説明

ナノファイバ製造装置、および、ナノファイバ製造方法

【課題】製造する不織布の幅に柔軟に対応でき、メンテナンスも容易なナノファイバ製造装置の提供。
【解決手段】直線的に配列される第一流出孔111を有する第一流出体101と、直線的に配列される第二流出孔112を有する第二流出体102と、第一流出孔111の配列方向と第二流出孔112の配列方向とが揃うように第一流出体101と第二流出体102とを分離可能に連結する連結手段124と、第一流出体101および第二流出体102を介して第一流出孔111および第二流出孔112から流出する原料液に電荷を付与して帯電させる帯電手段120とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、静電延伸現象によりサブミクロンオーダーやナノオーダーの細さである繊維(ナノファイバ)を製造するナノファイバ製造装置、ナノファイバ製造方法に関する。
【背景技術】
【0002】
樹脂などから成り、サブミクロンスケールやナノスケールの直径(繊維径)を有するナノファイバと称される糸状(繊維状)物質を製造する方法として、静電延伸現象(エレクトロスピニング)を用いた方法が知られている。
【0003】
この静電延伸現象とは、溶媒中に樹脂などの溶質を分散または溶解させた原料液を空間中にノズルなどにより流出(噴射)させるとともに、原料液に電荷を付与して帯電させ、空間を飛行中の原料液を電気的に延伸させることにより、ナノファイバを得る方法である。
【0004】
より具体的に静電延伸現象を説明すると次のようになる。すなわち、帯電され空間中に流出された原料液は、空間を飛行中に徐々に溶媒が蒸発していく。これにより、飛行中の原料液の体積は、徐々に減少していくが、原料液に付与された電荷は、原料液に留まる。この結果として、空間を飛行中の原料液は、電荷密度が徐々に上昇することとなる。そして、溶媒は、継続して蒸発し続けるため、原料液の電荷密度がさらに高まり、原料液の中に発生する反発方向のクーロン力が原料液の表面張力より勝った時点で原料液が爆発的に線状に延伸される現象が生じる。これが静電延伸現象である。この静電延伸現象が、空間において次々と幾何級数的に発生することで、直径がサブミクロンからナノオーダーの樹脂から成るナノファイバが製造される。
【0005】
以上のような静電延伸現象を用いてナノファイバを製造する場合、特許文献1に記載の発明のように、マトリクス状に並べられた小径の流出孔を備える流出体から原料液を空間中に流出させた後、紐形状で空間中を飛翔する原料液に静電延伸現象を発生させてナノファイバを製造することが行われている。そして空間中で製造されたナノファイバをベルト状の被堆積部材の上に堆積させ、被堆積部材を徐々に移送することで長尺のナノファイバからなる不織布を製造することが行われている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−190090号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところが、従来のナノファイバ製造装置においては、製造される不織布の幅を変えたいと言う要望に対しては、大きさの異なる流出体に取り替えるなど多大な労力が必要とされる。
【0008】
また、製造される不織布の幅を広くしたい場合、単に流出体を大きくしただけでは、要求される不織布の品質を達成することが困難な場合がある。つまり、製造されるナノファイバの繊維径のばらつきが大きくなったり偏りが発生したりして、幅方向に均一な品質の不織布を製造することが困難な場合がある。
【0009】
さらに、流出孔が溶質で目詰まりした場合の除去や、目詰まりを発生させないために流出体をメンテナンスする必要があるが、流出体を大型化した場合、メンテナンスにも多大な労力が必要となり、また、大型の流出体に対応したメンテナンス用の装置が別途必要になるなどメンテナンスに費やすコストも上昇することとなる。
【0010】
本願発明は、上記課題に鑑みなされたものであり、製造されるナノファイバの品質を維持しつつ、製造される不織布の幅に柔軟に対応でき、かつ、メンテナンス作業も容易となるナノファイバ製造装置、および、ナノファイバ製造方法の提供を目的としている。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本願発明にかかるナノファイバ製造装置は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、原料液を流出させる複数の第一流出孔が直線的に配列された状態で設けられる第一流出体と、原料液を流出させる複数の第二流出孔が直線的に配列された状態で設けられる第二流出体と、前記第一流出孔の配列方向である第一配列方向と前記第二流出孔の配列方向である第二配列方向とが揃うように前記第一流出体と前記第二流出体とを分離可能に連結する連結手段と、前記第一流出体および前記第二流出体を介して前記第一流出孔および前記第二流出孔から流出する原料液に電荷を付与して帯電させる帯電手段とを備えることを特徴としている。
【0012】
これによれば、第一流出体や第二流出体(以下、第一流出体や第二流出体を総称して「単位流出体」と記す場合がある。)を選択したり組み合わせたりすることで、原料液が流出される空間の幅を調整することが可能となる(以下、選択された単位流出体や組み合わされた単位流出体を総称して「流出体」と記す場合がある。)。従って、製造される不織布の幅を容易に変更することが可能となる。なお、第一流出孔や第二流出孔を総称して「流出孔」と記す場合がある。
