説明

バーチャル顕微鏡スライドを作成する方法および装置

【課題】デジタル走査されたイメージを構築し、デジタル走査されたイメージを顕微鏡なしでビューするのに好都合なタイル化フォーマットで記憶し、かつリモートロケーションの他のユーザがビューできるように複数の倍率のタイル化イメージを転送するための改良された新規の方法および装置を提供すること。
【解決手段】バーチャル顕微鏡スライドの作成は、コンピュータ制御顕微鏡(10)を使用して試料の複数の低倍率イメージを取り込み、これらのイメージをタイル化し、再構築されたマクロイメージ(24)を作成することによって行われる。複数のより高い倍率のイメージもキャプチャされタイル化されて、ミクロイメージ(26)が作成される。ついで、マクロイメージ(26)およびミクロイメージ(24)は、その後、対話的にビューするために、これらのイメージのマッピング座標とともにストアされる。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、1997年3月3日に出願された米国特許出願第08/805856号の一部継続出願であり、ここに、その番号を付して本明細書の一部とする。
【0002】
本発明は、顕微鏡スライドのような支持体上の試料からタイル化デジタルイメージを獲得して構築し、ローカルロケーションまたはリモートロケーションにいる他のユーザがビュー(view)するため、このイメージを転送する方法および装置に関する。
【背景技術】
【0003】
米国特許第4741031号に開示されている組織切片からのDNAの画像分析と定量化、特に、Bacusに発行された米国特許第5086476号、5202931号,5252487号に開示されている種類の細胞分析システムについての免疫組織化学分析では、まず、低い倍率で分析対象のガン領域の位置を突き止め、次に高い倍率で分析を実行する時にその領域を覚えておかなければならないという問題があった。高解像度/高倍率で比較的平坦な平面内にある対象を撮像し、ディジタル式に記録するニーズや要求がある。
【0004】
上記出願に記載された発明は、比較的平坦なプレーン(plane)内のオブジェクトを、高解像度/高倍率で、イメージングしデジタル記録するという要求および要件を満たしている。今日、例えば、顕微鏡のスライド上の試料のイメージ区域全体を、必須の解像度でカバーできる程度の大きさの光学イメージセンサを作成することは実際的ではない。というのは、拡大された対象の視野の大きさと、その結果得られるイメージが、レンズサイズおよび解像度/倍率という課題により制限されるからである。顕微鏡を通して観るということは望遠鏡を通して観ることと似ていて、人間が1.25倍のような低倍率で非常に狭い視野を見るようなものである。病理学者は、顕微鏡を使用している最中に、スライドをスキャンして全体のビューを想像したり、試料の構造についてヒントを得たりすることがよくあり、病理学者はこの試料の診察上重要な細片の全体的な位置を忘れないものである。通常、これらは疾患部分、例えば、試料の中でも、悪性部分か、悪性である可能性のある部分である。これらの疑わしい部分について、より高い解像度とより高い倍率を得るためには、病理学者はより高い倍率の対物レンズに切り換えるが、そうすると、視野がさらに狭くなってしまう。病理学者が良く行うことであるが、低倍率の視野の広い対物レンズと高倍率の狭い視野を切り換えて行ったり来たりして、試料に対して自分自身をなじませ、試料の疑わしい領域の詳細で高解像度のビューを獲得している。したがって、ユーザは試料や試料の一部の拡大され圧縮された全体的なビューを得ることはできず、低倍率で獲得された一連のビューを覚えておかなければならない。同様に、高解像度と高倍率では、ユーザは隣接するイメージの集まりを受け取ったり見たりすることはできず、これらの連続したイメージを頭の中で関係付けしなければならない。
【0005】
病理学者はthe Internetやイントラネットを通じて、試料から取られた単一の視野の拡大画像を、自分のブラウザ上で受け取ることになるため、同様の問題がthe Internetやイントラネット上にも存在する。病理学者には、高解像度のビューと低解像度のビューをコーディネートするための説明を提供する必要がある。
【0006】
病理学者にとって利用可能なビューの数は非常に限られており、他のビューを選択することも、自分が最も関心のある領域の近くにあるビューへスクロールすることもできない。
【0007】
上記従来の出願により開示された方法および装置によれば、低倍率で全体的にデジタル化された試料全体のイメージビューか、スライド上の試料の選択された部分、例えば、ある組織の基礎層を人間が構築することができる。全体的な低倍率のデジタル化画像から、ユーザは、現在、自分が見ているもののどこに位置しているかと、次にどこを観察する必要があるかを理解することができる。すなわち、低解像度の全体ビューは、全体的にカラー表示され、経験豊富なユーザにスライドの視覚的な全体ビューまたはサムネイルビューを与え、ビューされている試料イメージ上のある位置に発現する悪性腫瘍およびその他の疾患についての当該の領域を示す。この低解像度の全体的なビューは、ユーザが、高倍率でビューする必要のある当該点をこのビュー上で選択することを可能にする。
【0008】
この全体ビューは、顕微鏡走査システムによって試料の多数の低倍率イメージを得て、次いで、これらのそれぞれのより小さなビューまたはイメージ(以下、イメージタイルという)を、試料の1つの一貫した低倍率マクロイメージとして組み合わせ調和させることによって構築されていた。ローカルスクリーン上に表示させるか、あるいは、低帯域幅チャネルまたは高帯域幅チャネルを介してリモートビューイングスクリーンに転送させるため、このデジタル化マクロイメージはソフトウェアシステムによって、より小さなサイズに縮小される。
【0009】
上記の従来の出願は、マクロイメージの多数のイメージタイル、例えば、35個のイメージタイルを組み合わせ、次いで、やはりユーザがビューすることになるより高い倍率の一連の他のタイルを得るにはどうすべきかを教示している。この目的を達成するために、定義された当該の領域を選択し、かつ簡単なコマンドによって、選択されたより高い倍率のデジタル化イメージを、ユーザによりビューするためのスクリーン上に表示させるため、カーソルのようなマーカがユーザに用意されている。より高い倍率のイメージは、10倍、20倍、40倍のような幾つかの倍率または解像度のうちの1つでよい。
【0010】
上記出願に開示されたように、病理学者のようなユーザが高解像度ミクロイメージと低解像度マクロイメージを高速に切り換えるか、あるいは分割された別々のスクリーンを生提供することができるのが好ましい。このようにすることにより、病理学者に全体的なマクロビューが示され、病理学者に現在のより高倍率のビューがどこに位置しているかを示すマーカが示される。倍率が複数あるため、ユーザは中間対物レンズどうしを切り換える場合のように中間倍率に切り換えることができる。これによって、顕微鏡内の対物レンズどうしを切り換えること、すなわち、大部分の病理学者が慣れ親しみかつ訓練されている手順に対応するビューが病理学者に与えられる。
【0011】
さらに、上記出願は、病理学者が、完全なタイルビューをビューすることのみに制限されず、隣接する近傍のタイルイメージから隣接するイメージマテリアルをビューすることができるように、ユーザがスクリーン上の拡大イメージに隣接するディスプレイスクリーンに移動することを可能にするスクロール機能もユーザに与える。
【0012】
