説明

バイオポリマーセンサーおよびその製造方法

バイオポリマーセンサーの製造方法は、バイオポリマーを提供する工程、そのバイオポリマーを加工してバイオポリマーマトリックス溶液を得る工程、そのバイオポリマーマトリックスの中に生物学的物質を添加する工程、基材を提供する工程、その基材の上にそのマトリックス溶液をキャストする工程、およびそのバイオポリマーマトリックス溶液を乾燥させて、その基材の上に固化したバイオポリマーセンサーを形成させる工程を含む。包埋された生物学的物質を含む固化したバイオポリマー膜を含むバイオポリマーセンサーもまた提供する。


【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、米国仮特許出願第60/856,297号明細書(出願日:2006年11月3日、発明の名称:「Biopolymer Devices and Methods for Manufacturing the Same」)の優先権の恩典を主張する。本出願は、米国仮特許出願第60/935,050号明細書(出願日:2007年7月24日、発明の名称:「Biopolymer Sensors and Method of Manufacturing the Same」)の優先権の恩典を主張する。
【0002】
政府支援
本発明は、the Air Force Office of Scientific Researchにより交付番号FA95500410363号として与えられた政府支援のもとになされた。本発明に関して政府は一定の権利を保有している。
【0003】
発明の分野
本発明は、バイオポリマーセンサーおよびそのようなセンサーを製造するための方法に関する。
【背景技術】
【0004】
関連技術の説明
各種のタイプのセンサーが、化学的および生物学的化合物などの特定の物質存在を検出するために、各種の産業において使用されている。そのようなセンサーは、そのセンサーが設計された目的の特定の物質の存在を検出するために使用される。たとえば、環境科学技術の分野においては、空気、水、土壌およびその他の環境および媒体の中の特定の物質の存在を検出するために、特殊なセンサーを使用することができる。さらに、医学およびバイオテクノロジーの分野においては、生物中、たとえば植物および動物中の特定の物質の存在を検出するために、センサーを使用することができる。
【0005】
それら従来のセンサーは、そのセンサーが検出することを目的としている一つまたは複数の特定の物質を含めて、センサーを使用する目的に応じて、各種各様の物質および方法を用いて作製される。しかしながら、これらのセンサー、およびそれらを製造する際に採用される作製方法には、概して、非生分解性物質の顕著な使用が含まれる。たとえば、金属および金属化合物を含めて、各種の無機物質が、センサー中および/またはそのようなセンサーの作製に使用されることが多い。
【0006】
そのような金属および金属化合物は生分解性ではなく、そのセンサーが使用されなくなって廃棄された後でも、長期間にわたって環境の中に留まる。言うまでもないことであるが、これらの物質のいくつかは、リサイクルおよび再使用することが可能である。しかしながら、リサイクルにおいても、さらなる天然資源を消費することが必要であり、そのような物質に伴う環境コストが増大する。したがって、そのようなセンサーは典型的には、廃棄され長期間にわたって環境の中に留まるので、環境にマイナスの影響を与える。
【0007】
光学的な検知デバイスが、各種の研究用および商業的用途のために作製されてきた。それらの光学的検知デバイスでは、ガラス、溶融シリカ、またはこれも生分解性ではないプラスチックから作られている、という同様の欠点を有するデバイスを使用している。そのような光学的検知デバイスの中で使用することが可能な一般的な光学デバイスとしては、回折格子、フォトニック結晶、光流体デバイス、導波路などが挙げられる。そのような光学デバイスの無機材料もまた、長期間にわたって環境の中に留まり、環境にマイナスの影響を与える。
【発明の概要】
【発明が解決しようとする課題】
【0008】
したがって、環境に対するマイナスの影響を最小限とするための、生分解性のあるセンサーに対する必要性が、充足されないまま残っている。さらに、従来からのセンサーでは得られない、さらなる機能的特徴と有用性を提供するようなセンサーに対する必要性もまた、充足されないまま残っている。
【課題を解決するための手段】
【0009】
上述のことを考慮に入れて、本発明の目的は、新規なセンサーおよびそのようなセンサーを製造するための方法を提供することである。
【0010】
本発明の一つの態様は、バイオポリマーから作製されたセンサーを提供することである。
【0011】
本発明のまた別の態様は、そのようなバイオポリマーセンサーを製造するための方法を提供することである。
【0012】
本発明の一つの利点は、生分解性であり、かつ環境に対するマイナスの影響を最小限とするバイオポリマーセンサーを提供する点にある。
【0013】
本発明のまた別の利点は、生体適合性があるセンサーを提供する点にある。
【0014】
本発明のさらにまた別の利点は、従来からのセンサーによっては得られなかった、さらなる機能的特徴を有するセンサーを提供する点にある。
【0015】
上記のことに関して、本発明の発明者らは、バイオポリマー、特に絹タンパク質が、新規な構造およびその結果としての機能を与えることを認識するに至った。たとえば、材料科学の観点からは、クモおよびカイコによって紡ぎ出される絹は、これまで知られている内では最も強く、最も強靱な天然繊維を代表するものであって、機能化、加工、および生体適合性において各種の機会を提供する。5000年を超える歴史の中で、絹は需要のある織物から、科学的に魅力のある繊維へと移行していった。その特徴によって昔の人々を魅了したのと同様に、絹は、その強度、弾性、および生化学的な性質のために、今日この時代においても大いに注目を集めている。自己集合、および集合における水の役割についての知見によって、絹の新規な材料特性が拡張した。それらの知見から、ヒドロゲル、超薄膜、厚膜、コンフォーマルコーティング(conformal coating)、三次元多孔質マトリックス、固形ブロック、ナノスケール直径の繊維、および大きな直径の繊維を製造するための新規な加工方法が得られるようになった。
【0016】
絹ベースの材料は、熱力学的に安定なタンパク質二次構造、別の呼び方ではベータシート(βシート)の天然の物理的架橋を用いて、それらの印象的な機械的性質を達成している。したがって、材料を安定化させるための、外部からの架橋反応や後加工による架橋はまったく必要としない。絹タンパク質鎖の上に多様なアミノ酸側鎖化学基が存在していることによって、絹を官能化させるための、たとえばサイトカイン、モルフォゲン、および細胞結合ドメインなどとの結合化学反応が容易となる。機械的側面、水系加工、室温加工、機能化の容易さ、多様な加工モード、自己形成架橋、生体適合性、および生分解性を考慮に入れると、この範囲の材料特性および生物学的な界面を提供するような、合成ポリマーまたは生物学的に誘導されたポリマー系は、これまで知られていない。
【0017】
絹について上に概説した特徴の範囲に合うような他のバイオポリマーまたは合成ポリマーは存在しないものの、絹と同様のまたは類似した各種の性質を示すいくつかのその他のポリマーを、本発明の発明者らは同定した。具体的には、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン(pullan)、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連のバイオポリマーまたはそれらの組み合わせを含む、他の天然バイオポリマーが同定された。バイオポリマー、特に絹の上述の特徴を考慮に入れて、本発明は、新規なバイオポリマーセンサーおよびバイオポリマーから作製されたそのようなセンサーを製造するための方法を提供する。
【0018】
本発明の一つの態様により、バイオポリマーセンサーの製造方法が提供される。一つの実施態様においては、その方法には、バイオポリマーを提供する工程、そのバイオポリマーを加工してバイオポリマーマトリックス溶液を得る工程、生物学的物質またはその他の物質をそのバイオポリマーマトリックスの中に包埋させる工程、基材を提供する工程、包埋された生物学的物質を含むマトリックス溶液をその基材の上にキャストする工程、および包埋された生物学的物質を含むバイオポリマーマトリックス溶液を乾燥させて、その基材の上に固化したバイオポリマーセンサーを形成させる工程が含まれる。所望されるセンサーのタイプに応じて、バイオポリマー中、またはバイオポリマーマトリックス中に、生物学的物質に代えるかまたはそれに加えて、他の物質を包埋させてもよい。
【0019】
