2の貯蔵容器16の第2のコンテナ32が、給水管路18内の水の圧力(即ち、給圧)で充填されるため、水は、給圧で第1のコンテナ30から吐出される。
【0023】
いったん第1の貯蔵容器14の第1のコンテナ30が所定のレベルに充填されると、圧力センサPは、所定の高圧レベルを感知する。第1及び第2の貯蔵容器14、16へ、並びに第1及び第2の貯蔵容器14、16からの流れが切り換えられて、第2の貯蔵容器16の第1のコンテナ32を充填し、第1の貯蔵容器14の第1のコンテナ30から濾過水を吐出する(即ち、第1の貯蔵容器14がサービス状態であり、第2の貯蔵容器16が充填状態である)ように、制御システム26は、弁S1〜S8を再設定することによって、圧力センサPからの高圧信号に応じる。
【0024】
濾過水は、サービス管路22への流路を開放し、第1の貯蔵容器14の第2のコンテナ32を給水管路18からの水で充填し、それによって第1のコンテナ30を圧縮することにより、第1の貯蔵容器14の第1のコンテナ30から吐出される。それと同時に、第2の貯蔵容器16の第1のコンテナ30は濾過部材12から送達される濾過水で充填され、一方、第2の貯蔵容器16の第2のコンテナ32は、好ましくは大気圧で、排水管路20に対して開放している。いったん第1の貯蔵容器14の第1のコンテナ30が空になる(即ち、圧力センサPによって所定の低レベルが感知される)と、サイクルは、再び再開され、第1及び第2の貯蔵容器は、それぞれ充填モード又は状態と、サービス若しくは分注モード又は状態とに切り替えられる。
【0025】
第2の貯蔵容器16の圧力センサPは、容器14、16の両方が空である(即ち、所定の高圧レベルが感知されていない)場合に、水の要求される需要を満たすために、給水管路18からの水をサービス又は出力管路22に送達することができるように、迂回管路24内の弁S2が開放していることを確実にするために、第1の圧力センサP及び制御システム26と連動して動作する。第1及び第2の容器14、16の両方がフルである(即ち、両方の容器で所定の高圧レベルが満たされている)場合、弁S1は、濾過部材12の動作を停止するために閉鎖され、濾過部材12からの排水管路20への廃水を減少させることができる。
【0026】
別の例示的な構成では、サービス管路22を介した濾過システム10からの出力流量は、水圧アキュムレータPによってもいかなる他の流量制御部材によっても制御されていなかった。代わりに、サービス管路22は、濾過システム10からの需要水の大気又は下流圧力状況に対して開放したままであった。水圧アキュムレータPが除去される際、給水管路18の圧力設定、並びに第1及び第2の圧力センサP、Pの高圧及び低圧設定は、濾過システム10からの水の需要状況によって、濾過システム10の改善された安定性を提供するように修正することができる。図4を参照して以下に説明される濾過システム100は、システムの出力に水圧アキュムレータ及び他の流量制御部材がない、サービス管路22を図示する。
【0027】
濾過システム10の一例示的な設定は、濾過部材12(例えば、3.8L/分(1分当たり1ガロン(gpm)の能力を有する逆浸透濾過モジュール)の出力と実質的に一致する、3.8L/分(1gpm))流量制御弁S1を含む。給水管路18内の給圧は、約413.7kPa(60psi)に調整され、第1及び第2の圧力センサP、Pの所定の高圧並びに低圧設定は、それぞれ379.2kPa(55psi)及び310.3kPa(45psi)に設定される。濾過システム10の出力でサービス管路22に送達される濾過水は、水圧アキュムレータPによって約1.9L/分(0.5gpm)に制御された。濾過システムに関連する特徴、機能性、供給、及び需要のいずれかの数の変更によって、これらの設定のうちのいずれも修正することができる。
【0028】
図3は、制御システム26によって実施される複数個の弁S1〜S8の制御に関連する、一例示的な回路図を図示する。図3は、第1の圧力センサPが高圧設定であり、弁S3、S4、S7、S8が作動され、弁S5、S6が作動されていない場合を図示する。第1の圧力センサPが高い状態である間、第2の圧力センサPが高い状態であるか低い状態であるかによって、第1の弁S1は、上述されるように、濾過部材12に給水源を提供するために開放していてもよい。