上記特許出願には、LAN(local area network)またはthe Internetを介し様々なサーバおよびコンピュータを通して低倍率イメージを伝送することが開示されている。伝送されるタイル化イメージは完全コンピュータ制御顕微鏡を使用することによって得られ、このような顕微鏡は、試料全体をデジタル化し記憶しなくても済むように、ユーザが、基礎領域など当該の試料領域に沿って移動するか、あるいは試料全体に広がる他の疑わしいポイントへ移動し、選択された領域のタイル化イメージを得ることを可能にしている。上記出願中の好ましい実施形態で開示されたように、再構築されたマクロイメージタイルをビューするために、病理学者によってリモートロケーションから、the Internetブラウザリモコン式自動顕微鏡を使用することができ、病理学者がイントラネットブラウザまたはthe Internetブラウザを使用して顕微鏡を操作することによって、必要に応じてより高い倍率で単一イメージを得ることができる。何人かのユーザが、特定の病理学者によって得られthe Internetを介して伝送された特定のデジタル化イメージを見て、何人かのユーザが、記憶されているイメージをビューすることができるが、依然として、デジタル化イメージをビューする各ユーザによる顕微鏡の操作に対する制御の問題と、タイル化方法を使用してより倍率の高い大きなイメージ領域を得て伝送することに関する問題があった。
【0013】
既に詳しく述べたように、顕微鏡で得られたディジタル画像の現在のアーカイブの状態としては、写真やビデオテープによって保持することが多い。写真はビデオテープと同じように、特にユーザが様々なイメージの間を素早く行ったり来たりしたい時や、試料のイメージの様々な隣り合った部分をスクロールしたい時には使いにくい。さらに現在のアーカイブ方法では試料の全体的なマクロイメージは得られず、このイメージによってユーザが高解像度のイメージを分析をしている時に特定の高解像度のビューを得た元の場所を正確に知ることがない。
【0014】
ディジタル化されたイメージを磁気的にストアしたり、様々な記録媒体上にディジタル化して記録できる一方で、現在のアーカイブシステムでは、ユーザが高倍率のイメージと低倍率のイメージの間を切り換えることや、あるいは様々な倍率の様々なイメージの間を、病理学者が顕微鏡の対物レンズをリアルタイムで切り換えて試料の上の同じ位置からマクロイメージとミクロイメージを得られるように切り換えることはできない。これまで、病理学の現場では顕微鏡の使用が比較的限られており、特定の試料を検査するために顕微鏡を使用する必要のある病理学者に限られていた。
【0015】
相談相手の病理学者を含む1人以上の病理学者が同じ領域を同時に見て、診断あるいは分析の際に互いにやりとりができるダイナミックなシステムへのニーズがある。また、試料からのイメージをストアでき、病理学者が後日、時間のある時にイントラネットやInternetのブラウザを使用してそのイメージが置かれた特定のウェブサイトにアクセスするだけで簡単にそのイメージを検査できるようなら、最も望ましいであろう。
【発明の開示】
【発明が解決しようとする課題】
【0016】
当然のことであるが、イントラネットユーザまたはthe Internetユーザが、いくつかの隣接する最初の顕微鏡イメージの有用な低解像度マクロイメージおよび高解像度ミクロイメージをそれぞれのモニタ上で観ることを可能にするために多数の問題を解決する必要がある。最初の問題の1つは、隣接するタイルイメージを組み合わせてこれらのタイルのシームレスな全体的なビューを形成するにはどうすべきかということである。現在までのところ、タイルを組み合わせる試みでは、ソフトウェアを使用してタイル境界でピクセルが組み合わされており、このような試みはほとんど失敗している。他の問題は、スライドを保持する顕微鏡ステージの座標、通常はX座標およびY座標から始まる座標のマッピングと、それに続く、1つの倍率のためのみのマッピングではなく、典型的には、1.25倍、10倍、40倍、またはそれ以上で得られるそれぞれの複数の解像度イメージに関するマッピングをコーディネートするためのマッピングでもある走査スクリーン上の座標のマッピングの問題である。これらのコーディネートは、1つのマクロイメージの多数のタイル化イメージ、例えば、1つのマクロイメージに対して40個のタイル化イメージについて維持しなければならない。リモートユーザがこれらのタイルイメージを見て様々な解像度のタイルイメージを切り換えるには、ユーザのコンピュータおよびモニタが、各ピクセルについてのアドレスおよび記憶されたパラメータを受信しなければならないだけでなく、それらをジェネリックビューイングプログラム上でもラン(run)しなければならない。
【0017】
イメージタイルを得て低帯域幅Internetチャネルを介して送信することに関する他の問題は、サーバ上のストレージ要件、例えば、120MBないし1GBと、スライド当たりに得られるデータの量との両方が高くなることである。120MBは、基礎層に沿って高解像度でトレースするか、あるいは乳ガンの分散した疑わしいガン発現領域のみを高解像度でトレースする際に、試料全体のイメージタイルを取り出さず、病理学者によって選択された領域のイメージタイルのみを取り出すだけで得られる。病理学者によるこのような選択的な対話によって、イメージ全体を複数の倍率のそれぞれで撮像する場合と比べてかなり少ない量のイメージタイルを用いてマクロデジタル化イメージおよびミクロデジタル化イメージを構築する場合でも、得られるデータ量は、限られた記憶容量を有する通常のwebブラウザへ狭帯域幅チャネルを介して妥当な時間で伝送するには大きな問題である。粗圧縮技法を使用することができるが、病理学者が試料を診断するために有さなければならない高解像度イメージを与えることを犠牲にしてこのような技法を使用することはできない。
【課題を解決するための手段】
【0018】
本発明によれば、顕微鏡試料からデジタル走査されたイメージを構築し、デジタル走査されたイメージを顕微鏡なしでビューするのに好都合なタイル化フォーマットで記憶し、かつリモートロケーションの他のユーザがビューできるように複数の倍率のタイル化イメージを転送するための改良された新規の方法および装置が提供される。これは、幾つかの隣接する最初の顕微鏡ビューを第1の倍率で組み合わせて試料の全体的なマクロイメージを得て、幾つかの隣接する最初の顕微鏡ビューをより高い倍率で組み合わせて結合データ構造を作成することによって行われる。ついで、このデータ構造をリモートビューアへ転送し、スライド試料上の領域の複数解像度のマクロイメージおよびミクロイメージをこのビューアに供給することができる。データ構造は、マッピング座標を含む低倍率イメージをデジタルにスキャンしストアし、マッピング座標を含むより高い倍率のイメージを同様にデジタルにスキャンしストアすることによって構築される。さらに、病理学者は、デジタルにスキャンし、ストアされる試料の診断上重要な領域のみを対話的に選択し、高解像度でストアされるイメージピクセルの数を著しく削減することができる。
【0019】
データ構造をInternetまたはイントラネットを介して伝送し、複数のユーザが、それぞれ、試料のユーザ独自のバーチャルイメージを使用して特定の顕微鏡上で診断することを可能にすることができる。これらのユーザはそれぞれ、種々の解像度のビューを得るために、対物レンズを互いにシフトさせる際と同様にして、種々の解像度のイメージを切り換えることができる。しかし、本発明の好ましい実施形態は、ユーザがより高い解像度のイメージの位置をストアしなくても済むように、より高い解像度のイメージが試料上のどこに位置しているかをリモートユーザに示す全体的なマクロビュー上にマーカを提供する。現在得られる単一の小さな光学ビューとは異なり、各イメージが1つの小さな光学ビューとほぼ等しい一連の互いに当接されたタイル化イメージがリモートユーザに与えられる。