【0013】
また、製造される不織布の幅が長い場合であっても、個々の単位流出体の長さは、不織布の幅よりは短いため、取り扱いが容易であり、溶剤に単位流出体を浸漬して超音波により洗浄するようなメンテナンスをする場合でも、汎用的な洗浄装置を用いることができるなど、メンテナンス作業を容易とし、コストの低減を図ることも可能となる。
【0014】
また、単位流出体は比較的小型であるため、単位流出体が備える流出孔から流出する原料液の状態(圧力など)を均一化することは比較的容易である。従って、単位流出体を組み合わせた流出体の流出体全体から流出する原料液の状態を均一化でき、不織布の幅全体にわたって品質の均一なナノファイバを製造することが可能となる。
【0015】
さらに、前記第一流出体に原料液を供給する第一供給管と、前記第二流出体に原料液を供給する第二供給管と、前記第一供給管および前記第二供給管の少なくとも一方に介在配置され、前記第一流出体および前記第二流出体の少なくとも一方に供給する原料液の流量を調整する調整手段とを備えてもよい。
【0016】
これによれば、第一流出体から流出する原料液の状態と、第二流出体から流出する原料液の状態との相違により製造されるナノファイバの品質にばらつきが発生する場合、第一流出体に供給される原料の流量と第二流出体に供給される原料の流量とを調整手段によりバランスさせることで、流出体から空間中に流出される原料液の状態を均一化でき製造されるナノファイバの品質の均一化を図ることが可能となる。
【0017】
また、前記第一流出体は、原料液を一時的に貯留し全ての前記第一流出孔に原料液を供給する第一貯留槽を備え、前記第二流出体は、原料液を一時的に貯留し全ての前記第二流出孔に原料液を供給する第二貯留槽を備え、前記第一流出体の第一配列方向の長さは、各前記第一流出孔から流出される原料液の流出圧力を均一にできる長さ以下であり、前記第二流出体の第二配列方向の長さは、各前記第二流出孔から流出される原料液の流出圧力を均一にできる長さ以下であることが好ましい。
【0018】
これによれば、単位流出体に備えられる流出孔から流出する原料液の状態を高い水準で均一化することができる。従って、単位流出体を連結させて構成される流出体で製造されるナノファイバを高い水準で均一化することが可能となる。
【0019】
また、前記第一流出体は、原料液を一時的に貯留し全ての前記第一流出孔に原料液を供給する第一貯留槽を備え、前記第二流出体は、原料液を一時的に貯留し全ての前記第二流出孔に原料液を供給する第二貯留槽を備え、前記連結手段は、第一流出体と第二流出体とが連結された状態で前記第一貯留槽と前記第二貯留槽とを連通する流路を備えるものでもよい。
【0020】
これによれば、原料液の流通経路を単一化でき、ナノファイバ製造装置の構造、特に原料液の供給経路を単純化することが可能となる。
【0021】
また、前記第一流出体と前記第二流出体との連結部分近傍において、前記第一流出孔の開口部が設けられる面と、この面と隣接する面とは滑らかな曲面で接続され、前記第二流出孔の開口部が設けられる面と、この面と隣接する面とは滑らかな曲面で接続されているものでもよい。
【0022】
これによれば、第一流出体と第二流出体との連結部分近傍のいずれかの点に電荷が集中してイオン風が発生し、該イオン風が製造されるナノファイバに悪影響を及ぼすことを回避することが可能である。
【0023】
ここで、イオン風とは、空間に露出している部分に電荷が留まると該部分の周辺近傍の空気がイオン化し、イオン化した空気が留まった電荷と反発して高速に飛び出すことで発生するイオンを含んだ空気の流れである。特にイオン風は、例えば、突起部の先端や角の先端など、空間中において形状的に特異な部分で発生し易いという知見を得ている。
【0024】
また、当該イオン風が空間中を飛行している原料液と交差すると、原料液や製造されつつあるナノファイバの飛行経路を乱したり、原料液の耐電状態に悪影響を及ぼしたりして製造されるナノファイバの品質が低下していた。また、ナノファイバの生産効率の低下につながるという知見も得ている。
【0025】
また、前記第一流出体と前記第二流出体との大きさは、いずれも洗浄装置に収容可能な大きさであることが好ましい。
【0026】
これによれば、ナノファイバ製造装置のメンテナンスが容易になり、メンテナンスに費やす労力を低減でき、製造されるナノファイバの品質を高い状態で維持することが可能となる。
【0027】
さらに、空間中で製造されたナノファイバを堆積させて収集する被堆積部材と、第一配列方向および第二配列方向と交差する方向に前記被堆積部材を移送する移送手段とを備えるものでもよい。
【0028】
これにより、幅方向に均一な品質のナノファイバで製造された長尺の不織布を製造することが可能となる。
【0029】
また、上記目的を達成するために、本願発明にかかるナノファイバ製造方法は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、原料液を流出させる複数の第一流出孔が直線的に配列された状態で設けられる第一流出体と原料液を流出させる複数の第二流出孔が直線的に配列された状態で設けられる第二流出体とを前記第一流出孔の配列方向である第一配列方向と前記第二流出孔の配列方向である第二配列方向とが揃うように連結手段により連結し、連結した状態の第一流出体および第二流出体から原料液を流出させ、帯電手段により前記第一流出体および前記第二流出体を介して前記第一流出孔および前記第二流出孔から流出する原料液に電荷を付与して帯電させることを特徴とする。
【0030】