【0029】
第1の圧力センサPが低圧設定又は状態である場合、弁S3、S4、S7、S8は作動されず、弁S5、S6は作動される。図3に示される図によると、第1の圧力センサPは、システムが第1及び第2の貯蔵容器14、16を充填状態とサービス状態とに切り替える時期を制御する、主要センサである。他の配設では、第2の圧力センサPが主要センサであってもよい。更なる配設では、センサP、Pは、圧力センサが所与の容器の高い状態又は低い状態のうちの1つであるときに、制御システムが、両方のセンサP、Pからのフィードバックに基づき、容器を充填とサービスとに切り替えるように、制御システムによって同等に取り扱われる。
【0030】
弁S1〜S8は、様々な弁又は調整器の種類を含むことができる。一実施例では、弁S1は、短い電気的刺激が適用されると、開放状態又は閉鎖状態に切り替えられて、それを維持する、ソレノイド弁(例えば、ラッチ式ソレノイド)である。別の実施例では、弁S1〜S8のうちのいずれか1つは、水圧刺激に依存して開放状態又は閉鎖状態を維持する、圧力調整器であってもよい。
【0031】
図4〜図6Bの例示的な濾過システム
ここで、図4〜図6Bを参照すると、別の例示的な濾過システム100が示され、説明される。濾過システム100は、濾過システム10を参照して上述されたものと同一の、又は類似する特徴の多くを含む。濾過システム100は、濾過部材12と、第1及び第2のウォータオンウォータ貯蔵容器114、116と、給水管路18と、排水管路20と、サービス又は出力管路22と、迂回管路24と、複数個の一方向弁Sとを含む。また、濾過システム100は、複数個の弁Y004〜Y007及びY010〜Y013と、複数個の弁Y004〜Y007及びY010〜Y013を制御する制御システム26と、も含む。
【0032】
第1及び第2の貯蔵容器114、116は、容器内のピストン(容器の充填状態を理解するために使用することができる)の場所を判定するためにセンサを利用する、ピストン型貯蔵容器である(図5参照)。貯蔵容器114、116と共に使用するためのいくつかの例示的なセンサは、磁気近接センサ、リミットスイッチ、レベルスイッチ、リードスイッチ、並びにリニアエンコーダ、光学位置センサ及び音波位置センサ等の位置センサである。
【0033】
図5は、貯蔵容器114、116の一例示的な構成を図示する。貯蔵容器は、コンテナ40と、コンテナ40内で移動可能であり、かつコンテナ40を濾過水空間44及び送達水空間46に分割する、ピストン部材42とを含む。第1の位置センサ48は、コンテナ40の第1の末端部に配置され、第2の位置センサ50は、コンテナ40の反対の第2の末端部に配置される。位置センサ48、50からのセンサ信号は、図4、並びに図6A及び図6Bに図示されるラダーロジックプログラムで、X003〜X006としてラベル表示される。コンテナ40は、コンテナ40の反対の末端部に配置される、第1及び第2の入口/出口52、54を含む。位置センサ48、50は、コンテナ40内のピストン42の位置を追跡し、それによって貯蔵容器114、116の充填状態に関する情報(即ち、濾過部材12からフルであるか空であるか)を提供する。
【0034】
制御システム26は、図6に示されるPCLラダーロジックにしたがって、複数個の弁Y004〜Y007及びY010〜Y013の開閉状態を制御するために、第1及び第2の位置センサ48、50から入力を受け取る。位置センサ48、50からの出力は、第1の貯蔵容器114についてはX003、X004、及び第2の貯蔵容器116についてはX005、X006として表される。また、濾過システム100は、それぞれ濾過部材12と第1及び第2の貯蔵容器114、116との間に配置される管路内に、第1及び第2の圧力センサP、Pを含むこともできる。第1及び第2の圧力センサP、Pは、第1及び第2の貯蔵容器114、116の充填状態を確認するために、制御システム26に追加のフィードバックを提供することができる。圧力センサP、Pは、図6A及び図6Bに示される論理図において、それぞれ入力X001及びX002としてラベル表示される。
【0035】
以下の一般的定義は、図4、図6A、及び図6Bの図に使用される用語に関する。
【0036】
o Xxxx:近接センサ又は任意の圧力スイッチからの入力変数。