【0020】
したがって、単一のタイル化イメージと同じ倍率で得られた単一の小さな光学ビューよりも良好で大きなマクロタイル化イメージおよびミクロタイル化イメージがリモートユーザに用意されている。
【0021】
好ましいデータ構造は、リモートユーザがユーザのブラウザ上でタイル化イメージを処理し解釈することを可能にする汎用表示プログラムも備える。このジェネリックな表示プログラムには、種々のコンピュータ、ブラウザ、およびモニタと共に使用できるそれ自体の表示解釈プログラム(interactive program)が組み込まれる。データ構造は、選択的に圧縮されたデータを使用して、得られる大量のデータ、例えば120MBを少量のデータ、例えば1.4MBに削減する。
【0022】
リモートの病理学者の分析を妨げる解像度を損なわずに、Internetのような低帯域幅チャネルを介して、このようなより小さくより管理可能な量のデータを伝送することができる。さらに、この対話型プログラムは、病理学者がスクロールする可能にし、かつ上記出願および本出願に記載された発明まで病理学者が得ることのできなかった近傍のイメージタイルの近傍のイメージ領域をビューすることを可能にする。
【0023】
本発明の態様を詳しく参照するとわかるように、顕微鏡スライド上の試料のタイル可能な(すなわち、互いにシームレスに当接させて最初のイメージを種々の倍率で再生することのできる連続イメージ)複数のイメージを獲得することに関する問題は、本発明のシステムによって解消される。このシステムは、顕微鏡およびステージを含み、ステージ上のデジタルロケーションは、電気機械的にアドレス可能な座標系(都合上、X−Y)に従って予め定められている。ステージ上の各点には、そのロケーションを一意に定義するX座標およびY座標が割り当てられる。X方向およびY方向のそれぞれのインクリメントは、定義済みの量、例えば、0.1μmインクリメントに対して確立される。試料イメージの優れた解像度をより高い倍率で達成する上のキーファクタは、イメージセンサおよび所期のディスプレイの各ピクセルについて、ステージ上でより多くの物理的インクリメントを確立することである。例えば、本明細書に記載されたビットマップアドレス指定スクロール可能イメージ法を使用する場合、1.25倍の倍率では、ステージ上の64個の点がCCD光学センサ上の1個のピクセルに対応し、このピクセルは、(VGAディスプレイ用の)640×480モニタ上の1個のピクセルに対応する。
【0024】
一度、顕微鏡ステージに関して座標系を定義し、顕微鏡スライド上の試料をステージ上に配置すると、スライド上の注目フィーチャをそれぞれステージに対して一意に位置付けることができる。ついで、顕微鏡システムを使用してイメージをデジタルにスキャンする。第1のスキャンは比較的低い倍率で行われる。これは、このイメージを使用して試料全体の「マクロ」イメージが獲得されるからである。好ましい実施形態では、1.25倍の倍率が使用される。ついで、顕微鏡システムは1.25倍の対物レンズを使用してスライドをスキャンする。イメージがCCDグリッド内の光学センサのような矩形光学センサによって検出されるので、ステージを比較的大きなインクリメントで移動させ、スライドの隣接する物理部分を、この矩形領域がCCDセンサ上に厳密に撮像される領域に厳密に配置しなければならない。
【0025】
移動する領域は比較的大きいが、CCDセンサのピクセル解像度内での各イメージ部分の位置合わせを可能にするために、精度は高くなければならない。例えば、1.25倍の倍率では、ステージ上の試料対象をCCDセンサ上で光学的に撮像するために、新しい連続する領域へ移動させるには、48143個のXステップおよび35800個のYステップが必要である。この場合、CCDグリッド内の光学センサによって生成された信号はコンピュータへ伝送され、コンピュータはイメージ信号を一連のタイル化イメージとしてストアする。各イメージフレームが所定のX−Y座標によって定義されるので、これらのイメージを容易に、一連の連続するタイル化イメージに変換することができる。
【0026】
コンピュータは、スキャンされたデジタルイメージをモニタ上に表示するときに、タイル化イメージの全体的なサイズ、例えばこの例では、10×8に対応するイメージビットマップを予約する方法を使用し、1.25倍のタイル化イメージを獲得する。この場合、752×480ピクセルCCDセンサを使用した場合には、サイズが7520×3840のイメージビットマップが必要である。各イメージタイルについて、各タイル中の各ピクセルについてX−Y座標がわかっているので、ビットマップを使用して、ストアされているイメージタイルをコーディネートさせ表示し、スクリーンピクセルとイメージピクセルを1ピクセルずつ対応させてイメージの合体マクロビューを表示することができる。通常、スクリーンピクセルのX−Yサイズはマクロタイル化イメージよりも小さく(すなわち、ある種のイメージ圧縮なしにモニタ上でイメージ全体をビューすることはできない)、この場合、マクロタイル化イメージはスクリーンの表示可能なウィンドウセグメント上でスクロールされ、1対1の対応が維持される。1対1の対応の利点は、ユーザが顕著なイメージディテイルを使用できることである。さらに、イメージピクセルとのステージ座標関係を介して試料上の物理的X、Y位置がわかっているので、タイル化マクロイメージを使用して領域を突き止め、より高い倍率のタイル化イメージの集まりからこの領域へステージを移動させることができる。
【0027】
光学系すなわちレンズの性質として、レンズにより得られるイメージは、イメージの中央領域が鮮明で、イメージの周縁部がファジーなほぼ円形のイメージであるので、顕微鏡システムは、光学イメージの中央にある高解像度イメージ部分のみをスキャンするようにスライド上の種々の位置に段階的に移動するように構成されている。ファジーな周縁領域は破棄される。このことにより、一度、ユーザがモニタ上でビューされるようにタイル化イメージが再構築されると、高解像度イメージが確保されるという利益も有する。
【0028】
マクロイメージが完成した後、顧問病理学者のような訓練された専門家が、マクロイメージをビューして注目領域を探すことによって、試料のイメージをビューする。一般に、大部分の試料スライドは、診断上重要な少数の小さな領域のみを含む。スライドのバランスにはほとんど意味がない。顧問病理学者がスライドをビューする際、幾つかの領域における、より高い倍率でビューされ分析される注目領域が既にマーク付けされている可能性がある。一度、このような領域がマーク付けされると、顕微鏡は所望の高倍率に設定され、ついでマーク付けされた領域がスキャンされストアされる。あるいはまた、病理学者は、マクロイメージ上に直接、新しい領域を画定することができる。どちらの場合でも、それらの領域は、マウスのようなポインティングデバイスを使って、マクロイメージを表示する表示ウィンドウ上に直接輪郭が描かれる。上記で1.25倍イメージに関して説明したように、ステージは定義済みの座標系を有するので、スキャンされた高倍率のイメージ部分をマクロイメージに対して容易に突き止め、一連のミクロイメージを作成することができる。
【0029】