これによれば、第一流出体や第二流出体を選択したり組み合わせたりすることで、原料液が流出される空間の幅を調整することが可能となる。従って、製造される不織布の幅を容易に変更することが可能となる。
【0031】
また、製造される不織布の幅が長い場合であっても、個々の単位流出体の長さは、不織布の幅よりは短いため、取り扱いが容易であり、溶剤に単位流出体を浸漬して超音波により洗浄するようなメンテナンスをする場合でも、汎用的な洗浄装置を用いることができるなど、メンテナンス作業を容易とし、コストの低減を図ることも可能となる。
【0032】
また、単位流出体を連結した場合でも、単位流出体で実現できるナノファイバの品質を維持することができ、不織布の幅全体にわたって品質の均一なナノファイバを製造することが可能となる。
【発明の効果】
【0033】
本願発明によれば、所望の不織布の幅に柔軟に対応することができ、メンテナンスが容易で、幅方向に均一な品質のナノファイバを製造することができ、高い品質の不織布を製造することが可能となる。
【図面の簡単な説明】
【0034】
【図1】図1は、ナノファイバ製造装置を示す斜示図である。
【図2】図2は、第一流出体を切り欠いて示す斜示図である。
【図3】図3は、第一流出体の連結部の下方近傍を第一配列方向(Y軸方向)から望む平面図である。
【図4】図4は、連結された第一流出体と第二流出体との連結部の下方近傍をX軸方向から望む平面図である。
【図5】図5は、分離された状態の第一流出体と第二流出体と示す斜示図である。
【図6】図6は、連結された状態の第一流出体と第二流出体と示す斜示図である。
【図7】図7は、帯電手段の他の実施の形態を模式的に示す平面図である。
【図8】図8は、第一流出体と第二流出体との連結態様を断面で示す平面図である。
【図9】図9は、第一流出体と第二流出体とを分離した状態を断面で示す平面図である。
【図10】図10は、中間に配置される単位流出体を断面で示す平面図である。
【発明を実施するための形態】
【0035】
次に、本願発明にかかるナノファイバ製造装置、ナノファイバ製造装置のメンテナンス方法を、図面を参照しつつ説明する。
【0036】
図1は、ナノファイバ製造装置を示す斜示図である。
【0037】
同図に示すように、ナノファイバ製造装置100は、原料液を空間中で電気的に延伸させて、ナノファイバを製造する装置であって、第一流出体101と、第二流出体102と、連結手段124と、帯電手段120とを備えている。さらに、ナノファイバ製造装置100は、第一供給管171と、第二供給管172と、調整手段175とを備えている。また、ナノファイバ製造装置100は、基礎体200と、誘引手段140と、被堆積部材126と、移送手段129とを備えている。また、本実施の形態の場合、ナノファイバ製造装置100は、第三流出体103と、第四流出体104と、第三供給管173と、第四供給管174とを備えている。
【0038】
基礎体200は、ナノファイバ製造装置100の構造的な基礎となる部材である。本実施の形態の場合、基礎体200は、剛性のある構造材を組み合わせて形成される枠体である。なお、基礎体200は、ナノファイバ製造装置100の各部材を載置しうる基台や、各部材を収容する筐体などでもかまわない。
【0039】
図2は、第一流出体を切り欠いて示す斜示図である。
【0040】
第一流出体101は、直線的に配列され、原料液を空間中に流出させる複数の第一流出孔111を有する部材であり、本実施の形態の場合、内部に第一貯留槽113を備えている。また、第一流出体101は、流出する原料液に電荷を供給する電極としても機能しており、原料液と接触する部分の少なくとも一部は導電性を備えた部材で形成される。本実施の形態の場合、第一流出体101全体が金属で形成されている。なお、金属の種類は導電性を備えておれば、特に限定されるものではなく、黄銅やステンレス鋼など任意の材料を選定しうる。
【0041】
本実施の形態の場合、第一流出体101は、側面視三角形の筒状の部材であり、第一流出体101の長さ方向に延びて配置される二つの側壁105は、表面はなめらかであり、下方に向かうほど相互の間隔が狭くなるような配置となっている。このように、流出体110の表面がなめらかな表面を備えており、できる限り特異な部分を少なくすることが好ましい。これにより、イオン風の発生を抑制することができるからである。
【0042】
また、第一流出孔111が配置される部分106をできる限り狭くしておくことで、第一流出孔111の近傍に電荷を集中させやすく、原料液に効率的に電荷を供給することができる。
【0043】
また、第一流出体101は、上面中央部に第一供給管171が着脱自在に取り付けられており、第一流出体101の中央部から両端部に向けて均等に原料液が供給できるものとなっている。
【0044】
第一流出孔111は、原料液を空間中に流出させる孔であり、第一流出体101に複数個設けられており、第一配列方向A(Y軸方向)に沿って直線的に並んで配置されている。
【0045】
ここで、「直線的に並んで配置される」とは、図2に示すように一直線上に全ての第一流出孔111が並ぶ場合ばかりでなく、第一配列方向Aに沿って配置されていればある程度分散状態であってもよい。例えば、隣接する第一流出孔111同士を仮想的に結べばジグザグを描く場合や波を描く場合であっても、第一流出孔111全体として直線的に並んでいるものとしている。
【0046】