一つの実施態様においては、その方法には、場合によっては、その固化したバイオポリマーセンサーをアニールする工程、およびアニールしたバイオポリマーセンサーを乾燥させる工程が含まれる。固化したバイオポリマーセンサーのアニールは、真空環境中および/または水蒸気環境中で実施してよい。また別の実施態様においては、その基材が、レンズ、マイクロレンズアレイ、光学格子、パターン発生器、またはビームリシェーパーなどの光学デバイスであってもよい。これに関しては、そのバイオポリマーセンサーが、レンズ、マイクロレンズアレイ、光学格子、パターン発生器、ビームリシェーパーなどの光学デバイス、およびその他の光学デバイスとして製造されてもよい。さらに別の実施態様においては、そのバイオポリマーが絹であり、そのバイオポリマーマトリックス溶液が、およそ1.0重量%〜30重量%(両端を含む)の絹、たとえば8.0重量%の絹を含む絹フィブロイン水溶液である。さらに別の実施態様においては、そのバイオポリマーが、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマー、またはそれらの組み合わせである。
【0020】
一つの実施態様においては、その生物学的物質は、赤血球(ヘモグロビン)、セイヨウワサビペルオキシダーゼ、フェノールスルホンフタレイン、またはそれらの組み合わせである。また別の実施態様においては、その生物学的物質は、以下のものである:核酸、色素、細胞、抗体、酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、タンパク質、ペプチド、小分子、薬剤、(たとえば、薬剤、色素、アミノ酸、ビタミン、抗酸化剤)、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、発色団、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、抗真菌剤、抗ウイルス薬、集光性化合物、たとえばクロロフィル、バクテリオロドプシン、プロトロドプシン(protorhodopsin)、およびポルフィリン、ならびに関連する電子的に活性な化合物、またはそれらの組み合わせ。
【0021】
本発明のまた別の実施態様においては、バイオポリマーセンサーの製造方法は、以下の工程を含んで提供される:バイオポリマーを提供する工程、そのバイオポリマーを加工してバイオポリマーマトリックス溶液を得る工程、基材を提供する工程、その基材の上にそのマトリックス溶液をキャストする工程、そのバイオポリマーマトリックス溶液を乾燥させてその基材の上にバイオポリマー膜を形成させる工程、およびその固化したバイオポリマー膜の上に生物学的物質を包埋させる工程。そのような実施態様においては、固化したバイオポリマー膜をアニールし、さらに乾燥させてもよい。さらに、固化したバイオポリマー膜のアニールは、真空環境および/または水蒸気環境中で実施してよい。
【0022】
本発明のまた別の態様は、包埋された生物学的物質を含む固化したバイオポリマー膜を含むバイオポリマーセンサーを備えることにある。一つの実施態様においては、そのバイオポリマーセンサーは、レンズ、マイクロレンズアレイ、光学格子、パターン発生器、またはビームリシェーパーなどである。また別の実施態様においては、そのバイオポリマーセンサーのバイオポリマーが、絹、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマー、またはそれらの組み合わせである。
【0023】
さらに別の実施態様においては、その生物学的物質は、赤血球(ヘモグロビン)、セイヨウワサビペルオキシダーゼ、フェノールスルホンフタレイン、またはそれらの組み合わせである。さらに別の実施態様においては、その生物学的物質は、以下のものである:タンパク質、核酸、色素、細胞、抗体、酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、タンパク質、ペプチド、小分子、(たとえば、薬剤、色素、アミノ酸、ビタミン、抗酸化剤)、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、発色団、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、抗真菌剤、抗ウイルス薬、集光性化合物、たとえばクロロフィル、バクテリオロドプシン、プロトロドプシン、およびポルフィリン、ならびに関連する電子的に活性な化合物、またはそれらの組み合わせ。
【0024】
本発明のこれらおよびその他の利点および特徴は、添付の図面と併せて参照すれば、以下の本発明の好ましい実施態様の詳細な説明から、より明らかになると考えられる。
【図面の簡単な説明】
【0025】
【図1】本発明の一つの実施態様に従ったバイオポリマーセンサーを製造するための方法を示す概略フロー図である。
【図2】8%絹濃度の体積と得られるバイオポリマーの膜厚との間の関係を示すグラフである。
【図3A】本発明の一つの実施態様に従った色彩調節されたバイオポリマーセンサーの写真である。
【図3B】pH=4の溶液に曝露させた後の図3Aのバイオポリマーセンサーの写真である。
【図3C】pH=7の溶液に曝露させた後の図3Aのバイオポリマーセンサーの写真である。
【図3D】pH=10の溶液に曝露させた後の図3Aのバイオポリマーセンサーの写真である。
【図4】本発明のまた別の実施態様に従った、フェノールレッドを包埋させたバイオポリマーセンサーの、各種のpHレベルの溶液に曝露させたときのスペクトル的な痕跡を示すグラフである。
【図5A】また別の実施態様に従った、塩基性溶液に浸漬させた後の、フェノールレッドを包埋させたバイオポリマーセンサーによって回折されたスペクトルの写真である。
【図5B】ドープしていない絹マトリックスから作製されたバイオポリマー格子によって回折されたスペクトルの写真である。
【図6A】ドープしていない絹回折格子にスーパーコンティニューム(supercontinuum)光を透過させたときに生成するスペクトル画像の写真である。
【図6B】本発明の一つの実施態様に従った、酸溶液に曝露させたときに、フェノールレッドを包埋させた絹から作製されたバイオポリマーセンサーにスーパーコンティニューム光を透過させたときに生成するスペクトル画像の写真である。
【図6C】塩基性溶液に曝露させたときに、図6Bのバイオポリマーセンサーにスーパーコンティニューム光を透過させたときに生成するスペクトル画像の写真である。
【図7】赤血球を包埋させた絹回折格子の内部におけるヘモグロビン機能の維持を示す結果のグラフである。
【図8A】本発明の一つの実施態様に従った、酵素を包埋させたバイオポリマーセンサーの写真である。
【図8B】反応剤(TMB+ペルオキシド)を添加したときの、図8Aのバイオポリマーセンサーの写真である。
【図8C】添加した反応剤との反応の過程における、図8Bのバイオポリマーセンサーの写真である。
【図8D】添加した反応剤との反応の過程をさらに進めた、図8Bのバイオポリマーセンサーの写真である。
【図8E】添加した反応剤との反応が完結した後の、図8Dのバイオポリマーセンサーの拡大写真である。
【図9】本発明のまた別の実施態様に従って、セイヨウワサビペルオキシダーゼを包埋させたバイオポリマーセンサーの分光吸光度を示す結果のグラフである。
【図10】図10Aおよび図10Bは、本発明のまた別の実施態様における、バイオポリマーセンサーの操作を概略的に示す図である。
【図11】本発明のまた別の実施態様における、バイオポリマーセンサーの操作を概略的に示す図である。
【図12A】本発明のまた別の実施態様におけるバイオポリマーセンサーによって回折された可視スペクトルを示す写真である。
【図12B】塩基の存在下で、図12Aのバイオポリマーセンサーによって回折された可視スペクトルを示す写真である。
【発明を実施するための形態】
【0026】
発明の詳細な説明
最初に、上述したような優れた機能特性および加工性の観点から、以下においては、本発明のバイオポリマーセンサーを、生体適合性かつ生分解性である、絹を用いて実施したものとして記述することに留意されたい。これに関しては、使用された絹はカイコ絹であった。しかしながら、各種の絹、たとえばクモの糸、トランスジェニック絹、および遺伝子改変された絹、それらの変種などが存在し、それらを、バイオポリマーセンサーを製造するために、本発明において代用品として使用してもよい。さらに、絹に代えて、その他の生体適合性の生分解性ポリマーを使用してもよい。たとえば、キトサンなどのいくつかのバイオポリマーは、所望の機械的性質を示し、水中で加工することが可能であり、一般的には光学的用途のための清澄な膜を形成する。その他のバイオポリマー、たとえばコラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマーなど、またはそれらの組み合わせを、特定の用途においては代わりに使用してもよいし、合成生分解性ポリマー、たとえばポリ乳酸、ポリグリコール酸、ポリヒドロキシアルカノエートおよび関連するコポリマー、を選択的に使用してもよい。それらのポリマーのいくつかは、水中では容易には加工できない。それにもかかわらず、そのようなポリマーは、それ自体で、または絹との組み合わせで使用してもよく、特定の用途のためのバイオポリマーセンサーを製造するために使用してよい。