典型的な顕微鏡試料スライドが限られた注目情報しか含まないことと、本発明を実現するシステムの、そのような領域を正確に突き止める能力とによって、システムは、バーチャル顕微鏡スライド、すなわち、実際の試料スライドの代わりに使用できるデータ構造を作成することができる。このため、都合の良いことに、複数のユーザが特定の試料を診断することができる。また、データ構造のサイズが削減されるので、データ構造をパーソナルコンピュータ上でローカルにビューし、イントラネットを介して伝送するか、あるいはInternetを介してグローバルに伝送することができる。作成されたデータ構造は、種々の記憶装置または記録媒体、例えば、サーバのハードディスク、Jazzドライブ、CD−ROM等上にストアすることができる。さらに、データ構造をポータブル記憶媒体上にストアすると、複数のユーザによって顕微鏡スライドデータ構造を転送しアーカイブすることができる。
【0030】
本発明の他の特徴は自己実行型データ構造である。これは、アクティブな動的制御プログラムを用いてタイル化イメージをパッケージングすることによって得られる。一般的なwebブラウザのような表示プログラムによってアクティブな動的制御プログラムが使用されると、ブラウザはこの動的制御プログラムを解釈することができる。この場合、ユーザは対話を行い、記録媒体からのイメージであってビューアによりスクリーン上でビューされるイメージを制御することができる。具体的には、本発明の好ましい実施形態では、多数の低倍率デジタル化タイル化イメージがデータ構造中に形成され組み込まれ、リンク情報が、これらのタイル化イメージを表示中に適切にタイル化してマクロイメージを形成することを可能にし、一連のより高倍率のタイル化イメージも同様にミクロイメージとして構築され、JAVAアプレットのような制御プログラムが生成され、リモートユーザが使用できるようにマクロタイル化イメージおよびミクロタイル化イメージと共に転送される。したがって、例えば、アクティブ制御プログラムを含むマクロタイル化イメージおよびミクロタイル化イメージをInternetまたはイントラネットを介してブラウザか、イメージを表示する他のアプリケーションプログラムへ伝送することができ、ついで、ユーザがブラウザにアクセスし、複数の解像度で、ユーザの前のマクロビューを用いてイメージを分析することができる。これによって、光学顕微鏡を使用する場合と同様にイメージをビューすることができるが、この場合、視覚的には、ビューは複数の解像度のバーチャル顕微鏡スライドのビューである。
【0031】
また、本発明によれば、構築されたタイル化マクロイメージおよびタイル化ミクロイメージを制御プログラムとともに、webサーバ上に配置することができ、これらのイメージにWAN(wide area network)を介してローカルにアクセスし、場合によっては、種々の時間に、複数のユーザによってグローバルにアクセスすることができる。例えば、300個の試料スライドなど、多数の既にスキャンされストアされた試料スライドのそれぞれのミクロタイル化イメージおよびマクロタイル化イメージを、サーバ上に配置することができる。ついで、医学部または病理学部の学生は、それぞれ、スライドまたは全ての300個のスライドにアクセスし、都合の良いときに、それぞれのwebブラウザ上で調べることができる。同様に、病理学者はダイヤルアップを行うか、あるいはその他の方法でInternetサービスプロバイダを介してInternetまたはその他のロングレベルネットワークに接続し、webサーバにアクセスし、特定の患者の試料結果を得ることができる。このような結果は(マクロタイル化イメージおよびミクロタイル化イメージを制御解釈プログラムとともに含む)データ構造としてストアされている。ついで、病理学者は、顕微鏡や特定のスライドを有する必要も、あるいはそのようなスライドを制御する必要もなしに、家庭または事務所で分析を行うことができる。病理学者は、ミクロイメージとマクロイメージを切り換え、ついで、ストアされているこれらのイメージから自分の分析、結果、または診断を指示するか、あるいはその他の方法で準備する。これによって、都合の良いことには、病理学者は都合に応じて家庭または事務所で自分の仕事の一部を行うことができ、研究所は、リモートロケーションでの顕微鏡検査のために、スライドを出荷する必要はなく、損傷を受ける恐れのない安全なロケーションに、実際の試料スライドを維持することができる。
【0032】
制御プログラムは、本発明の好ましい実施形態では、JAVAアプレットのような動的自己実行型プログラムであり、ユーザがブラウザ上にいる間にイメージを処理し解釈するのを可能にする。この動的自己実行型プログラムは、独自のディスプレイと、ブラウザのユーザによるオペレーションのための解釈プログラムとを有する完全な自己独立型(self-contained)プログラムである。タイル化デジタル化イメージおよびアクティブ制御プログラムを、CD−ROMまたはその他のポータブル記憶媒体上にストアし、メールを介すか、あるいはその他の方法でユーザへ転送し、ユーザの都合の良いときに、専用ビューアを用いて調べることができるので、本発明は、ブラウザ上での使用に制限されない。
したがって、前述のことから、種々のマクロイメージおよびミクロイメージの表示および解釈を可能にするアクティブ制御プログラムとともに、顕微鏡スライド情報を記憶媒体上にアーカイブするための改良された新規の方法および装置が提供されることがわかる。
本発明の他の重要な態様によれば、自己実行型データ構造(ストアされているマクロイメージおよびミクロイメージ、ならびにストアされているイメージを表示し、再構築し、処理する自己実行型プログラム)、および表示されたイメージをスクロールする能力が提供される。このため、ユーザは、あるイメージタイルを特定の倍率でビューすることができるだけでなく、ポインタまたはその他の方法を使用して点を移動させ、以前はビューすることのできなかった隣接する近傍のイメージタイルの表示イメージを、ユーザが見ているビューに含めることもできる。すなわち、ユーザは、ビューイングロケーションをタイル境界を横切って、あるタイルから別のタイルへ、上下左右に、あるいは他の注目点へ、通常の二次元スクローリング方法でシフトすることができる。したがって、ユーザには、アーカイブされストアされたスライドが複数の倍率で表示され、このスライドを、任意選択された方向へ容易にスクロールすることができる。上記出願と同様に、ユーザは、対話によって、選択された種々の領域に移動し、ポインタまたはマーカを操作して特定の注目領域を表示する高い倍率を選択し、また、注目近傍領域をスクロールすることもできる。
【0033】
Internetブラウザだけでなく、例えばJAVAアプレットやACTIVE-Xアプレットのような動的自己実行型プログラムを使用して、データイメージを表示し、再構築し、処理することができる。データ構造上のデータイメージとリンクされた動的自己実行型プログラムを使用することの利点は、ユーザのコンピュータのOS(operating system)とは独立にデータイメージを表示し、再構築し、処理することができることである。また、動的自己実行型プログラムの最新バージョンは、既に、データ構造または記憶媒体上のデータイメージとリンクされ、このデータイメージとともに供給されているので、ユーザが最新バージョンを得る必要はない。したがって、ユーザは、常に、種々のプログラムバージョンにかかわらずデータイメージをビューすることができる。
【0034】
この動的自己実行型プログラムは、通常の機械式光学顕微鏡ビューにおいて対物レンズを変更することの視覚的効果をシミュレートするイメージ全体の交換を可能にする。したがって、ユーザは、容易に、ある倍率から他の倍率に切り換え、イメージの各部をスクロールし、顕微鏡レンズ下でスライドを移動させることによってイメージのトレースをシミュレートすることができる。
【0035】
この動的自己実行型プログラムは、ウィンドウ内のイメージのスクロールを可能にし、再構築された大きなビューイメージの表示を可能にする。ユーザは、マウスまたは他のポインティングデバイスを使用して大きなビューイメージ上のイメージの一部を選択することができ、プログラムは、選択された部分を他のウィンドウに所望の倍率で表示する。