なお、第一流出孔111の孔長や孔径は、特に限定されるものではなく、原料液の粘度などにより適した形状を選定すれば良い。具体的には、孔長は、0.1mm以上、5mm以下の範囲から選定されるのが好ましい。孔径は、0.1mm以上、2mm以下の範囲から選定されるのが好ましい。また、第一流出孔111の形状は、円筒形状に限定されるわけではなく、任意の形状を選定しうる。特に開口部の形状は、円形に限定されるわけではなく、三角形や四角形などの多角形、星形など内側に突出する部分のある形状などでもかまわない。
【0047】
第一貯留槽113は、第一流出体101の内部に形成され、供給源107(図1参照)から供給される原料液を一時的に貯留するタンクである。また、第一貯留槽113は、全ての第一流出孔111と連通し、第一流出孔111に同時に原料液を供給するものとなっており、第一配列方向A(Y軸方向)に沿った筒形状となっている。第一貯留槽113の第一配列方向Aの長さは、第一配列方向Aと垂直に交差する面での第一貯留槽113の断面積を30平方ミリ以下とした場合に、第一流出孔111から流出される原料液の流出圧力を均一にできる長さ以下である。ここで、流出圧力が均一とは、各第一流出孔111から流出する流出圧力のばらつきが、中心圧力0.05MPaに対して±1%以内の場合を示す。
【0048】
第一配列方向Aと垂直に交差する面での第一貯留槽113の断面積を大きくすれば、第一流出孔111からの原料液の流出圧力の均一化には効果があるが、第一貯留槽113の断面積を30平方ミリ以下に限定するのは、第一流出体101が大型化して第一流出体101の側壁105の立ち上がりが鈍角となり、第一流出体101の先端部に電荷を集中させるのが困難となるためである。また、側壁105で発生したイオン風が原料液やナノファイバに悪影響をおよぼす可能性が高まるためである。一方、前記側壁105の立ち上がりを鋭角にした場合でも第一貯留槽113の断面積の形状を薄くかつ高くすることで第一貯留槽113の断面積を大きくすることは可能である。しかしこの場合、側壁105の先端部までの距離も長くなってイオン風が発生する確率が高まり、また、第一貯留槽113の加工も難しくなる。従って、断面積は上記の値以下に設定することが好ましい。
【0049】
具体的には、第一貯留槽113の断面積を30平方ミリ以下とした場合、第一貯留槽113の第一配列方向Aにおける中央部に原料液を供給する条件において、第一貯留槽113の第一配列方向Aの長さは250mm以下であれば、各第一流出孔111からの原料液の流出圧力を均一化することができる。
【0050】
なお、上記具体的な数値は一例であり、本願発明はこれらの数値に限定されるものでは無い。
【0051】
第二流出体102は、第一流出体101と同様、第二流出孔(図示せず)と第二貯留槽(図示せず)とを備える。第二流出孔は第二配列方向に沿って直線的に配列されており、その機能や形状は第一流出孔111と同じである。また、第二貯留槽の機能や形状、数値的な制限事項は第一貯留槽113と同じであるため、図示および説明を省略する。
【0052】
以下、第一流出体101や第二流出体102を総称して「単位流出体」と記す場合がある。また、選択された単位流出体や組み合わされた単位流出体を総称して「流出体」と記す場合がある。また、第一流出孔や第二流出孔を総称して「流出孔」と記す場合がある。
【0053】
また、本実施の形態の場合、ナノファイバ製造装置100は、第三流出孔(図示せず)を有する第三流出体103と第四流出孔(図示せず)を有する第四流出体104とを備えているが、これらは第一流出体101と、機能や構造が同一であるため説明を省略する。
【0054】
図3は、第一流出体の連結部の下方近傍を第一配列方向(Y軸方向)から望む平面図である。
【0055】
図4は、連結された第一流出体と第二流出体との連結部の下方近傍をX軸方向から望む平面図である。
【0056】
これらの図に示すように、第一流出体101と第二流出体102との連結部分近傍において、第一流出孔111の開口部が設けられる面Cと、この面と隣接する面E(第一流出体101の側壁105の表面)や面G(第一流出体101の第二流出体102との当接面)などとは滑らかな曲面で接続されている。また、第二流出孔112の開口部が設けられる面Dと、この面と隣接する面F(第二流出体102の側壁の表面)などとは滑らかな曲面で接続されている。
【0057】
以上の様に流出体の連結部近傍に存在する角部が丸められていることにより、連結部近傍に電荷がたまることを抑止してイオン風の発生を抑止することができる。特に、流出体の加工精度や取り付け精度などによって、図4に示すように面Cと面Dとが同一平面内に無い場合でも、面Cと面Gとの角部やその近傍が丸められることにより、面Cと面Dと間の段差部分に発生しがちな電荷の集中を緩和し、イオン風の発生を抑止することが可能となる。
【0058】
図5は、分離された状態の第一流出体と第二流出体と示す斜示図である。
【0059】
図6は、連結された状態の第一流出体と第二流出体と示す斜示図である。
【0060】
これらの図に示すように連結手段124は、第一配列方向Aと第二配列方向Bとが揃うように第一流出体101と第二流出体102とを分離可能に連結する機構である。
【0061】
本実施の形態の場合、連結手段124は、一端が開放される溝125が設けられている。連結手段124が備える溝125は、いわゆるアリ溝と称される溝125であり、溝の底面に向かって(同図中上向き)徐々に溝の幅が広がる形状となっている。
【0062】
一方、第一流出体101および第二流出体102の端部上面には係合部151が設けられている。係合部151は、連結手段124の溝125に対し溝125の長さ方向には挿脱自在であり、溝125に挿入した状態では溝125の長さ方向と直交する方向には抜脱できないレール部152を備えている。つまり、レール部152は、溝125の形状と対応する形状となっている。