【0027】
図1は、本発明の一つの実施態様によるバイオポリマーセンサーの製造方法を示す概略フロー図10である。ステップ11においてバイオポリマーマトリックス溶液が存在しているならば、プロセスは下のステップ16に進む。そうでない場合には、ステップ12においてバイオポリマーを提供する。そのバイオポリマーが絹であるような例では、カイコ(Bombyx mori)の繭からセリシンを抽出することによってその絹バイオポリマーを提供してもよい。ステップ14において、その提供されたバイオポリマーを加工して、バイオポリマーマトリックス溶液を得る。一つの実施態様においては、そのバイオポリマーマトリックス溶液は、水溶液である。しかしながら、他の実施態様においては、提供されたバイオポリマーに合わせて、水以外の溶媒、または複数の溶媒の組み合わせを使用してもよい。
【0028】
したがって、絹の例においては、ステップ14において絹フィブロイン水溶液を加工する。たとえば、8.0重量%の溶液を使用して、バイオポリマーセンサーを製造する。言うまでもないことであるが、他の実施態様においては、その溶液濃度を、たとえば浸透ストレス技術または乾燥技術により希釈するかまたは濃縮することによって、極めて希薄な濃度(およそ1重量%)から極めて高濃度(最高30重量%まで)まで変化させてもよい。これに関しては、他の実施態様においては、用途に合わせて、別の重量%の溶液を使用して、得られるバイオポリマーセンサーの可撓性または強度を最適化させ、しかも所望される検知機能が維持されるようにしてもよい。絹フィブロイン水溶液の製造については、国際公開公報第2005/012606号(発明の名称:Concentrated Aqueous Silk Fibroin Solution and Uses Thereof)に詳しい記載がある(これは参照により本明細書に組み入れられる)。
【0029】
次いで、ステップ16において、そのバイオポリマーマトリックス溶液に生物学的物質を添加する。図示した例においては、添加される生物学的物質は、生物学的に活性な物質であるが、それは、得られるバイオポリマーセンサーによって検出したい物質に基づいて選択される。別の言い方をすれば、添加される特定の生物学的に活性な物質は、製造されるバイオポリマーセンサーの所望の検知機能およびそのバイオポリマーセンサーが使用される環境に依存する。本出願の全体を通じて、「生物学的物質」、「生物学的に活性な物質」、および「有機物質」という用語は、バイオポリマーマトリックス溶液に添加し、その結果得られるバイオポリマーセンサーによって物質の検出を容易とするような、物質を指すのに使用してよい。生物学的に活性な物質の例については、以下において説明する。
【0030】
ステップ18において、バイオポリマーセンサーを製造する際のモールドとして機能する基材を提供する。これに関しては、その基材が光学デバイスであってよく、また場合によっては、製造されるバイオポリマーセンサーの上にさらに光学的な表面特徴を有していてもよい。次いで、本発明の方法に従って、ステップ20において、そのバイオポリマーマトリックス水溶液を基材の上にキャストする。
【0031】
ステップ22において、添加された生物学的物質を含む、キャストしたバイオポリマーマトリックスを乾燥させて、バイオポリマーマトリックス水溶液を固相に転移させる。これに関しては、生物学的物質を含むバイオポリマーマトリックス水溶液を、24時間などある一定時間かけて乾燥させてよく、場合によっては、バイオポリマーマトリックス水溶液の乾燥を促進させるために、弱い加熱を加えてもよい。他の乾燥法、たとえば、等温乾燥、ローラー乾燥、スプレー乾燥および加熱技術を使用してもよい。乾燥させると、包埋された生物学的物質を含むバイオポリマーセンサーが、基材の表面上に形成される。バイオポリマー膜の厚みは、基材に塗布した(生物学的物質を含む)バイオポリマーマトリックス溶液の体積に依存する。
【0032】
乾燥が終了すると、バイオポリマーマトリックス溶液の溶媒は蒸発するが、その包埋された生物学的物質を含むバイオポリマーセンサーを、場合によっては、ステップ24においてアニールしてもよい。このアニールする工程は、水蒸気環境中、たとえば水蒸気で充満されたチャンバー内で、所望の材料特性に応じて時間を変えて実施してもよい。典型的な時間は、たとえば2時間〜2日の範囲としてよい。そのアニールする工程はまた、真空環境中で実施してもよい。アニールした、包埋された生物学的物質を含むバイオポリマーセンサーを次いで、ステップ26において基材から取り外し、ステップ28においてさらに乾燥させる。
【0033】
上述の方法で製造したバイオポリマーセンサーは、生物学的物質を包埋しており、それにより、バイオポリマーセンサーとして使用できるよう官能化されたバイオポリマー膜を得ることが可能となる。そのバイオポリマー膜を同様に、アニールした。その結果得られるバイオポリマーセンサーは生分解性である。バイオポリマーセンサーの機能化は、目標の微生物、化学物質、またはその他の組成物に対して選択的な応答を与える、抗体、ペプチド、タンパク質もしくはペプチドのアレイ、またはその他のバイオポリマーもしくは合成ポリマー物質を包埋させることによって実現することが可能である。同様にして、バイオポリマーセンサーは、細胞、抗体、組織、または環境中の目標の物質または物体に応答するその他の適切な受容体を包埋させることによって、機能化させてもよい。
【0034】
上記のことに関して、その包埋される生物学的物質としては、以下のものが挙げられる:小さい有機分子、たとえば核酸、色素、細胞、抗体、付属書Iにおいてさらに記載されている抗体、付属書IIにおいてさらに記載されている酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、バクテリア、タンパク質、分子認識のためのペプチド、小分子、薬剤、色素、アミノ酸、ビタミン、抗酸化剤、植物細胞、哺乳動物細胞など、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、光学活性発色団(ベータカロチンまたはポルフィリンを含む)、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、酵母、抗真菌剤、抗ウイルス剤、および複合体、たとえばヘモグロビン、電子伝達鎖補酵素およびレドックス成分、集光性化合物、たとえばクロロフィル、フィコビリタンパク質、バクテリオロドプシン、プロトロドプシン、およびポルフィリン、ならびに関連の電子的に活性な化合物など、またはそれらの組み合わせ。
【0035】
これらの生物学的物質は、環境的な特徴、たとえば特定の化学物質、化学物質における変化、pH、水蒸気、レドックス状態、金属、光、特定のタンパク質、特定のウイルス、プリオン、および応力レベル、その他の目標物などを検知するために使用してよい。たとえば、包埋されたヘモグロビンを使用して、そのセンサーが使用された環境における酸素の存在を検知してもよい。包埋されたフェノールレッドにより、そのセンサーが、周囲の環境のpHレベルを検出することが可能となる。特定の包埋された抗体を使用して、適切な関連する化学物質と結合させて、そのセンサーの環境内での化学物質の存在を検知させてもよい。言うまでもないことであるが、これらの生物学的物質は、例示のためだけに表示したものであって、本発明に従ったバイオポリマーセンサーの他の実施においては、その他の物質を使用してもよい。
【0036】
別の方法として、本発明の他の実施態様においては、これらの生物学的物質を、コーティングしてもよいし、あるいは、バイオポリマーセンサーの表面上だけに包埋させてもよい。これらの生物学的物質の活性レベルを保護するためには、水だけのプロセスを使用するのが好ましい。これに関しては、これらの生物学的物質の安定性は、バイオポリマー膜中の水分含量および膜によって得られる安定化によって部分的に決定される。言うまでもないことであるが、他の実施態様においては、膜添加物、たとえばグリセロール、水以外の可塑剤、たとえば脂質、および多くのその他のポリマー、たとえば多糖類を使用して、それらの水保持性能を利用して、生物学的機能の選択幅を広げてもよい。
【0037】
以下においてさらに詳しく説明するが、上述の方法は、生分解性で、光学的に活性なバイオポリマーセンサーを与え、それは、バイオポリマーセンサーがそれを検出するために設計された特定の物質の存在に基づく各種の光学的特色および特性を示す。さらに、その光学的特色は、適切な回折性または屈折性の光学構造、たとえば、バイオポリマーセンサー上へのマイクロまたはナノスケールパターニング(したがって、そのセンサーは光学的な構成要素でもある)によって増強することが可能である。この設計には、同様にして、その生物学的物質の光学的な特色に基づく効果を組み入れてもよい。
【0038】