【0036】
イメージタイルを使用して顕微鏡スライド上の試料のデジタルイメージのレコードを構築する方法は、ほぼ全ての試料が得られるようにイメージを第1の低倍率でスキャンすることを含む。ついで、試料の選択された(あるいは全ての)部分のイメージが得られるように、試料が第2の高倍率でスキャンされる。第1の低倍率のイメージと第2の高倍率のイメージとの空間関係を使用して、表示中にイメージが再構築される。スキャンされたメージの個々の部分またはタイルは、動的自己実行型プログラムによって組み合わされ、タイル化なしで個々に得られるイメージビューよりもかなり大きなデジタルイメージ領域が作成される。
【0037】
本発明によるデータ構造は、まず所望の試料を複数のイメージ倍率でデジタルにスキャンすることによって作成される。ついで、スキャンされたイメージが一連の連続するイメージタイルにストアされる。ついで、記憶イメージを動的自己実行型プログラムとリンクする。ソフトウェアプログラムを使用してデータ構造を作成することができる。イメージは好ましくは、まずビットマップファイル(.bmp)としてストアされる。(結果として得られたイメージファイルをビットマップフォーマットでストアすることは、本明細書に記載されたイメージファイルを作成するビットマップ方法とは異なる。)イメージ圧縮プログラムを使用してビットマップフアイルをJPEG(.jpg)フォーマットに変換する。この場合、必要な記憶空間が小さくなり、したがって、コンピュータ上の表示する必要のある時間が短くなる。データ構造を作成する人は、どれだけのディテイルを変換に含めるかを選択することができる。JPEGイメージは、例えば、最初のイメージの20%から80%の圧縮比を使用して作成することができる。JPEGフォーマットの利点は、ほぼ空のタイル(ほぼ白または黒の空間を有するタイル)が非常に小さなファイルに圧縮されることである。しかし、詳細なファイルはそれほど圧縮されない。また、この動的自己実行型プログラムは、イメージ全体またはその各部を表示ウィンドウに表示する圧縮アルゴリズムを含むことができる。
【0038】
データ構造を記憶媒体上にダウンロードするかインストールした後、ユーザは、データイメージをビューする必要があるときに、マウスを使用して、自己実行型データ構造用のアイコンを「クリック」する。この動的自己実行型プログラムはイメージをウィンドウ内に表示する。典型的には、この動的自己実行型プログラムは、試料イメージ全体のマクロビューまたはサムネイルビューをより低い倍率で表示するとともに、特定のイメージタイルまたは一群のタイルを含むより小さなウィンドウをより高い倍率で表示する。この動的自己実行型プログラムは、ユーザがマウスまたは他のポインティングデバイスを使用して点を選択するか、あるいはサムネイルビュー上のある領域を示すことを可能にする。ついで、選択されたビューがより小さなウィンドウに第2の倍率で表示される。ユーザはマウスまたはポインティングデバイスを移動させることができ、より小さなウィンドウ内のイメージは、サムネイルビュー上の選択に応じてスクロールする。このようにして、この動的自己実行型プログラムは、機械式顕微鏡のビューの下で顕微鏡スライドの移動をシミュレートする。しかし、CCDピクセルとスクリーンピクセルが1対1で対応するため、モニタ上に全てのマクロイメージを表示できるわけではないことに留意されたい。ユーザは、マクロイメージをスクロールするか、あるいは圧縮機能を選択してマクロイメージ全体をウィンドウ内の表示することができる。
【0039】
自己実行型データ構造の他の特徴は、ディスプレイスクリーン上にイメージが表示されたときに、ユーザがイメージタイルまたはイメージの一部を選択するか、あるいは選択された各倍率でイメージのこの部分をビューすることができることである。例えば、1.25倍、20倍、および40倍の倍率でデータをスキャンした場合、ユーザは「クリック」によって同じタイルをこれらの倍率のそれぞれで代わるがわるビューすることができる。
【発明を実施するための最良の形態】
【0040】
図1は本発明に係るシステムを示すブロック図である。これは、バーチャル顕微鏡スライド、すなわち、相互に関係付けをしたデータ構造を作成し、このデータ構造をイントラネットまたはInternetを介して伝送するシステムの例である。
【0041】
また、図1は顕微鏡スライド上の試料のイメージを複数の解像度で表示する表示手順を示す。このシステムには、顕微鏡が含まれており、この顕微鏡は顕微鏡スライドを支持するデジタルプラットフォームを有する。デジタルプラットフォームまたはステージ11は、試料イメージの各部を高精度に位置合わせするため、多数のインクリメント(increment)を含むように特別に較正してある。顕微鏡セットアップでは、ステージ11を較正し初期位置合わせ(registration)をした後、スキャン試料を有する顕微鏡スライドまたはその他のサブストレートが、ステージ11上に配置される。
【0042】
本発明に係るバーチャル顕微鏡スライド試料の例として、乳ガン試料を作成する例を説明する。本発明によってデータ構造を作成する第1のステップでは、試料全体(または、マクロイメージとしてストアする必要のある試料の部分)のマクロイメージを確立する。このマクロイメージか、大区域のサムネイルイメージを作成する目的は、ビュアーが一度に試料全体をビューすることができることにあり、また、高倍率でビューするため、イメージ全体を使用して当該イメージ上の有意な部分を選択することができるようにすることにある。この例では、当該ユーザが乳ガンスライド全体を表示するために選択した倍率は、1.25倍である。一度、ステージ11上に試料13aが配置されると、回転光学アセンブリ15が回転され、1.25倍の倍率に対応するレンズ17が選択される。
【0043】
従来の特許出願の教示によれば、コンピュータ制御顕微鏡が移動され、試料13aのイメージ全体がスキャンされる。このフォーカシングシステムはビュー周辺のファジーな領域をストアするのを避けるため、ビューの中央部の高解像度領域のみを検出/選択するインクリメントをステッピングするようにプログラムされている。この例では、マクロイメージは、図1aに示すように、10×8アレイ、すなわち、合計で80個の連続するイメージタイルとしてストアされることになる。
【0044】
典型的な顕微鏡スライドは約77mm×25mmであり、ラベルを含まない使用可能な領域は約57mm×25mmである。これら80個のイメージセグメントは、それぞれ、サイズが約4.8mm×3.5mmである。このことは、80個のイメージセグメントがそれぞれ別々にスキャンされ、別々のイメージタイルとしてストアされることを意味する。
【0045】
この顕微鏡システムの精度は、モータの各ステップの精度が0.1μ(μm)になるようにセットアップされる。この例では、顕微鏡は、80個の各イメージ区域について、1.25倍の倍率で、X方向に48,143ステップだけ移動し、Y方向に35,800ステップだけ移動するようにセットアップされている。
【0046】
高倍率では、スキャンイメージ区域はかなり小さく、したがって、スキャンイメージ区域のサイズに応じて、ステップ数は少なくなる。これら80個のイメージ領域は、それぞれ、ビューの中央部分の高解像度領域のみが顕微鏡レンズにより検出されることになる。