【0063】
以上から、連結手段124の溝125の一端開口部から第一流出体101の係合部151のレール部152を挿入し、溝125の他端開口部から第二流出体102の係合部151のレール部152を挿入し、第一流出体101と第二流出体102とを突き合わせることにより、連結手段124は、第一流出体101と第二流出体102を連結することが可能となる。
【0064】
また、連結手段124は、基礎体200に取り付けられており、第一流出体101と第二流出体102とが連結した状態で、第一流出体101と第二流出体102とを基礎体200に取り付ける機能も備えている。
【0065】
なお、第一流出体101の上面他端部や第二流出体102の上面他端部にも係合部151が設けられている。第三流出体103や第四流出体104も同様である。さらに、ナノファイバ製造装置100は、複数の連結手段124を備えている。以上により、ナノファイバ製造装置100は、単位流出体が備える流出孔の配列方向をそろえて直線的に単位流出体を分離可能に連結し、連結した状態を維持することができるものとなっている。
【0066】
図1において、第一供給管171は、第一流出体101に着脱自在に取り付けられ、供給源107から第一流出体101に原料液を供給するための流路を形成する管体である。
【0067】
第二供給管172は、第二流出体102に着脱自在に取り付けられ、供給源107から第二流出体102に原料液を供給するための流路を形成する管体である。
【0068】
本実施の形態の場合、さらに、ナノファイバ製造装置100は、第一供給管171と機能が同様の第三供給管173と第四供給管174とを備えており、原料液を供給するために第三流出体103と第四流出体104にそれぞれ取り付けられている。
【0069】
調整手段175は、第一流出体101および第二流出体102の少なくとも一方に供給する原料液の流量を調整する装置である。本実施の形態の場合、調整手段175は、第一供給管171と、第二供給管172と、第三供給管173と、第四供給管174と(以下総称して「供給管」と記す場合がある)のそれぞれに介在配置されている流量調整弁である。調整手段175は、各供給管に流れる原料液の流量を調整することにより、各単位流出体の流出孔から流出する原料液の流出圧力を調整して均一化し、流出孔の配列方向全体にわたって均一な品質のナノファイバを製造することが可能となる。
【0070】
なお、調整手段175は、各供給管に設ける必要はなく、流量の調節が必要な単位流出体に接続される供給管にのみ設けてもよい。また、供給管の分岐路に調整手段175を設けて分岐される原料液の流量の割合を調整するものでもよい。
【0071】
帯電手段120は、第一流出体101および第二流出体102を介して第一流出孔111および第二流出孔から流出する原料液に電荷を付与して帯電させる装置である。本実施の形態の場合、帯電手段120は、帯電電源122と帯電電極121とを備えている。
【0072】
帯電電極121は、第一流出体101や第二流出体102を含む流出体110と所定の間隔を隔てて配置され、自身が流出体110に対し高い電圧もしくは低い電圧となることで、流出体110に電荷を誘導するための導電性を備える部材である。
【0073】
本実施の形態の場合、帯電電極121は、帯電状態のナノファイバを逆極性で誘引する誘引手段140としても機能しており、流出体110の先端部と対向する位置に配置されており、帯電電源122を介して接地されている。一方、流出体110は接地されている。従って、帯電電極121に所定の電位を印加することで、流出体110と帯電電極121との間には前記電位に対応する電圧が発生する。そして、帯電電極121に正の電位が印加されると流出体110には、負の電荷が誘導され、帯電電極121に負の電位が印加されると流出体には、正の電荷が誘導される。
【0074】
なお、本実施の形態の場合、第四流出体104に接地のための電線が取り付けられているが、単位流出体は導電体で形成されており、連結された状態で電気的にも接続されるため、流出体110全体が同電位となる。
【0075】
また、帯電電極121は、単位流出体と対応して複数個に分割され(本実施の形態であれば例えば4分割)、各単位帯電電極の電位を独立して調整できるものでもかまわない。
【0076】
帯電電源122は、流出体110と帯電電極121との間に高電圧を印加することのできる電源である。本実施の形態の場合、帯電電源122は、接地されており、流出体110も接地されているので、帯電電源122は、帯電電極121に接続され、アースを介して流出体110に接続されている。帯電電源122は、本実施の形態では直流電源が採用されるが、交流電源でもよい場合がある。また、帯電電源122は、5KV以上の出力が得られるものが好ましい。これは、流出体110と誘引電極として機能する帯電電極121との間の空間で原料液が静電延伸現象によりナノファイバに変化しなければならないため、流出体110と帯電電極121との間は十分な間隔が必要となる。このような状態で、流出体110に電荷を誘導し、原料液を帯電させるためには、少なくとも5KV程度の電圧が必要と考えられるからである。なお、ナノファイバ製造装置100を通常に操業する場合には、流出体110と帯電電極121との間に20KV程度の電圧を印加するため、帯電電源122は、50KVまで出力できるものが好ましい。これにより20KV程度の電圧を出力する際の安定性が向上するからである。
【0077】