上述の方法で製造したバイオポリマー膜、たとえば絹の膜の上に、パターン形成されたナノ構造を与えることができる。一つの実施態様においては、基材の表面が平坦であって、そのことにより平坦なバイオポリマー膜が得られるようにしてもよく、そのバイオポリマー膜の表面の上にナノパターンを機械加工してもよい。ナノパターンは、たとえばフェムト秒レーザーのようなレーザーを使用するか、またはリソグラフィー技術、たとえば、フォトリソグラフィー、電子ビームリソグラフィー、ソフトリソグラフィーなどを含む、その他のナノパターン加工技術を使用して、加工してもよい。そのような技術を使用することで、700nmもの細さで間隔が3μm未満のような特徴を有するナノパターンが実証されたが、これについては以下においてさらに詳しく説明する。
【0039】
また別の実施態様においては、基材そのものの表面がその上に適切なナノパターンを有していて、そのため、固化したバイオポリマー膜をその基材から取り外すと、そのバイオポリマー膜には、その表面上に所望のナノパターンがすでに形成されているようにしてもよい。そのような実施形態においては、バイオポリマー膜上で望まれるナノパターンに応じて、その基材が、ナノパターン形成された光学格子または他の同様の光学デバイスのような光学デバイスであってもよい。その基材の表面をTeflon(商標)およびその他の適切なコーティングで被覆しておいて、バイオポリマーマトリックス溶液が液相から固相へと転移した後に、均質に剥離されるようにしてもよい。得られるバイオポリマー膜中に高度に規定されたナノパターン形成された構造を形成させるための、ナノパターン形成された基材を使用したバイオポリマーキャスト方法の性能は検証済みであり、75nmもの細かいナノ構造と5nm未満のRMS表面粗さとを有する絹の膜が実証されている。
【0040】
光学的に平坦な表面上にキャストした絹の膜の粗さを測定すると、2.5〜5ナノメートルの二乗平均平方根粗さの値と測定されたが、このことは、633nmの波長では、優にλ/50未満の表面粗さであることを意味している。パターン形成された絹回折光学素子の原子間力顕微鏡画像は、適切なモールドで絹の膜をキャストおよびリフトさせることによって得られる超微細加工のレベルを示している。それらの画像は、数百ナノメートル範囲の解像度を示し、コーナーの鮮鋭度からは、数十ナノメートルまでの細かい忠実なパターニングの可能性が示唆される。
【0041】
具体的には、ある種のバイオポリマー、たとえば絹の材料特性は、ソフトリソグラフィー技術を使用したナノスケールのパターニングによく適している。適切なレリーフマスクを使用することで、絹の膜を、各種の光学デバイスの表面上に、所望のパターニングでキャストして固化させ、次いで剥がすことができる。生体適合性物質にそのような規則的なパターニングを行うことで、フォトニックバンドギャップが得られ、有機物ではあるがそれでも機械的に頑強なバイオポリマーセンサーを介して、光を操作するのに使用可能な光学的な特徴を有するセンサーを製造することが可能となり、そのことによって、包埋される光学素子に可撓性を加えて、バイオポリマーセンサーに特有の汎用性を与えるが、このことについては以下においてさらに詳しく説明する。
【0042】
構造的な安定性があり、ナノ構造を忠実に再現する性能があるために、絹のようなバイオポリマーを使用して各種多くの回折性光学構造または屈折性のマイクロ光学構造およびナノ光学構造を製造することが可能となる。容易に作製することが可能な光学素子としては、格子、マイクロレンズアレイおよびナノレンズアレイ、パターン発生器、ビームディフューザー、ビームホモジナイザーなどが挙げられる。本発明に記載された実施態様に従う、そのようなバイオポリマー光学デバイスは、キャスト法、またはたとえばフェムト秒レーザーを使用した機械加工法による、回折性または屈折性表面を有する。それらの光学デバイスはさらに、個々の膜を積み重ねることによって三次元のバイオポリマーデバイスを製造するための、個別の構成単位として使用してもよい。これに関しては、バイオポリマーから作製されたそのような光学デバイスは、包埋された生物学的物質がなくても、それ自体でセンサーとして使用することができる。そのような光学デバイスの表面上にナノパターニングを与えることによって、それらのデバイスは、光学デバイスの光学的な特色を変化させるある種の物質または物体の存在を受動的に検知するために使用することができる。
【0043】
さらに、それらのバイオポリマー光学デバイスは、先にも述べたように、バイオポリマーマトリックスの中に生物学的物質を包埋させることによって、機能化させてもよい。この方法では、本発明によって、包埋された生物学的物質を含む極めて特異的で特有なバイオポリマーセンサーを作製することが可能となり、それはさらに、回折性または屈折性の、マイクロ構造化またはナノ構造化された光学的特徴を持たせることも可能である。
【0044】
本発明によるバイオポリマーセンサーは、そのバイオポリマーの性質に依存して、生体適合性とすることができる。上述のようなマトリックス溶液を使用することで、極めて大量のバイオポリマーセンサーを製造することができる。それらのバイオポリマーセンサーは、生分解性でかつ生体適合性である。好ましい実施態様によるバイオポリマーセンサーが生分解性であるので、それらを官能化させることによって、環境中、たとえば陸上もしくは水中で、大容積中、たとえば貯水池、河川、湖で、または小容積中、たとえば、家庭用タンク、タップ、井戸、処理槽系などの中の両方で、それらを分散させてもよい。それらの生分解性バイオポリマーセンサーを使用して、光学的に調べることによって、病原体または汚染物の存在を検出してもよい。
【0045】
そのデバイスが、包埋された膜として実施されるか、あるいはナノパターン形成された光学的な特徴をさらに備えているかには関わりなく、そのバイオポリマーセンサーは、そのバイオポリマーマトリックスの中に包埋された生物学的物質が検出するべき対象物質と反応したときに変化する、という光学的な特色および特性を有している。光学的な特色および特性におけるそのような変化は、バイオポリマーセンサーを直接光学的に調べて解析することによるか、さらにはもっと遠距離の、たとえば衛星画像を介して、検出することが可能である。
【0046】
上述のバイオポリマーセンサーの有効性を検証し、上述の方法で各種のバイオポリマーセンサーを作製することにより製造するための方法を評価する目的で、実験を実施した。具体的には、8重量%絹濃度の絹フィブロイン水溶液の体積と得られる絹の膜厚との間の関係を、図2のグラフ30に示す。この場合の絹フィブロイン水溶液を、およそ10平方センチメートルの基材の表面全体にキャストした。X軸は絹溶液の体積(単位mL)を示し、Y軸は得られた膜の厚み(単位μm)を示している。
【0047】
言うまでもないことであるが、膜の性質、たとえば厚みおよびバイオポリマー含量、さらには光学的な特徴は、そのプロセスで使用されるフィブロインの濃度、析出させる絹フィブロイン水溶液の体積、およびキャスト溶液を乾燥させてその構造を固定させるための堆積後(post−deposition)プロセスなどに基づいて、変化させることができる。さらに、バイオポリマー膜の性質はまた、得られた膜を機能化させる生物学的物質を包埋させることによって影響を与えられる場合がある。得られたバイオポリマーセンサーの光学的品質を確保し、バイオポリマーセンサーの各種の特性、たとえば透明度、構造的剛性、または可撓性を維持するためには、それらのパラメーターを正確に調節することが望ましい。さらに、バイオポリマーマトリックス溶液に対する添加剤、たとえばポリエチレングリコール、コラーゲンなどを使用して、バイオポリマーセンサーの特徴、たとえば、形態、安定性などを変化させてもよい。
【0048】
絹回折格子の中に有機指示薬を包埋させることによって、本発明の一つの実施態様による生物学的に官能化されたバイオポリマーセンサーを製造した。具体的には、図1の方法に関連させた上述の方法で、フェノールレッド(別名、フェノールスルホンフタレインまたはPSP)をドープした絹マトリックス溶液を、600ライン/mmの回折格子基材の上にキャストし、乾燥させ、アニールした。そうして得られたバイオポリマーセンサーは、その表面上に回折性の光学構造を有する、機能化格子である。そのバイオポリマーセンサーは、絹マトリックスの内部に包埋された有機指示薬の機能性を維持している。以下においてさらに詳しく記述するが、指示薬の機能性は、異なったpH値を有する、異なった溶液の中に作製されたバイオポリマーセンサーを浸漬させ、光学的な性質が維持されていることを検証することによって、実証された。
【0049】
図3A〜3Dは、本発明の一つの実施態様による、色彩調節されたバイオポリマーセンサーを示している。具体的には、図3Aの写真31は、たとえばフェノールレッドを用いた本発明の例における、生物学的物質を包埋させた絹光学格子として作製されたバイオポリマーセンサー32を示している。図3Bおよび3Cは、各種のpHの溶液に曝露させ、相互作用を与えた後の、バイオポリマーセンサー32の一部を示している。具体的には、図3Bは、pH=4である溶液に曝露させた後のバイオポリマーセンサー32を示す写真34である。図3Cは、pH=7である溶液に曝露させた後のバイオポリマーセンサー32を示す写真36である。図3Dは、pH=10である溶液に曝露させた後のバイオポリマーセンサー32を示す写真38である。これらの図からも判るように、バイオポリマーセンサー32が溶液のpHに応じて変色し、それによって、絹バイオポリマーの光学格子が、包埋されたフェノールレッドの機能性を維持していることを実証している。