ついで、所望のイメージ区域の光学イメージが、光学アレイセンサ19(好ましくは、CCDセンサアレイ)によって検出される。この例では、これら80個のスキャンされた区域が、それぞれ、この光学アレイ全体で検知され、このアレイは752ピクセル×480ピクセルを含む。この光学アレイセンサは、検出されたイメージを表す電気信号を顕微鏡制御コンピュータ32へ送信する。コンピュータ32はスキャンされたイメージをストアする。このスキャンされたイメージには、顕微鏡スライドの80個の個々の区域に対して、左上X−Yステージ座標が含まれる。80個のスキャンされたイメージ区域のピクセル位置は、それぞれ、ビットマップファイル(すなわち、当該区域内の各ビットの位置のマップを含むファイル)にストアされる。このビットマップファイルはイメージ区域上の個々のイメージのレイアウトに対応している。したがって、コンピュータメモリのビットマップファイル(図6)中の一意の位置が、図1Aの領域A、すなわち、一番上の行の左から7番目の領域から取り出されるイメージタイルの全ピクセルに個別に割り当てられる。この取り出されたイメージタイルの全ピクセルは、図1Bに示すように、データ構造イメージタイルファイルにもストアされる。
【0047】
これらストアされたデータイメージタイルは、それぞれ、拡張子.bmpを有する標準イメージファイルであって、1MBのオーダである。すなわち、752×480個のピクセルが3byteの赤、緑、青のイメージデータとしてストアされる(752×480×32=1,082,880byte)。各イメージタイルの位置はビットマップによって分かるので、当該完全な顕微鏡イメージは、各イメージタイルのグリッド位置に従って、各イメージタイルをペイント(表示)することによって再生することができる。このことは留意されたい。
【0048】
得られたイメージを表示するため、コンピュータ32はディスプレイスクリーンの相対的なサイズに応じて、表示される適正な部分を各イメージタイルから計算する。ストアされたイメージデータは、通常、典型的なモニタのサイズよりも大きいので、ビュアーはイメージデータ全体をビューするときは、ウィンドウ上でイメージをスクロールしなければならない。しかし、イメージ全体を圧縮してビューイングウィンドウにするのに、任意選択の圧縮アルゴリズムを使用することができる。X−Y座標情報は、イメージタイルを再構築して試料の完全なイメージとするため、ビューイング処理プログラムによって使用される。得られたイメージは、もし、1つのビュー内で試料全体をビュー可能な単一のレンズが、光学技術によって構築されたとしたら、その単一のレンズにより得られるイメージより大きく、その解像度は良い。この例では、80個のイメージタイルはそれぞれデジタル解像度が752×480ピクセルであり、対応する光学解像度は40倍での約0.2μから1.25倍での約6.4μまでである。
【0049】
マクロイメージまたはサムネイルがデジタルにスキャンされ、そのX−Y座標情報ととにストアされた後、ユーザにより、マクロイメージまたは最初の試料に有意のディテイルがあるかどうかが調べられる。通常、高倍率でビューされる領域はユーザによりマーキングペンでハイライトされる。ついで、ユーザにより、光学系15の倍率が所望の高倍率に変更され、スキャンシステムが移動され、選択された領域がビューされる。そして、コンピュータ32は選択された領域に対して、スキャンしイメージタイルを作成するプロセスを繰り返すが、そのプロセスは、スキャンされ選択された領域を突き止めるため、高倍率でかつ新しいグリッドシステムを用いて行われる。
【0050】
この例では、ユーザは、高倍率で第2のビューを行うために、図1aの領域Bを選択した。ユーザは、例えば、40倍の倍率を選択する。コンピュータ32は選択された領域を40倍の倍率でカバーするためのタイルの数を計算し、第2のグリッドをセットアップする。
【0051】
ここでは、図1aの領域Bが図1a中のより大きなタイルのうちの幾つかと交差することに留意されたい。この計器の精度が極端に良い精度、すなわち、0.
1μであるため、選択されたこのような領域を高解像度で突き止めることは容易である。既に指摘したが、コンピュータ32はイメージ部分のサイズ、この例では、例えば、X=1500ステッブインクリメントと、Y=1200ステップインクリメントを計算する。40倍解像度での各イメージ部分は、752×480ピクセルの光学センサアレイによって検出される。コンピュータ32が、ユーザからの要求に応じて、領域Bの位置または200個の個々のイメージタイルのうちのどれかの位置を容易に想起できるように、得られた各データファイルはメモリの高倍率マップエリアに別々にストアされる。
【0052】
一度、ユーザが、イメージタイル中のデジタルイメージを選択し、このイメージをコンピュータ制御顕微鏡システムにスキャンさせストアさせることを完了すると、コンピュータ32は、マップされた.bmpファイルをその座標情報とともにストアし、図1のスライドイメージデータ構造31を作成する。スライドイメージデータ構造には、両方の倍率での全てのビットマップイメージタイルファイル(同様に、必要に応じて他の倍率で追加イメージをストアできることに留意されたい)が含まれ、同様に、種々のイメージタイルのロケーションに関する情報が含まれている。
【0053】
図7aはWindows 95ファイルマネージャの下で観察されるようなファイルリスティングであって、乳ガンに対するデータ構造に含まれるデータファイルを示すファイルリスティングである。このファイルリスティングには、FinalScan.iniおよびSlideScan.iniが含まれており、同様に、60個のビットマップデータファイルが含まれている。SlideScan.iniは全てのオリジナルのビットマップ(.bmp)ファイルのリスティングである。これらビットマップファイルは例えば1.25倍の倍率でスキャンされる個々のイメージタイルを表す。SlideScan.iniは次の表1で明らかにしてあり、各イメージタイルファイルに対するX−Y座標を記載してある。乳ガンに対するデータ構造が制御プログラムによりビューされると、その制御プログラムは全てのイメージタイルを連続的に表示するため、X−Y座標を使用する。
【0054】
【表1】

【0055】
【表1A】

【0056】
【表2】

【0057】
【表2A】

【0058】
【表2B】

【0059】
【表2C】

【0060】
コンピュータ32は自己実行型データ構造を作成するため、スキャンされたイメージファイルを使用することもできる。.bmpイメージを圧縮して.jpgにし、しかも、ユーザによるイメージタイルのビュー、再構築、処理が可能な動的自己実行型プログラムを追加することによって、ユーザはこのデータ構造をオリジナルの試料のバーチャル顕微鏡スライドとして使用することができる。この動的自己実行型プログラムは図7bに示すようなJavaアプレットであるのが好ましい。
【0061】
コンピュータ32はスライドイメージデータ構造31を、直接か、あるいは、イントラネットブラウザ33を介して、ローカルビュアー34に供給することができ、あるいは、Internetサーバ38を経由させることができる。図1に示すように、スライドイメージデータ構造37はInternetサーバ38から直接アクセスすることができる。あるいはまた、ユーザはスライドイメージデータ構造を自分のコンピュータ39にダウンロードし、Internetブラウザ43を使用し、再構築されたイメージをビューすることができる。あるいはまた、コンピュータ32はCD−ROMか、jazzドライブか、その他の記憶媒体上に、スライドイメージデータ構造をストアすることもできる。
【0062】