【0037】
o Yxxx:ソレノイド弁への出力リレー。
【0038】
o Mxxx:システムへの追加値を追跡するために使用される内部リレー値。
【0039】
別の実施例
図1〜図6Bを参照して上述される実施例の一態様は、貯蔵容器のそれぞれが充填モード又はサービスモードのいずれかであるときに制御するための制御システムの統合された性質に関する。上述されるシステムは、2つの別個の貯蔵容器を給水する単一の濾過部材を含み、貯蔵容器は、単一の出力に濾過水を送達する。別の配設では、2つの別個の水濾過システムは、単一の出力又はサービス管路に接続され、それぞれの水濾過システムは、単一の貯蔵容器及び別個の濾過部材を含む。それぞれの濾過システム内の貯蔵容器の充填状態及びサービス状態を制御して、濾過水の所望の出力を提供するために、図1〜図6Bを参照して上述される弁にわたる制御を統合する、類似する制御システムを使用することができる。次いで、統合制御システムの使用は、図1〜図6Bを参照して説明された実施例と類似する方法で、濾過システムのうちの1つを、他方の濾過システムが充填モードである一方で、サービスモードにし、濾過水の一定の出力を提供することを試みる、いくつかの他の既知の濾過システムよりも少ない空間を依然として使用する一方で、実質的に同一の生成での濾過水の比較的一定の出力を提供するために、2つのモードに切り替えることができる。
【0040】
更に別の実施例では、図1〜図6Bを参照して説明される例示的なシステムは、3つ又はそれ以上の貯蔵容器を含むように修正される。制御システムは、貯蔵タンクの全てを使用して、濾過水の生成、貯蔵、及び送達の効率を最大化するように構成することができる。
【0041】
本明細書に開示される濾過システムは、任意の数の異なる濾過部材及び濾過技術を利用することができる。一実施例では、濾過システムは、直列又は並列に配設され、タンク管路(例えば、タンク管路25)を通して貯蔵容器(例えば、容器14、16)と流体連通で接続される、2つ又はそれ以上の濾過部材(例えば、図1に示される濾過部材12)を含むことができる。考えられるいくつかの例示的な濾過技術には、逆浸透、ナノ濾過、限外濾過、及び水から不純物を除去するのを助長する他の濾過システムが挙げられる。また、本明細書に記載される例示的なシステムを使用して、水を濾過することに加えて、又はその代わりに、水に栄養補助成分を添加することも可能である。一実施例では、例示的な濾過システムに、濾過部材の周囲の迂回管路を追加することができる。迂回管路を通る源水の流量は、貯蔵容器内に貯蔵される、濾過された水と濾過されていない水とのカスタマイズされた混合を提供するように、ユーザーによって調節されてもよい。
【0042】
結論
本開示の一態様は、少なくとも1つの水濾過部材と、第1及び第2のウォータオンウォータ容器と、複数個の弁部材と、制御システムとを含む、濾過システムに関する。第1のウォータオンウォータ容器は、濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される。また、第2のウォータオンウォータ容器も、濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される。制御システムは、複数個の弁部材を制御して、第1及び第2の容器をサービス状態と充填状態とに切り替えるように構成される。濾過部材は、逆浸透フィルタであってもよい。
【0043】
本開示の別の態様は、少なくとも1つの逆浸透水濾過部材と、第1及び第2の容器と、複数個の弁部材と、制御システムとを含む、濾過システムに関する。第1の容器は、濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される。第1の容器は、第1及び第2の水コンテナを含み、第1の水コンテナは、第2のコンテナ内に配置され、濾過部材から受け取られる濾過水を保持するように構成される、圧縮可能部分を有する。第2の容器は、濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される。第2の容器は、第1及び第2の水コンテナを含み、第2の容器の第1の水コンテナは、第2の容器の第2のコンテナ内に配置され、濾過部材から受け取られる濾過水を保持するように構成される、圧縮可能部分を有する。複数個の弁部材は、濾過部材と第1及び第2の容器とに流体連通している。制御システムは、複数個の弁部材を制御して、第1及び第2の容器のサービス状態と充填状態とに切り替えるように構成される。