【0050】
異なったpHレベルを有する、異なった溶液の中に浸漬させると、このプロセスが可逆性であるため、バイオポリマーセンサー32の中に包埋されているフェノールレッドの機能性もまた維持されている。たとえば、バイオポリマーセンサー32の格子を、pH=10である溶液に曝露させると、図3Dの写真38に見られるような変色を示す。次いでそのバイオポリマーセンサー32を、pH=4である溶液に曝露させると、図3Bの写真34に見られる変色を示す。したがって、ここで説明した本発明の実施態様は、pH指示薬、たとえばフェノールレッドの機能性を包埋する格子構造のために、光回折性の特徴を有し、しかも再使用可能なバイオポリマーセンサー32を提供する。
【0051】
図4のグラフ40は、本発明のまた別の実施態様における、フェノールレッドを包埋させたバイオポリマーセンサーからのスペクトル的な痕跡を示している。このケースにおいては、そのバイオポリマーセンサーはこの場合も、絹光学格子として実施されている。図4にも見られるように、線42は、pH=3の酸に曝露させたときのバイオポリマーセンサーの吸光度を示し、線44は、pH=8の塩基に曝露させたときのバイオポリマーセンサーの吸光度を示す。グラフ40の線46は、吸光度曲線を表す線42と線44の間の、ノンゼロ差分信号を示している。したがって、異なったpH溶液中におけるバイオポリマーセンサーのスペクトル的な痕跡が、示すように明らかに現れている。
【0052】
図5Aおよび5Bは、スーパーコンティニューム放射線に曝露させたときに、絹バイオポリマー格子よって回折されたスペクトルの、視覚的な比較を示している。図5Aの写真52は、フェノールレッドを包埋させた絹光学格子として作製されたバイオポリマーセンサー(そのバイオポリマーセンサーを塩基性のpH=10の溶液に浸漬させた後)により回折されたスペクトルを示している。図5Bの写真56に、同一のスーパーコンティニューム放射線に曝露させた包埋された生物学的物質を一切含まない絹格子の回折スペクトルを示す。包埋されたフェノールレッドを含むバイオポリマーセンサーの回折次数の中の、緑および青帯域のスペクトル選択性は、図5Aに見られるように顕著であるが、図5Bに示したドープしていない絹格子の回折スペクトルにはそれらが存在しない。
【0053】
また別の実験例の結果を、図6A〜6Cのスペクトル画像写真に示すが、ここでは、350nmから1,000nmを超えるまでの波長を有するスーパーコンティニューム光を、ナノパターン形成された絹回折格子の中を透過させた。絹回折格子から15cmの距離で、それらのスペクトル画像を撮った。参照のためであるが、図6Aの写真60は、ドープしていないナノパターン形成された絹回折格子を通過させ、固定平面上に投射したときの、回折したスーパーコンティニューム光を示している。図6Bの写真62は、本発明のまた別の実施態様によるバイオポリマーセンサーを通過させたときの、回折したスーパーコンティニューム光を示している。このセンサーは、フェノールレッドを包埋したナノパターン形成された絹回折格子として実施され、そのバイオポリマーセンサーは酸溶液に曝露されている。
【0054】
図6Aの写真60と図6Bの写真62とを対比させると判ることであるが、ナノパターン形成された絹回折格子として実施したバイオポリマーセンサーのスペクトル吸収は、フェノールレッドを包埋させ、酸溶液に曝露させることによって変化している。写真62においては、測定されたスペクトル透過率曲線64もまた、検出された回折したスーパーコンティニュームスペクトルに合わせるために、重ね書きした。図6Cの写真66は、フェノールレッドを包埋したバイオポリマーセンサーを酸溶液に代えて塩基性溶液に曝露させたときの回折したスーパーコンティニュームを示している。さらに、測定されたスペクトル透過率曲線68もまた、検出された回折したスーパーコンティニュームスペクトルに合わせるために、重ね書きされている。測定されたスペクトル透過率曲線64を透過率曲線68と比較すると判るように、フェノールレッドを包埋したバイオポリマーセンサーを塩基性溶液に曝露させたときには、スペクトルの緑色の端(すなわち、短波長側)の方向に、より高い吸光度が示されている。
【0055】
本発明によるバイオポリマーセンサーの生体適合性を確認する目的で、一つの実施態様例において、ヘモグロビン(RBC中に含まれる酸素運搬タンパク質)を含む赤血球(RBC)を、ナノパターン形成された絹回折格子の中に組み入れた。この回折格子は、図1に関して記載した方法で製造した。これに関しては、そのRBC−絹フィブロイン溶液は、1mLの80%ヘマトクリットヒトRBC溶液と、5mLの8%絹溶液とを組み合わせることによって調製した。その混合物を、600ライン/mmの光学格子基材上にキャストし、一晩かけて放置乾燥させた。その膜を、光学格子基材から取り外し、2時間アニールした。その結果として得られたバイオポリマーセンサーの中に、格子構造が存在して残っていることが観察された。この例においては、得られたバイオポリマーセンサーは、RBCが包埋された絹回折格子である。
【0056】
次いで、そのバイオポリマーセンサーの試験をして、回折次数を観察した。回折次数を観察するために、光伝送実験(transmission experiment)を実施して、そのバイオポリマーセンサーのマトリックスの中で、ヘモグロビンが、その活性と機能性を維持しているかどうかを調べた。その結果のグラフ70を図7に示すが、RBCが包埋されたバイオポリマーセンサーの内部でヘモグロビン機能が保持されていることを証明している。これに関しては、X軸は波長(nm)に対応し、Y軸は、RBCが包埋されたバイオポリマーセンサーによる吸光度に対応している。
【0057】
具体的には、RBCが包埋されたバイオポリマーセンサーを、蒸留水を充填した石英キュベットの中に挿入し、吸光度曲線を観察した。その結果を、結果のグラフ70の中の線(b)HbOによって示す。図から判るように、線(b)HbOによって示される吸光度曲線は二つのピークを示したが、これは、オキシヘモグロビンの吸収に典型的なものである。次いで、そのキュベットの中に窒素ガスの気泡を通して、バイオポリマーセンサーの内部に中に包埋されているヘモグロビンの脱酸素化を行った。15分後に、オキシヘモグロビンの特徴的な吸収ピークが吸光度曲線から消えた。この結果を、結果のグラフ70の中の線(a)Hbによって示す。これらの結果は、次いでキュベットへの窒素の流れを止めると、その結果として、オキシヘモグロビンのピークが再び現れるということで、さらに確認した。その結果を、結果のグラフ70の中の線(c)HbOによって示す。
【0058】
上記のことを考え合わせると、本発明に従ったバイオポリマーセンサー、たとえばヘモグロビンが包埋された絹の膜を、バイオポリマー酸素検出センサーとして使用してもよい。上で概説したように、包埋されたヘモグロビンに酸素を結合したり除去したりすると、そのバイオポリマーセンサーの、光学的な特徴および痕跡が変化するが、そのような変化は、たとえば、スペクトルを回折したり、直接的に観察したりすることによって検出することが可能である。
【0059】
そのようなバイオポリマーセンサーは、水系またはその他の環境において水処理または水質をモニターするのに使用可能であり、しかもそれらが生分解性かつ生体適合性であるために、事後にサンプルを回収する必要がまったくない、使い捨てのセンサーとして特に有用となりうる。同様にして、それらのセンサーは、医学および組織工学における各種の用途のための生体材料の足場の構成要素として使用してもよい。たとえば、そのようなバイオポリマー足場は、改良された酸素検出を与え、酸素含量の調節を助けて細胞および組織の再生を促進させることができる。
【0060】
本発明のまた別の実施形態においては、バイオポリマーセンサーの内部における酵素の活性を示すため、ナノパターン形成された絹格子として実施されたバイオポリマーセンサーは、その中に包埋された酵素と共にキャストされている。これに関しては、各種の色素原を使用して、組織切片内にペルオキシダーゼを局在化させた。具体的には、8重量%の絹溶液をセイヨウワサビペルオキシダーゼ酵素(HRP)と組み合わせて、絹マトリックス溶液中の酵素濃度が0.5mg/mLとなるようにした。次いでそのマトリックス溶液を、格子の表面上に600および2400ライン/mmを有する光学格子の上にキャストした。そのマトリックス溶液をさらに、Teflon(商標)コーティングした表面を有する基材の上にもキャストした。そのキャスト膜を放置乾燥させた。光学格子上にキャストして形成されたバイオポリマーセンサーをアニールした。Teflon(商標)コーティングした基材の上にキャストして形成されたバイオポリマーセンサーの半分をまた、アニールした。そのアニールは、真空中および水蒸気中で2時間かけて実施した。次いでアニールの後に、それらのバイオポリマーセンサーを乾燥させ、反応性モノマーに対するセイヨウワサビペルオキシダーゼの反応活性を、以下の記載に従って評価した。アニールさせなかった、Teflon(商標)コーティングした基材の上にキャストしたバイオポリマーセンサーの残りの半分は、ベータシート含量が低く、反応性モノマーを塗布すると溶解することが見出された。