スライドイメージデータ構造31または37をビューするため、例えば、CD−ROMによりデータ構造を獲得したユーザは、まず、このCD−ROMを自分のコンピュータのCD−ROMドライブにインストールする。ついで、ユーザは、このCD−ROM上にイメージタイルとともにインストールされたJavaアプレットをリード(read)することができるブラウザまたはその他のアプリケーションプログラムをオープンする。ここで、個別のブラウザプログラムが不要なことに注意されたい。このCD−ROMが、イメージタイルを表示し再構築し処理する完全なアプリケーションプログラムを含むことができる例もある。この例では、ユーザがスライドイメージデータ構造に関するアイコンリスティングまたはファイルリスティングを選択し、制御プログラムがデータファイルを表示することになる。
【0063】
図2は本発明を具現化したシステムのスクリーンを示す。このスクリーンには、顕微鏡スライド上の試料の低倍率イメージ24が1つのウィンドウ内に示してあり、低倍率イメージのうちの領域マーカ30によって選択された部分の高倍率イメージ26が示してあり、制御ウィンドウ28が示してある。図3は本発明を具現化した装置のディスプレイスクリーンのビューである。このディスプレイスクリーンには、制御ウィンドウ28が示してあり、低倍率ウィンドウ24内に描写された複数の高倍率ミクロイメージ領域310を有する低倍率ウィンドウ24が示してあり、1つ以上のミクロイメージ領域310、314、316を含む高倍率ウィンドウ26が示してある。図4は実際の乳ガン試料のマクロイメージであって、コンピュータモニタ上で観察される1.25倍で表示された図である。図5は図4のグリッド部分のビューであって、病理学者によって選択された領域を40倍の倍率で表示した図である。
【0064】
ここで、図1a中の領域Aが約4.8mm×3.5mmであったことを想起されたい。この領域は、752×480ピクセルの検出データ、すなわち、360,930ピクセルの情報を生成する。各ピクセルは、各位置に関する情報と、この領域が検出したイメージとを、コンピュータへ送る。コンピュータはこの情報を一連のデータファイルにストアする(通常は、.bmpフォーマットであるが、.tifまたは.gifを使用することもできる)。したがって、640×480で動作するコンピュータモニタ上で、それよりも幾倍も多くのピクセルの検出データを使用できることがわかる。イメージ全体をビューする場合、ユーザはイメージタイルをスクロールしなければならない。しかし、スクロールはタイルごとにタイル上で行う必要はない。スクロールはユーザがモニタ上のピクセルを指し示すことによって行なわれる。
【0065】
図6は制御プログラムが、どのように、ストアされているイメージタイルを突き止めスクロールするかを示すブロック図である。図1aの例を使用すると、完全なデータ構造が作成された。ユーザが(顕微鏡スライドの)データ構造を自分のパーソナルコンピュータにロードするか、あるいはInternetブラウザからビューするとき、この制御プログラムはストアされているデータのビットマップを再作成する。図6には、スライド全体のビットマップを示してある。イメージタイルAもハイライトしてある。このビットマップによれば、ユーザはスライド上の位置を指し示すか、あるいはその他の方法で参照することができる。
【0066】
このデータ構造に指定されたX−Y座標情報によれば、特定のイメージタイルと、イメージタイル中の特定のピクセルとのX−Y変換を行なうことができる。
【0067】
この制御プログラムが最初にイメージをロードしたときは、このロードされたイメージファイルが非常に大きいため、ユーザのモニタ上のアクティブウィンドウには、利用可能な少数のタイルしか表示されない。ユーザは自分のマウスまたはポインティングデバイスを使用してアクティブウィンドウをスクロールし、マクロイメージ全体をビューする。マウスによって選択されたX−Y座標情報は、特定のイメージタイルまたはその一部に変換される。コンピュータはマウスポインタ情報を取り出し、ストアされている一連のタイルイメージからイメージデータを検索し、ユーザがビューできるようにモニタ上に表示する。
【0068】
大量のCCDピクセル情報がストアされているので、表示ウィンドウで実際のピクセル情報を再作成することができる。システム全体はループでオペレートし、この場合、ユーザがマウス位置を入力し、コンピュータがこのマウス位置をスクリーン座標(スクリーンピクセル)からビットマップ上のX−Y座標に変換する。
【0069】
同様に、ユーザは高倍率データイメージを選択することができる。このデータイメージは、ストアされている領域を示す黒いグリッドで示してある。ユーザは、前述と同様にしてマウスをオペレートする。この制御プログラムは、ストアされているX−Y座標を突き止め、当該イメージの選択された部分をCCD記憶ピクセルごとに取り出す。
【0070】
既に説明したように、記憶空間を節約するため、コンピュータ32は各イメージタイルファイルに対してデータ圧縮を行うことができる。好ましいデータ圧縮はJPEGであって、JPEGは大部分のInternetブラウザプログラムによって容易に転送され認識されている。JPEGによれば、圧縮されるデータの量を20%から80%まで幅を持たせることもできる。図8はWindows 95ファイルマネージャの下で観察されるであろうファイルリスティングであって、代替データ構造に含まれたデータファイルを示す。このデータ構造では、乳ガン試料に関するデータファイルが圧縮されるか、あるいはJPEG(.jpg)フォーマットに変換されている。ファイルindex.html(表3に示す)は、これらのデータファイルに関するX−Y座標情報を含むリスティングである。これは、イメージタイルをマクロイメージおよびミクロイメージとしてビューし、再構築し、処理するために、動的自己実行型プログラムによりリードされる情報である。
【0071】
【表3】

【0072】
【表3A】

【0073】
【表3B】

【0074】
【表3C】

【0075】
【表3D】

【0076】
【表3E】

【0077】
図面、特に、図9A、図9B、図10を説明する。これらの図には、低倍率顕微鏡イメージと高倍率顕微鏡イメージを合成する装置が示してあり、この装置には、参照番号10が付してある。本システムには、デュアルPentium Proパーソナルコンピュータであるコンピュータ12が含まれており、このコンピュータ12は、Zeiss Axioplan 2顕微鏡16と関係付けをしたHitachi HV-C20ビデオカメラ14と組み合わせてある。カメラ14はLUDLコード化された電動ステージ20上に位置された顕微鏡スライド16を有する顕微鏡16から光をキャプチャし、このカメラ14からの信号を、コンピュータシステム12が受信するできるようになっている。このコード化された電動ステージ20には、コンピュータ12に応答してこのステージを制御するMAC2000ステージコントローラが含まれている。顕微鏡スライド18には、顕微鏡によってビューされる生体試料21が含まれ、この生体試料のイメージは、低倍率と、ユーザによって選択された高倍率との両方の倍率でデジタル化される。この低倍率でデジタル化されたイメージには、解像度が1600×1200の21インチIIyamaビデオディスプレイモニタ22上に表示され、例えば1.25倍の低倍率イメージ24と、例えば40倍の高倍率イメージ26を含む図1ないし図3に示す種類のディスプレイスクリーンと、制御ウィンドウまたはイメージ28とが含まれている。この低倍率イメージによれば、高倍率のスクリーンまたはウィンドウ26内に高倍率で再生される領域30が、この低倍率イメージ内で識別される可能性があったかもしれない。低倍率イメージ内で領域識別が行われると、病理学者またはシステムの他のオペレータは、当該構造領域を低倍率イメージ24で検討し、同時に、当該構造領域を高倍率のスクリーンまたはウィンドウ26内に高倍率で表示し、構造的特徴(architectual feature)の一部を形成する細胞が、ガンのようなものであるかどうかをさらに検査する必要があるかどうかを判定することができる。