なお、帯電電源122は、流出体110に接続されるものでもかまわない。この場合、帯電電極121が接地されることで、流出体110と帯電電極121との間に電圧を印加することが可能となる。従って、アースの位置はいずれでもかまわない。また、帯電電源122は、アースを介することなく、直接流出体110と帯電電極121とのそれぞれに直接接続するものでもかまわない。
【0078】
また、図7に示すように、流出体110と帯電電極121とが近い距離に配置され、帯電電極121に引き寄せられそうになる原料液やナノファイバが気体流(同図中矢印)等により飛翔方向が変更され、帯電電極121に引き寄せられず他の場所(図7では、一対の帯電電極121の間を通過して図の下方)に放出される場合、帯電電源122は、5KV未満の出力しか得られないものでもかまわない。これは、流出体110と帯電電極121とが近接しているため、比較的低い電圧でも原料液を十分に帯電させることができるためである。
【0079】
図1において、被堆積部材126は、空間中で製造されたナノファイバを堆積させて収集する部材である。本実施の形態の場合、被堆積部材126は、誘引手段140により発生する気体流が通過する網状のシートであり、被堆積部材126から堆積したナノファイバを容易にはがせるように表面にシリコンでコーティングが施されている。
【0080】
移送手段129は、流出体110と、被堆積部材126とを相対的に移動させる装置である。本実施の形態の場合、流出体110は固定されており、被堆積部材126のみを移送するものとなっている。具体的に移送手段129は、長尺の被堆積部材126を帯電電極121の一方側で巻き取りながら他方側に配置されるロールから引き出し、堆積するナノファイバと共に被堆積部材126を移送するものとなっている。
【0081】
なお、移送手段129は、被堆積部材126を移送させるばかりではなく、流出体110を被堆積部材126に対して移動させるものでもかまわない。この場合、流出体110は可動状態で基礎体200に取り付けられることとなる。また、移送手段129は、被堆積部材126を一定方向に移動させると共に、流出体110を往復動させるなど、任意の動作状態を採用することができる。
【0082】
誘引手段140は、空間中で製造されたナノファイバを被堆積部材126に誘引するための装置である。誘引手段140は、気体流を用いてナノファイバを所定の位置に誘引する方式(気体流方式)や、空間を飛翔しているナノファイバが帯電していることを利用して、電界を発生させてナノファイバを所定の位置に誘引する方式(電界方式)を採用することができ、また、気体流方式と電界方式を併有するものでもかまわない。
【0083】
本実施の形態の場合、誘引手段140は、図1に示すように、流出体110と所定距離離れた位置に流出体110よりも長く幅の広い板状の帯電電極121が誘引電極としても機能している。帯電電極121は、誘引電源としても機能する帯電電源122と接続されて所定の電位が印加される導電性の部材であり、帯電電極121から発生する電界により流出体110に電荷を発生させると共に、ナノファイバを帯電電極121の方向に誘引する。また、誘引手段140は、吸引手段142を備えている。吸引手段142は、帯電電極121の厚さ方向に多数設けられた貫通孔から気体を吸い込んで気体流を発生させ、ナノファイバを所定の位置に誘引する装置である。
【0084】
供給源107は、図1に示すように、各単位流出体に原料液を供給する装置であり、原料液を大量に貯留する容器と、原料液を所定の圧力で搬送するポンプとを備えている。
【0085】
ここで、ナノファイバを構成する樹脂であって、原料液に溶解、または、分散する溶質としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等およびこれらの共重合体等の高分子物質を例示できる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記樹脂に限定されるものではない。
【0086】
原料液に使用される溶媒としては、揮発性のある有機溶剤などを例示することができる。具体的に例示すると、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホオキシド、ピリジン、水等を挙示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明に用いられる原料液は上記溶媒を採用することに限定されるものではない。
【0087】
さらに、原料液に無機質固体材料を添加してもよい。当該無機質固体材料としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、製造されるナノファイバの耐熱性、加工性などの観点から酸化物を用いることが好ましい。当該酸化物としては、Al23、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明の原料液に添加される物質は、上記添加剤に限定されるものではない。
【0088】
原料液における溶媒と溶質との混合比率は、選定される溶媒の種類と溶質の種類とにより異なるが、溶媒量は、約60重量%から98重量%の間が望ましい。好適には溶質が5〜30%となる。
【0089】
次に、上記ナノファイバ製造装置100を用いてナノファイバを製造するナノファイバ製造方法について説明する。
【0090】
まず、第一流出体101と第二流出体102、その他の単位流出体を連結手段に取り付けて、単位流出体を直線的に連結する(連結工程)。