【0061】
酵素活性を検証する目的で、ナノパターン形成された絹格子として実施されたバイオポリマーセンサー中における機能性の酵素活性を追跡するために、テトラメチルベンジジン(TMB)を使用した。TMBは、HRPおよび過酸化水素と反応して、フリーラジカル反応を介して活性酵素の存在下で発色する芳香族有機モノマーである。TMBの酸化反応生成物は、特徴的な青色(1電子酸化)および黄色(2電子酸化)を生ずる。
【0062】
図8A〜8Dは、TMBおよびペルオキシドに対するバイオポリマーセンサーの反応を示す写真であって、そのバイオポリマーセンサーは、上述のように、HRPを包埋されたものである。具体的には、絹を使用しHRPを包埋させることにより作製されたバイオポリマーセンサーを、皿に載せ、数滴のTMB試薬をそのバイオポリマーセンサーの表面上に置いて、HRP酵素と反応させた。TMB酵素の活性化は、目に見える変色で実証され、それによって、包埋された生物学的物質がその機能性を維持しており、本発明のまた別の実施態様による機能化バイオポリマーセンサーを与えることが示された。具体的には、図8Aの写真80は、反応をさせる前の、HRP酵素を用いて包埋されたバイオポリマーセンサー81を示している。図8Bの写真82は、TMBおよびペルオキシド反応剤を添加した直後のバイオポリマーセンサー81を示している。図8Cおよび8Dの写真84および86はそれぞれ、バイオポリマーセンサー81の中に包埋されたHRP酵素の反応の各種のステージを示している。写真84のバイオポリマーセンサー81においては、反応によって黄色の着色(図示せず)が得られている。写真86のバイオポリマーセンサー81においては、幾分かの未反応のモノマーが存在しているために、緑色の着色(図示せず)が得られている。図8Eは拡大写真88であって、包埋されたHRP酵素と、TMBおよびペルオキシド反応物との間の反応が完結した後のバイオポリマーセンサー81を示している。
【0063】
さらに、絹回折格子として実施したバイオポリマーセンサーについて、酵素活性のスペクトル評価も実施した。TMBおよびペルオキシドに曝露させたときには、そのバイオポリマーセンサーにはHRPが包埋されており、結果を、図9のグラフ30に示す。グラフ90においては、X軸は波長(単位、nm)を表し、Y軸はHRPが包埋されたバイオポリマーセンサーの測定された吸光度を表している。具体的には、時間をずらせた一連のグラフ90は、反応の初期段階、すなわちHRPが包埋されたバイオポリマーセンサーをTMBおよびペルオキシドに曝露させた直後の、5、15、25、35秒のところで記録した吸収スペクトルを示している。結果のグラフ90から判るように、600nm〜700nmの波長範囲における吸光度が徐々に高くなって、およそ655nmにピーク吸光度が観察されるが、それによってHRP酵素の活性が検証された。図9の結果のグラフ90に示されたこれらの測定値は、HRPが包埋されたバイオポリマーセンサーを調製してから30日が経過し、そのバイオポリマーセンサーを室温でこの期間保存した後に、測定したものであることに留意されたい。時間の経過とともに、バイオポリマーセンサーでは655nmの光の吸収が増加した。これらの結果は明らかに、その包埋された生物学的物質がその機能性を維持しており、本発明の一つの実施形態に従った機能化バイオポリマーセンサーを提供するものであることを実証している。
【0064】
上述の例から、本発明に従ったバイオポリマーセンサーの内部で、包埋された生物学的物質の機能性を容易に維持することが可能であることが明らかである。生物学的物質、たとえば、タンパク質、ペプチド、DNA、RNA、酵素、タンパク質複合体、ウイルス、細胞、抗体、その他の生体分子、色素またはその他の化合物、組織、およびその他の生体材料などを加工によりバイオポリマーマトリックスの中に包埋させることによって、その生物学的に活性な物質がバイオポリマーセンサーを作製する水系の加工の間も残存するため、機能化された活性なバイオポリマーセンサーを作製することができる。
【0065】
その包埋された生物学的物質が、特徴的な代謝特性、形態を有しているか、または指示薬もしくはマーカータンパク質(たとえば、多くの例の一つとしてGFP)で標識されていれば、そのバイオポリマーセンサーの光学的特性または特色における変化が、そのバイオポリマーセンサーを使用する環境の中の分析対象物のマルチモード検知を与えると考えられる。光学的特性または特色における変化は、指示タンパク質からの信号強度の変化を伴っていても、伴っていなくてもよい。したがって、本発明のバイオポリマーセンサーは、水質、空気モニタリングシステムのため、および多くのその他の関連用途において、使い捨ての毒性スクリーニング、迅速な浸漬試験として使用することができる。
【0066】
バイオポリマーセンサー、たとえば包埋された生物学的物質を含む絹の膜の水和のレベルが、得られたバイオポリマーセンサーの安定性を決める場合がある。先に示したように、バイオポリマー膜のアニールは、水蒸気環境中で実施してもよい。加湿器を使用して、場合によっては加湿器を使用せずに、これらのバイオポリマーセンサーを大きなシートとして製造することも可能である。次いで、そのようにして作製された大きなシートを、一定寸法に切断して、使用のために出荷してもよい。そのような技術は、本発明に従ったバイオポリマーセンサーの製造コストを下げる。本発明のバイオポリマーセンサーは、低コストの水試験および環境質試験のために使用することが可能である。同様のアプローチ方法を使用して、部屋の壁のコーティングやカバーを製造したり、あるいは、他の系において、目立たないように、より恒久的な検出性能を与えたりすることもできる。たとえば、そのコーティングまたはカバーは、装飾として、またはその他の建具として見えるようにしてもよい。
【0067】
図10Aおよび10Bは、本発明の一つの実施態様によるバイオポリマーセンサーの操作原理を概略的に示しているが、ここでそのバイオポリマーセンサーは、環境センサーとして使用されている。具体的には、バイオポリマーセンサー100は、光学素子、たとえば光学格子として実施され、包埋された生物学的物質102を含んでいる。バイオポリマーセンサー100が光学素子として実施されているので、それはスペクトル分光的に一つの特定の色を選択している。したがって、光線104をそれにあてたときに、バイオポリマーセンサー100は、特定の光学的な痕跡106または特性を示す。図10Bに見られるように、バイオポリマーセンサー100の中に包埋された生物学的物質102が、環境中の物質または物体108の存在に応答して、図10Bに見られるように、光学的な痕跡109、たとえばスペクトル色の変化を起こさせる。光学的な痕跡109には、スペクトル色が含まれる。さらに、先にも説明したように、検出される物質108を容易に示させる目的で特定の光学的な特性を高めるように、バイオポリマーセンサー100を実施してもよい。したがって、その光学的な痕跡を、直接的または遠隔的のいずれかで、読み取って解析することが可能であり、それによって、検出対象の特定の物質が存否を明瞭に示すことができる。
【0068】
本発明がバイオポリマーセンサーの中に単一のタイプの生物学的物質を包埋させることだけに限定されるものではないことも、理解されるべきである。その代わりとして、複数の異なったタイプの生物学的物質を本発明の単一のバイオポリマーセンサーの中に包埋させて、そのバイオポリマーセンサーを使用する特定の環境の中での複数の物質または物体の存在を同時に検出できるようにすることも可能である。これに関しては、図11にも、本発明のさらにまた別の実施態様によるバイオポリマーセンサー110を概略的に示しているが、ここではその操作原理をさらに拡張して、複数の生物学的物質を含むようにしている。図に見られるように、複数の異なったタイプの生物学的物質112A、112B、112C、および112D(図11においては、それらをまとめて「生物学的物質112」と呼び、図示している)を、「A]、「B」、「C」、「D」で示したバイオポリマーセンサー110の異なった領域の中に包埋させている。特定の物質それぞれが検出されたときに、個別に、光スペクトル中の一つの特定の色をスペクトル分光的に選択し、バイオポリマーセンサー110のスペクトル的な痕跡を与えるように、生物学的物質112のそれぞれのタイプを合わせるように、バイオポリマーセンサー110を実施してもよい。したがって、異なったスペクトル的な痕跡を組み合わせ、組み合わせの中でそれらを配列することによって、バイオポリマーセンサー110が、複数の物体および物質の存在を検出し、表示することが可能となる。次いで、そのスペクトル的な痕跡を読み取り、解析してから、生物学的物質を包埋させたバイオポリマーセンサー110で予想されるスペクトル的な痕跡と比較することができる。先にも述べたように、そのような読み取りが求められ、解析され、狭い範囲であるいは遠隔的に評価されてもよい。