【0044】
本開示の更なる態様は、水濾過システムで濾過水を送達する方法に関する。水濾過システムは、少なくとも1つの濾過部材と、第1及び第2のウォータオンウォータ貯蔵容器と、複数個の弁と、制御システムとを含む。第1及び第2の貯蔵容器は、それぞれ貯蔵容器が濾過水で充填される充填状態と、貯蔵容器から濾過水が吐出されるサービス状態とに交互に切り換わるように構成される。その方法は、濾過部材で濾過水の供給を生成する工程と、第1の貯蔵容器を充填状態に設定し、かつ、第2の貯蔵容器をサービス状態に設定するように、制御システムで複数個の弁を制御する工程と、第1の貯蔵容器をサービス状態に設定し、かつ、第2の貯蔵容器を充填状態に設定するように、制御システムで複数個の弁を制御する工程とを含む。
【0045】
上の「詳細な説明」では、開示を合理化する目的のために、様々な特徴が一つの実施形態にまとめられている場合がある。この開示の方法は、主題の請求項の実施形態がそれぞれの請求項に明示的に記載されているより多くの特徴を要求することを意図すると解釈されるべきではない。むしろ、下記の請求項が反映するように、本発明の主題は、一つの開示された実施形態の全ての特徴を超えて存在する。したがって、下記の請求項は、ここに、それぞれの請求項が別個の好ましい実施形態として独立したものとして、この「詳細な説明」に組み込まれる。したがって添付の「特許請求の範囲」の領域及び範囲は、本明細書に含まれる好ましいバージョンの説明として限定してはならない。

【特許請求の範囲】
【請求項1】
少なくとも1つの水濾過部材と、
該濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される第1のウォータオンウォータ容器と、
前記濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される第2のウォータオンウォータ容器と、
複数個の弁部材と、
該複数個の弁部材を制御して、前記第1及び第2の容器をサービス状態と充填状態とに切り替えるように構成される制御システムと、を備える、濾過システム。
【請求項2】
前記濾過部材が、逆浸透フィルタである、請求項1に記載の濾過システム。
【請求項3】
前記濾過部材並びに前記第1及び第2のウォータオンウォータ容器に水入力を提供するように構成される給水管路と、前記濾過部材並びに前記第1及び第2のウォータオンウォータ容器に流体連通で連結される排水管路と、前記第1及び第2のウォータオンウォータ容器と流体連通で連結される出力管路と、を更に含む、請求項1に記載の濾過システム。
【請求項4】
前記給水管路と前記出力管路とに流体連通で連結され、前記濾過部材と前記第1及び第2のウォータオンウォータ容器とを迂回するように構成される迂回管路を更に含む、請求項3に記載の濾過システム。
【請求項5】
前記第1及び第2のウォータオンウォータ容器が、それぞれ第1及び第2の水コンテナを含み、前記第1の水コンテナが、圧縮可能部分を有し、前記第2の水コンテナ内に配置される、請求項3に記載の濾過システム。
【請求項6】
前記第1及び第2のウォータオンウォータ容器が、それぞれその中に移動可能に配置されるピストンを含み、該ピストンが、前記ウォータ容器を濾過水貯蔵空間及び送達水貯蔵空間に分割する、請求項1に記載の濾過システム。
【請求項7】
前記制御システムが、あらゆる時点で、前記第1及び第2の容器のうちの1つのみをサービス状態で提供するように前記複数個の弁部材を制御する、請求項1に記載の濾過システム。
【請求項8】
前記制御システムが、前記第1及び第2の容器のうちの1つが空の状態であるときに、前記第1及び第2の容器をサービス状態と充填状態とに自動的に切り替えるように前記複数個の弁部材を制御する、請求項1に記載の濾過システム。
【請求項9】
少なくとも1つの逆浸透水濾過部材と、
該濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される第1の容器であって、第1及び第2の水コンテナを含み、前記第1の水コンテナが、前記第2のコンテナ内に配置される圧縮可能部分を有するとともに、前記濾過部材から受け取られる濾過水を保持するように構成される第1の容器と、