【0091】
次に、帯電手段120により、流出体110と帯電電極121との間に所定の電圧を印加する(帯電工程)。
【0092】
次に、調整手段175を用いて原料液の流量を空間中に流出する原料液の流出圧力が均一となるように調整する(調整工程)。
【0093】
以上により、原料液は、帯電手段120により帯電しつつ流出体110から空間中に流出し、静電延伸現象によりナノファイバが製造される(ナノファイバ製造工程)。
【0094】
一方、誘引手段140は、逆電位で帯電したナノファイバを被堆積部材126に誘引し、空気を吸い込むことでナノファイバを被堆積部材126に誘引する(誘引工程)。
【0095】
被堆積部材126は誘引されたナノファイバを堆積させつつ、移送手段129により徐々に移送されナノファイバからなる長尺で幅広の不織布が製造される(堆積工程)。
【0096】
また、調整工程において、製造する不織布の所望の幅に対応して原料液を流出させる単位流出体および原料液を流出させない単位流出体を変更することで、製造される不織布の幅を容易に変更することが可能となる。例えば、図1の第一の流出体101、第二の流出体102への原料液の流量を均一になるように調整し、第三の流出体103、第四の流出体104への原料液の流量を0とすれば、第一の流出体101の長さと第二の流出体102の長さを加算した長さに該当する幅の不織布を製造することができる。また、要すれば、帯電電極121の電圧が印加される領域を、原料液の流出幅に応じて調整してもかまわない。
【0097】
次に、上記構成のナノファイバ製造装置100のメンテナンス方法を説明する。
【0098】
ナノファイバ製造装置100の操業を停止した後、基礎体200から第一流出体101などの単位流出体を取り外す(取り外し工程)。取り外しは、第一流出体101を水平方向にスライドさせることにより、第二流出体102との連結が解消され、連結手段124と係合部151との係合関係が解除さる(分離工程)。なお、この際、連結手段124と供給管とが干渉しないように単位流出体から供給管を取り外しておく。
【0099】
次に、取り外された単位流出体を溶剤などを用いて洗浄する(洗浄工程)。洗浄は、溶剤が満たされた槽に単位流出体を浸漬し、当該状態で溶剤に超音波を印加することにより行えばよい。この際、ナノファイバ製造装置100は、幅の広い(単位流出体のY軸方向の長さの四倍程度)長尺の不織布を製造できるが、単位流出体を洗浄するための槽の大きさや超音波の発信子などを大きくする必要が無く、容易に洗浄を行うことができる。
【0100】
次に、洗浄された単位流出体を基礎体200に固定されている連結手段124に順次取り付けていく(取り付け工程)。取り付けは、第一流出体101を連結手段124の近傍に配置した後、第一流出体101を水平方向にスライドさせることにより、連結手段124と係合部151とが係合する。他の単位流出体も同様に、連結手段124に取り付け単位流出体同士を連結させる。
【0101】
上記構成のナノファイバ製造装置100によれば、基礎体200に対し、複数の単位流出体を分離連結自在に連結することができるため、要求される不織布の幅に応じて、単位流出体を取り付ける数を調整すれば原料液の流出空間の幅を容易に調整し、ナノファイバが製造される空間の幅を調整することが可能となる。また、要すれば、単位流出体を基礎体200に取り付けた状態でも、調整手段175により原料液が流出する空間の幅を調整することも可能である。
【0102】
また、単位流出体を小型軽量化することができるため、持ち運びや取り付け作業などが容易となり、洗浄作業も容易となるため、メンテナンス作業に費やす時間を短縮できる。
【0103】
次に、第一流出体101と第二流出体102との他の連結態様について説明する。
【0104】
図8は、第一流出体と第二流出体との連結態様を断面で示す平面図である。
【0105】
図9は、第一流出体と第二流出体とを分離した状態を断面で示す平面図である。
【0106】
これらの図に示すように、第一流出体101は、原料液を一時的に貯留し、全ての第一流出孔111に原料液を供給する第一貯留槽113を備え、第二流出体102は、原料液を一時的に貯留し全ての第二流出孔112に原料液を供給する第二貯留槽114を備え、連結手段124は、第一流出体101と第二流出体102とが連結された状態で第一貯留槽113と第二貯留槽114とを連通する流路127を備えている。
【0107】
連結手段124は、第一流出体101に設けられる貫通孔128と、第二流出体102に突出状に設けられた貫通孔128に嵌合する突出部130とからなり、貫通孔128に突出部130を嵌合させることで第一流出体101と第二流出体102とを連結させることができる。
【0108】
また、原料液は、第一供給管171から第一貯留槽113に供給され、さらに流路127を介して第二貯留槽114にも供給される。
【0109】
これによれば、原料液の流通経路を単一化でき、複数の供給管を配管することなく全ての単位流出体に原料液を供給することが可能となる。また、図10に示すような一端部に突出部130を備え、他端部に貫通孔128を備えるような中間的な単位流出体を用いれば、任意に流出体の長さを変更することが可能となる。
【0110】