【0069】
図12Aおよび12Bに、上述のスペクトル選択性のまた別の実験的証明の結果を示す。具体的には、図12Aは、フェノールレッドを包埋させたバイオポリマーセンサーからの回折された可視スペクトルを示す写真122である。図12Bは、そのバイオポリマーセンサーを塩基性物質の存在下に置いたときの、回折した可視スペクトルを示す写真126である。バイオポリマーセンサーを塩基性物質の存在下に置いたときにはその可視スペクトル中に異なった着色の回折次数が観察されるが、そのような差は、バイオポリマーセンサーの包埋されたフェノールレッドが、その塩基性物質と相互作用し、視覚的にフィルターにかけられ、そして特定のスペクトル成分が選択されて、それにより、回折において観察可能な違いを生じたという事実に基づくものである。ドーパントがスペクトルにフィルターをかけるのに役立ち、それに対して格子が特定のスペクトル成分を選択している。
【0070】
したがって、上述のことから、本発明によるバイオポリマーセンサーが、バイオポリマーの有機特性と有機マトリックス中に備えられた回折性および伝送性(transmissive)の光学素子の能力との組み合わせ、および生物学的に活性なセンサーの創作を含め、多くの利点を与えることは明らかである。絹バイオポリマーは、調節可能に分解性で、生体適合性で、構造的に丈夫である。本発明は、任意でそれらの表面上に高度に規定されたナノスケールのパターン形成された構造を備えた光学素子としてバイオポリマーセンサーを実施することをさらに可能とし、それによって、機能化されたバイオ光学素子の生産が可能となる。
【0071】
本発明の態様および実施態様についてのここまでの記述は、例示と説明のために提供してきたが、それが全てではなく、開示されたそのままの形に本発明を限定することを意図したものでもない。当業者ならば、上述の教示を読めば、それらの実施態様のある種の修正、順序の入れ替え、追加、および組み合わせが可能であるか、または本発明の実施からもたらされてもよいことは認識するところであると考えられる。したがって、本発明には、添付の特許請求の範囲内に入る各種の修正および等価の変形もまた包含されている。
【0072】
付属書I
絹の膜中における抗体の安定性
材料
抗IL−8モノクローナル抗体(IgG1)は、eBioscience,Inc.から購入した。ヒトポリクローナル抗体IgGおよびヒトIgG ELISA Quantitation Kitは、Bethyl Laboratories Inc.から購入した。研究において使用したその他の全ての化学薬剤は、Sigma−Aldrich(St.Louis,MO)から購入した。
【0073】
絹の膜中への抗体の捕捉−ヒトポリクローナル抗体IgG
167mLの6%絹溶液と混合した10mLのIgG(1mg/mL)で、絹の膜中IgG濃縮物(mg/g絹)を作製する。100μLの混合IgG溶液を、96ウェルのプレートのそれぞれのウェルに添加し、カバーを開けて、換気フードの中に一晩置いた。その乾燥させた膜は、メタノールを用いて処理するか、未処理のままとした。メタノール処理の場合には、ウェルを90%メタノール溶液中に5分間浸漬させ、換気フードの中で乾燥させた。次いで、乾燥させた96ウェルのプレートの全部を、4℃、室温、および37℃で保存した。
【0074】
抗IL−8モノクローナル抗体(IgG1)
83mLの6%絹溶液と混合した0.5mLのIgG1(1mg/mL)で、絹の膜中IgG1濃縮物(0.1mg/g絹)を作製する。50μLの混合IgG1溶液を、96ウェルのプレートのウェルに添加し、カバーを開けて、換気フードの中に一晩置いた。その乾燥させた膜は、メタノールを用いて処理するか、未処理のままとした。メタノール処理の場合には、ウェルを90%メタノール溶液中に5分間浸漬させ、換気フードの中で乾燥させた。次いで、乾燥させた96ウェルのプレートの全部を、4℃、室温、および37℃で保存した。
【0075】
抗体測定
統計解析のため、同一の条件下で調製した5個のウェルについて測定した。純粋な絹(抗体なし)を対照として使用した。
【0076】
メタノール非処理試料の場合には、100μLのPBS緩衝液(pH、7.4)を、ウェルに添加し、それを室温で30分間さらにインキュベートして、膜を完全に溶解させた。次いで、溶液の一定分量を、抗体測定にかけた。メタノール処理試料については、100μLのHFIPをそれぞれのウェルに添加し、それを室温で2時間さらにインキュベートして、膜を完全に溶解させた。その絹HFIP溶液を、換気フード中で一晩乾燥させた。以後のステップはメタノール非処理試料の場合と同様であって、PBS緩衝液を添加し、抗体測定のために溶液をピペットで移した。
【0077】
ELISA
ポリスチレン(96ウェル)マイクロタイタープレートを、抗原コーティング緩衝液(重炭酸塩緩衝液、50mM、pH9.6)中で調製した10μg/mLの濃度での100μLの抗原抗ヒトIgG−アフィニティを用いてコーティングし、次いで室温で保存して一晩インキュベートした。次いでTBS−T緩衝液を用いて、それらのウェルを3回洗浄した。1%のBSA(TBS中)を各ウェル200μLずつ用いて非占有部位(unoccupied site)をブロックし、次いで室温で30分間インキュベートした。次いでTBS−Tを用いて、それらのウェルを3回洗浄した。次いで、段階希釈した血清100μLを用いて、試験ウェルおよび対照ウェルを希釈した。それぞれの希釈は、TBS緩衝液中で実施した。それぞれの希釈に対応する、段階希釈したブランクもまた存在させた。次いでそのプレートを、室温で1時間インキュベートした。プレートを、TBS−T緩衝液を用いて再び洗浄した(5回)。結合された抗体について、抗ヒトIgG−HRP(1:100,000)の適切な結合体を用いて試験し、その100μLをそれぞれのウェルの中にコーティングし、室温で1時間維持した。TBS−Tを用いてプレートを(5回)洗浄した後に、それぞれのウェルに100μLのTMBを添加し、室温で5〜20分間インキュベートした。それぞれのウェルの450nmでの吸光度を、VersaMaxマイクロプレートリーダー(Molecular devices、Sunnyvale,CA)を用いて測定した。

図A:2種の異なったフォーマットで調製し、3種の異なった温度で保存した絹の膜中での初期活性に対する抗体IgG1活性


図B:2種の異なったフォーマットで調製し、3種の異なった温度で保存した絹の膜中での初期活性に対する抗体IgG活性
【0078】
付属書II
発光性の絹の膜
可能性のある用途
バイオセンサー、さらには新規な消費財、たとえば安全でなめてもよい玩具、衣類のための織物、または装飾用材料など。
【0079】
方法
膜調製法
膜を調製するために、1mg/mLのルシフェラーゼ(フォティヌス・ピラリス(Photinus pyralis)(ホタル)からのもの(Sigma))溶液を調製し、その1.5mLを21.4mLの7%絹溶液と混合し、キャストして膜とした(ウェルプレート中、フード中で一晩放置)。空気乾燥させた後で、その膜の半分を、90%メタノールを用いて処理した。膜全体から小片(約6×6mm)に切り出し、秤量し(それぞれ約8mg)、1.5mLのチューブの中で保存した。
【0080】
ルシフェラーゼ反応
乾燥させてから、その膜を、ルシフェリンとATPの溶液の中に置いた(500μmのD−塩ルシフェリン、8mMのATP、および5mMのMgCl(Tris−Cl緩衝液中、pH=7.6))。反応剤を膜の中に拡散させた上で、放射光線から発光を測定した。ルシオールアミングレリカ(Luciolamingrelica)(1.13.12.7、Sigma、25mMのTris酢酸、5mMのMgSO、1mMのEDTA、および50%のグリセロール中の溶液)からルシフェラーゼを、緩衝水性グリセロール溶液中で調製し、次いでそれを用いて絹の膜をキャストした。ルシフェラーゼを含むそれらの絹の膜は、おそらくはグリセロールの効果のために、水中への溶解性はなかった。本発明者らはさらに、その調製法にはグリセロールを存在させずに、フォティヌス・ピラリス(ホタル)(Sigma)からのルシフェラーゼの凍結乾燥させた粉末も使用して、膜の安定性と機能性の点で結果を比較しようとした。それらの膜は、メタノール処理なしでも、ホタルルシフェラーゼと共に水中に溶解した(図2)。ルシフェラーゼの光活性は、5〜30×10光単位/mgタンパク質である(フォティヌス・ピラリス(ホタル)、Sigmaデータ)。

図C:ルシフェラーゼ活性を試験するための方法(ルシフェラーゼ定量キット−Biotium,Inc.)