前記濾過部材に流体連通され、サービス状態と充填状態とに交互に切り換わるように構成される、第2の容器であって、第1及び第2の水コンテナを含み、前記第2の容器の前記第1の水コンテナが、前記第2の容器の前記第2のコンテナ内に配置される圧縮可能部分を有するとともに、前記濾過部材から受け取られる濾過水を保持するように構成される第2の容器と、
前記濾過部材並びに前記第1及び第2の容器と流体連通している複数個の弁部材と、
前記複数個の弁部材を制御して、前記第1及び第2の容器をサービス状態と充填状態とに切り替えるように構成される制御システムと、を備える、濾過システム。
【請求項10】
前記第1及び第2の容器の前記サービス状態が、前記第1の水コンテナを圧縮し、それによって前記容器から濾過水を吐出するように、前記第2の水コンテナが水で充填される、前記複数個の弁の配設を伴う、請求項9に記載のフィルタユニット。
【請求項11】
前記第1及び第2の容器のそれぞれと関連付けられる圧力センサを更に備え、前記圧力センサが、前記サービス状態と充填状態とに交互に切り換わる時期を決定するために、水圧を監視し、前記制御システムによって使用される圧力信号を生成するように構成される、請求項9に記載のフィルタユニット。
【請求項12】
水濾過システムを用いて濾過水を送達する方法であって、前記水濾過システムが、少なくとも1つの濾過部材と、第1及び第2のウォータオンウォータ貯蔵容器と、複数個の弁と、制御システムとを含み、前記第1及び第2の貯蔵容器が、それぞれ前記貯蔵容器が濾過水で充填される充填状態と、前記貯蔵容器から濾過水が吐出されるサービス状態とに交互に切り換わるように構成され、
前記濾過部材で濾過水の供給を生成する工程と、
前記第1の貯蔵容器を充填状態に設定し、かつ、前記第2の貯蔵容器をサービス状態に設定するように、前記制御システムで前記複数個の弁を制御する工程と、
前記第1の貯蔵容器をサービス状態に設定し、かつ、前記第2の貯蔵容器を充填状態に設定するように、前記制御システムで前記複数個の弁を制御する工程と、を含む、方法。
【請求項13】
前記第2の貯蔵容器が前記サービス状態に設定される際、前記第1の貯蔵容器が前記充填状態に設定され、前記第1の貯蔵容器が前記サービス状態に設定される際、前記第2の貯蔵容器が前記充填状態に設定される、請求項12に記載の方法。
【請求項14】
前記濾過システムが、水圧アキュムレータと、前記濾過システムの出力管路とを更に含み、前記出力管路が、前記第1及び第2の容器のそれぞれの前記濾過水の出力と流体連通で接続される、請求項12に記載の方法。
【請求項15】
前記濾過システムが、排水口を更に含み、前記排水口が、前記第1及び第2の容器のそれぞれの前記排水出口と前記濾過部材とに流体連通で接続され、前記濾過システムから水を排水する工程を更に含む、請求項12に記載の方法。
【請求項16】
前記第1及び第2の容器が、それぞれ前記容器を濾過水貯蔵空間及び送達水貯蔵空間に分割する移動可能な分離部材を含み、前記充填モードでは、前記濾過水貯蔵空間が前記濾過水の供給で充填されるとともに、前記送達水貯蔵空間が大気圧まで排水され、前記サービスモードでは、前記移動可能な分離部材を移動させ、それによって所定の圧力レベルで前記濾過水貯蔵空間内に貯蔵された前記濾過水を吐出するように、前記送達水貯蔵空間が水で充填される、請求項15に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate


【公表番号】特表2011−510815(P2011−510815A)
【公表日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−545925(P2010−545925)
【出願日】平成21年1月19日(2009.1.19)
【国際出願番号】PCT/US2009/031371
【国際公開番号】WO2009/099747
【国際公開日】平成21年8月13日(2009.8.13)
【出願人】(505005049)スリーエム イノベイティブ プロパティズ カンパニー (2,080)
【Fターム(参考)】