なお、本願発明は、上記実施の形態に限定されるものではない。例えば、流出体のXZ平面における断面形状を三角形としたがこれに限定される訳ではなく、矩形や円形など任意の断面形状を選択しうる。また、本明細書において記載した構成要素を任意に組み合わせて実現される別の実施の形態を本願発明の実施の形態としてもよい。例えば、図8や図9に示される連結手段124であるが、流路127を備え無いものとしてもよい。この場合、第一貯留槽113と第二貯留槽114とは連通しないので、図1に示すように、第一流出体101や第二流出体102にそれぞれ供給管171、172を接続して別個に原料液を供給するものとなる。また、上記実施の形態に対して本願発明の主旨、すなわち、特許請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本願発明に含まれる。
【0111】
また、「垂直」「均一」などの各文言は本願発明の趣旨を逸脱しない程度の誤差(広がり)を許容する意味で使用している。
【産業上の利用可能性】
【0112】
本願発明は、ナノファイバの製造やナノファイバを用いた紡糸、不織布の製造に利用可能である。
【符号の説明】
【0113】
100 ナノファイバ製造装置
101 第一流出体
102 第二流出体
103 第三流出体
104 第四流出体
105 側壁
107 供給源
110 流出体
111 第一流出孔
112 第二流出孔
113 第一貯留槽
114 第二貯留槽
120 帯電手段
121 帯電電極
122 帯電電源
124 連結手段
125 溝
126 被堆積部材
127 流路
128 貫通孔
129 移送手段
130 突出部
140 誘引手段
142 吸引手段
151 係合部
152 レール部
171 第一供給管
172 第二供給管
173 第三供給管
174 第四供給管
175 調整手段
200 基礎体

【特許請求の範囲】
【請求項1】
原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、
原料液を流出させる複数の第一流出孔が直線的に配列された状態で設けられる第一流出体と、
原料液を流出させる複数の第二流出孔が直線的に配列された状態で設けられる第二流出体と、
前記第一流出孔の配列方向である第一配列方向と前記第二流出孔の配列方向である第二配列方向とが揃うように前記第一流出体と前記第二流出体とを分離可能に連結する連結手段と、
前記第一流出体および前記第二流出体を介して前記第一流出孔および前記第二流出孔から流出する原料液に電荷を付与して帯電させる帯電手段と
を備えるナノファイバ製造装置。
【請求項2】
さらに、
前記第一流出体に原料液を供給する第一供給管と、
前記第二流出体に原料液を供給する第二供給管と、
前記第一供給管および前記第二供給管の少なくとも一方に介在配置され、前記第一流出体および前記第二流出体の少なくとも一方に供給する原料液の流量を調整する調整手段と
を備える請求項1に記載のナノファイバ製造装置。
【請求項3】
前記第一流出体は、原料液を一時的に貯留し全ての前記第一流出孔に原料液を供給する第一貯留槽を備え、
前記第二流出体は、原料液を一時的に貯留し全ての前記第二流出孔に原料液を供給する第二貯留槽を備え、
前記第一流出体の第一配列方向の長さは、各前記第一流出孔から流出される原料液の流出圧力を均一にできる長さ以下であり、
前記第二流出体の第二配列方向の長さは、各前記第二流出孔から流出される原料液の流出圧力を均一にできる長さ以下である
請求項1に記載のナノファイバ製造装置。
【請求項4】
前記第一流出体は、原料液を一時的に貯留し全ての前記第一流出孔に原料液を供給する第一貯留槽を備え、
前記第二流出体は、原料液を一時的に貯留し全ての前記第二流出孔に原料液を供給する第二貯留槽を備え、
前記連結手段は、第一流出体と第二流出体とが連結された状態で前記第一貯留槽と前記第二貯留槽とを連通する流路を備える
請求項1に記載のナノファイバ製造装置。
【請求項5】
前記第一流出体と前記第二流出体との連結部分近傍において、
前記第一流出孔の開口部が設けられる面と、この面と隣接する面とは滑らかな曲面で接続され、
前記第二流出孔の開口部が設けられる面と、この面と隣接する面とは滑らかな曲面で接続されている
請求項1に記載のナノファイバ製造装置。
【請求項6】
前記第一流出体と前記第二流出体との大きさは、いずれも洗浄装置に収容可能な大きさである
請求項1に記載のナノファイバ製造装置。
【請求項7】
さらに、
空間中で製造されたナノファイバを堆積させて収集する被堆積部材と、
第一配列方向および第二配列方向と交差する方向に前記被堆積部材を移送する移送手段とを備える
請求項1に記載のナノファイバ製造装置。
【請求項8】
原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、
原料液を流出させる複数の第一流出孔が直線的に配列された状態で設けられる第一流出体と原料液を流出させる複数の第二流出孔が直線的に配列された状態で設けられる第二流出体とを前記第一流出孔の配列方向である第一配列方向と前記第二流出孔の配列方向である第二配列方向とが揃うように連結手段により連結し、
連結した状態の第一流出体および第二流出体から原料液を流出させ、
帯電手段により前記第一流出体および前記第二流出体を介して前記第一流出孔および前記第二流出孔から流出する原料液に電荷を付与して帯電させる
ナノファイバ製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−7258(P2012−7258A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−143182(P2010−143182)
【出願日】平成22年6月23日(2010.6.23)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】