【0081】
そのキットでの反応は次の通りである。

図D:生物発光反応式
【0082】
メタノール非処理膜の場合、0.5mLの溶解緩衝液(100mMのKPO、0.2%のTriton X−100、1mMのDTT(ジチオトレイトール))を添加して、その膜を溶解させた。20μLの試料溶液を黒色の96ウェルのプレートに入れ、100μLの基質を添加した(その溶液には、500μMのD−塩ルシフェリン、8mMのATP、および5mMのMgCl(Tris−Cl緩衝液中、pH=7.6)が含まれていた)。その試料を5分間インキュベートして、発光性の光の放射について560nmで定量した(図E)。

図E:インキュベーション時間を変えたときの発光(Microplate reader, Molecular Devices Corporation)
【0083】
メタノール処理した膜の場合には、水中に不溶性であるので、膜を切り出して4片(約3×3mm)とし、黒色96ウェルのプレートの一つのウェルの中にそれぞれ一つの小片を入れ、次いで100uLの基質を添加して、5分間のインキュベーション(37℃)の後に、560nmで発光の試験をした。

図F:5分後の560nmにおける溶液中のルシフェラーゼ活性
【0084】
図Fは、絹溶液においてもLCF活性が顕著には変化しなかったことを示している。この問題に対処するために、1%の絹溶液および溶解緩衝液中で各種の濃度のルシフェラーゼを調製し、次いで、20μLの溶液を100μLのルシフェラーゼ定量キットのルシフェラーゼ定量緩衝液に添加し、37℃で5分間インキュベートしてから、560nmでの発光を定量した。この定量法は、絹−ルシフェラーゼ混合物が酵素を不活性化させる結果をもたらさなかったということを確認するために実施した。
【0085】
(表1)膜を加工した後に絹の膜の中に残存しているLCF活性(N=5)

定量のために再溶解させることが可能であったメタノール非処理膜、および膜として定量したメタノール処理膜の両方。
表1は、メタノール非処理の絹の膜においては、初期添加量に対して、LCFが約40%の活性を維持していたことを示している。メタノール非処理の絹の膜においては、初期添加量に対して、1.7%の活性が残存している。したがって、ルシフェラーゼ活性は、その調製プロセスの間、絹の膜の中で維持されている。
【0086】

図F:溶解緩衝液中の遊離のLCFから、および(右)絹の膜からの発光スペクトル
膜または溶液中のルシフェラーゼ濃度は0.1mg/mlであり、その定量は、室温でルシフェラーゼ定量緩衝液中で実施した。
上記のスペクトルは、溶液からおよび膜からの発光を、Optical Spectrum Analyzer(Ando AQ6317B)中にカップリングさせることによって得たものである。そのカップリングは、試料からの放射光線を、自由空間中で装置の受光部に再コリメートさせることによって実施する。
【0087】
図Fから、ルシフェラーゼによる触媒作用を受けるルシフェリン酸化反応から光が放出されていることが判る。その発光ピークは、546nmおよび613nmである。
【0088】

図G:発光性の絹の膜(メタノール処理膜)の写真
Bio Imaging System(Synoptics Ltd)を使用して、図Fにおける膜と試料の画像を得た。膜から放射される光は弱すぎて肉眼では見えないが、それに対して溶液は肉眼で観察できた。

【特許請求の範囲】
【請求項1】
基材を提供する工程;
バイオポリマーマトリックス溶液を前記基材の上にキャストする工程であって、前記バイオポリマーマトリックス溶液がバイオポリマーおよび添加された生物学的物質を含む、工程;および
前記添加された生物学的物質を含む前記バイオポリマーマトリックス溶液を乾燥させて、前記基材の上に固化したバイオポリマーセンサーを形成させる工程
を含む、バイオポリマーセンサーの製造方法。
【請求項2】
バイオポリマーを提供する工程;および
バイオポリマーを加工して、バイオポリマーマトリックス溶液を得る工程
をさらに含む、請求項1に記載の方法。
【請求項3】
固化したバイオポリマーセンサーをアニールする工程をさらに含む、請求項1に記載の方法。
【請求項4】
固化したバイオポリマーセンサーをアニールする工程が、真空環境および水蒸気環境の少なくとも一つの中で実施される、請求項3に記載の方法。
【請求項5】
基材がナノパターン形成された表面を含み、かつ固化したバイオポリマー膜がその上にナノパターンを有する表面を伴って形成されるように、バイオポリマーマトリックス溶液が前記基材の前記ナノパターン形成された表面の上にキャストされる、請求項1に記載の方法。
【請求項6】
基材が、光学デバイスのためのテンプレートである、請求項1に記載の方法。
【請求項7】
基材が、レンズ、マイクロレンズアレイ、光学格子、パターン発生器、およびビームリシェーパーのうちの少なくとも一つのためのテンプレートである、請求項6に記載の方法。
【請求項8】
バイオポリマーが絹である、請求項1に記載の方法。
【請求項9】
バイオポリマーマトリックス溶液が、およそ1.0重量%〜30重量%(両端を含む)の絹を含む絹フィブロイン水溶液である、請求項8に記載の方法。
【請求項10】
前記絹フィブロイン水溶液が、およそ8.0重量%の絹を含む、請求項9に記載の方法。
【請求項11】
バイオポリマーが、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン(pullan)、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマーからなる群、またはそれらの組み合わせより選択される、請求項1に記載の方法。
【請求項12】
生物学的物質が、赤血球、セイヨウワサビペルオキシダーゼ、およびフェノールスルホンフタレインからなる群、またはそれらの組み合わせより選択される、請求項1に記載の方法。
【請求項13】
生物学的物質が、核酸、色素、細胞、抗体、酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、タンパク質、ペプチド、小分子、薬剤、色素、アミノ酸、ビタミン、抗酸化剤、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、発色団、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、抗真菌剤、抗ウイルス薬、集光性化合物、たとえばクロロフィル、バクテリオロドプシン、プロトロドプシン(protorhodopsin)、およびポルフィリン、ならびに関連する電子的に活性な化合物からなる群、またはそれらの組み合わせより選択される、請求項1に記載の方法。
【請求項14】
バイオポリマーの表面の上にナノパターンを機械加工する工程をさらに含む、請求項1に記載の方法。
【請求項15】
ナノパターンが、ホールおよびピットの少なくとも1種のアレイを含む、請求項14に記載の方法。
【請求項16】
バイオポリマー膜の上にナノパターンを機械加工する工程が、レーザーを使用して実施される、請求項14に記載の方法。
【請求項17】
前記機械加工する工程が、前記レーザーによって発生されるフェムト秒レーザーパルスによって実施される、請求項16に記載の方法。
【請求項18】
基材を提供する工程;
バイオポリマーマトリックス溶液を前記基材の上にキャストする工程であって、前記バイオポリマーマトリックス溶液がバイオポリマーを含む、工程;
前記バイオポリマーマトリックス溶液を乾燥させて、前記基材の上に固化したバイオポリマー膜を形成させる工程;および
前記固化したバイオポリマー膜に生物学的物質を添加する工程
を含む、バイオポリマーセンサーの製造方法。
【請求項19】
バイオポリマーマトリックス溶液が、およそ1.0重量%〜30重量%(両端を含む)の絹を含む絹フィブロイン水溶液である、請求項18に記載の方法。
【請求項20】
バイオポリマーが、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマーからなる群、またはそれらの組み合わせより選択される、請求項18に記載の方法。
【請求項21】
生物学的物質が、赤血球、セイヨウワサビペルオキシダーゼ、およびフェノールスルホンフタレインからなる群、またはそれらの組み合わせより選択される、請求項18に記載の方法。
【請求項22】
生物学的物質が、核酸、色素、細胞、抗体、酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、タンパク質、ペプチド、小分子、薬剤、色素、アミノ酸、ビタミン、抗酸化剤、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、発色団、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、抗真菌剤、抗ウイルス薬、集光性化合物、たとえばクロロフィル、バクテリオロドプシン、プロトロドプシン、およびポルフィリン、ならびに関連する電子的に活性な化合物からなる群、またはそれらの組み合わせより選択される、請求項18に記載の方法。
【請求項23】
バイオポリマーの表面の上にナノパターンを機械加工する工程をさらに含む、請求項1に記載の方法。
【請求項24】
ナノパターンが、ホールおよびピットの少なくとも1種のアレイを含む、請求項23に記載の方法。
【請求項25】
バイオポリマー膜の上にナノパターンを機械加工する工程が、レーザーを使用して実施される、請求項23に記載の方法。
【請求項26】
前記機械加工する工程が、前記レーザーによって発生されるフェムト秒レーザーパルスによって実施される、請求項25に記載の方法。
【請求項27】
包埋された生物学的物質を含む固化したバイオポリマー膜を含む、バイオポリマーセンサー。
【請求項28】
レンズ、マイクロレンズアレイ、光学格子、パターン発生器、およびビームリシェーパーのうちの少なくとも一つである、請求項27に記載のバイオポリマーセンサー。
【請求項29】
バイオポリマーセンサーの固化したバイオポリマー膜が絹である、請求項27に記載のバイオポリマーセンサー。
【請求項30】
バイオポリマーセンサーの固化したバイオポリマー膜が、キトサン、コラーゲン、ゼラチン、アガロース、キチン、ポリヒドロキシアルカノエート、プラン、デンプン(アミロース アミロペクチン)、セルロース、ヒアルロン酸、および関連するバイオポリマーからなる群、またはそれらの組み合わせより選択される、請求項27に記載のバイオポリマーセンサー。
【請求項31】
生物学的物質が、赤血球、セイヨウワサビペルオキシダーゼ、およびフェノールスルホンフタレインからなる群、またはそれらの組み合わせより選択される、請求項27に記載のバイオポリマーセンサー。
【請求項32】
生物学的物質が、核酸、色素、細胞、抗体、酵素、たとえば、ペルオキシダーゼ、リパーゼ、アミロース、オルガノホスフェートデヒロドゲナーゼ、リガーゼ、制限エンドヌクレアーゼ、リボヌクレアーゼ、DNAポリメラーゼ、グルコースオキシダーゼ、ラッカーゼ、細胞、ウイルス、タンパク質、ペプチド、小分子、薬剤、色素、アミノ酸、ビタミン、抗酸化剤、DNA、RNA、RNAi、脂質、ヌクレオチド、アプタマー、炭水化物、発色団、発光性有機化合物、たとえばルシフェリン、カロチン、および発光性無機化合物、化学色素、抗生物質、抗真菌剤、抗ウイルス薬、集光性化合物、たとえばクロロフィル、バクテリオロドプシン、プロトロドプシン、およびポルフィリン、ならびに関連する電子的に活性な化合物からなる群、またはそれらの組み合わせより選択される、請求項27に記載のバイオポリマーセンサー。
【請求項33】
その上にナノパターンを有する表面をさらに含む、請求項27に記載のバイオポリマーセンサー。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2010−509593(P2010−509593A)
【公表日】平成22年3月25日(2010.3.25)
【国際特許分類】
【出願番号】特願2009−536416(P2009−536416)
【出願日】平成19年11月5日(2007.11.5)
【国際出願番号】PCT/US2007/083620
【国際公開番号】WO2008/127402
【国際公開日】平成20年10月23日(2008.10.23)
【出願人】(303043726)トラスティーズ オブ タフツ カレッジ (26)
【Fターム(参考)】