【0078】
コンピュータ10はPCIシステムバス40の周りに構築され、PCIシステムバスに接続された第1のPentium Proマイクロプロセッサ42と第2のPentium Proマイクロプロセッサ44を有する。システムバス40には、PCIバス50およびISAバス52が接続してある。PCIバス50には、情報をハードディスク62との間で送受信するためにSCSIコントローラ60が接続してある。ハードディスク62は高容量リムーバブルディスクおよびCD−ROMドライブ66とデージーチェーンSCSIで結合してある。ハードディスク62にストアされているプログラムは、顕微鏡16を制御し、イメージを処理するとともに、スライド18上でビューされている組織試料の選択された部分の定量分析を行うように、システムをオペレートするためのものである。システムバス40には、RAM70と、ROM72とが接続してある。RAM70には、実行されているプログラムの一部がストアしてある。ROM72はブートストラップローダを保持するためのものであり、同様に、BIOS(basic input/output operationg system)の一部を保持するためのものである。フロッピィディスクコントローラ74がシステムバス40に結合してあり、フロッピィディスクドライブ76に接続してある。フロッピィディスクコントローラ74は必要に応じてフロッピィディスクから情報を読み取り、フロッピィディスクに情報を書き込むものである。マウスコントローラ80がシステムバス40に結合してあり、マウスを有する。このマウスは、スクリーン22上並びにウィンドウ24、26、および28内で、処理を制御するポインティングデバイスとしてオペレートする。キーボードコントローラ90がシステムバス40に接続してあり、キーボードコントローラ90にはキーボード92が接続してある。キーボード92は、コンピュータの他の部分との間で、英数字信号を送受信するために、使用することができる。
【0079】
オーディオコントローラ100には、オーディオ入出力用に複数のスピーカ102および1つのマイクロフォン104が接続してあり、オーディオコントローラ100はシステムバス40に接続してある。ネットワークインタフェースカード105のようなネットワークインタフェースがシステムバス40に接続してあり、このネットワークインタフェースは、システムを接続できるネットワークか、Internetの他の部分にチャネル106を介して信号を供給することができる。同様に、ISAバス52に接続されたモデム110を介して、本システムから信号を送信することができ、本システムからの信号を、チャネル112を介して、例えばInternetへ信号を送信することができる。プリンタ116がパラレルI/Oコントローラ118を介してシステムバスに接続してある。これは、スクリーンおよびその他の情報が生成されたときに、必要に応じて、この情報をプリントアウトするためである。シリアルI/Oコントローラ122がシステムバス40に接続してあり、シリアルI/Oコントローラ122に、カメラ内のCCDセンサ126に結合されているカメラコントローラ124が接続してある。CCDセンサ126は、スライド18上で見出されたものを表すピクセル信号またはイメージ信号を、Epix pixciイメージ獲得コントローラ130に供給する。Epix pixciイメージ獲得コントローラ130はPCIバス50に結合してある。
【0080】
顕微鏡16には、ベース140が含まれていて、このベース140にステージ20が支持されており、同様に、顕微鏡16には、複数の対物レンズ144、146、および148を有する対物レンズタレット142が含まれている。例えば、対物レンズ144は1.25倍対物レンズでよい。対物レンズ146は20倍対物レンズでよい。対物レンズ148は40倍対物レンズでよい。カメラセンサおよびコントローラからの信号は、バス128を介してイメージ獲得システムに供給され、イメージ獲得システムによりデジタル化され、PCIバスに供給され、RAMにストアされるか、あるいはハードディスク62にバックアップされる。
【0081】
スライド18上に試料があるとき、コンピュータの制御の下、シリアルI/Oコントローラ122に結合されたステージコントローラ160によりステージ20を処理することができる。同様に、顕微鏡コントローラ162は顕微鏡のアスペクト(aspect)、例えば、ランプ168の照度、色温度、スペクトル出力を制御する。例えば、通常のオペレーションでは、スライド上に試料が配置されると、図11に示すように、ステップ200で、ステージ20上に試料スライド18が配置され、ステップ202で、プロセッサ42または44がシステムバスを介してコマンドを発行して、シリアルI/Oコントローラ122によって顕微鏡コントローラをシグナリングさせ、倍率を1.25倍に変更させる。この倍率変更は、Axioplan 2顕微鏡の対物レンズタレットを回転させ、対物レンズ144を選択することにより行われる。同様に、顕微鏡コントローラは、ランプ168の色温度を設定し、一対の中性灰色フィルタホィール170および172をセットし、正しい照度が得られるようにフィールドダイヤフラム174を設定する。コンデンサダイヤフラム176も制御され、カメラ内のCCDセンサ126に適切なフィルタカラーを供給するように、カラーフィルタホィール180を制御することもできる。ついで、ステップ204で、当該スライド全体がスキャンされる。イメージがタイル化され、それぞれ結合され全体的なイメージ24とされ、このイメージがスクリーン22上に供給され、ステップ206で、当該のスライドの関連領域の視覚的に検査できるマクロイメージが、オペレータに表示される。
【0082】
拡大イメージを供給するために、マウスを移動させて、マーカセグメントまたはマーカ領域を識別することができる。このマーカセグメントまたは領域は、例えば、矩形の領域とすることができる。このマウス移動により、ステップ208と同様に、タレットを回転させ、適切な対物レンズシステムをビューイングポジションに運ぶので、顕微鏡の倍率を4倍、20倍、40倍等に変更させることになる。
【0083】
次に、ユーザは、ステップ209aで、マウスを使用して、マクロイメージ上の領域を選択し、スクリーン22上でビューされるミクロイメージを選択する。
【0084】
ユーザが検査の継続を命令したかどうかを判定するために、ステップ209bで、試験が行われ、ユーザが試験の継続を命令している場合には、ステップ209cで、試験が行われ、選択される対物レンズを変更することによって倍率を変更するかどうかが判定される。倍率を変更する場合、制御がステップ208に移行する。倍率を変更しない場合は、制御はステップ209aに移行する。検査を継続しない場合は、ステップ209dで、選択された領域がより高い倍率でスキャンできるようにアウトライン(outline)させる。ステップ209eで、スクリーン26に表示するため、より高い倍率のイメージをスキャンするか、あるいは獲得するためのコマンドを受け取ることができる。ついで、そのイメージを後で分析するためにアーカイブするか、表示するか、あるいは、直ちに分析することもできる。
【0085】
ステップ208で要求された倍率をパフォームするため、顕微鏡の全体的な照明および制御が制御されることになり、その結果、ステップ210で、スライド18上により高い倍率の対物レンズが位置されるように、対物レンズタレット142が回転される。選択された対物レンズに対して予め定めた適切な照度および色温度が与えられるようにランプ168を調整するため、ステップ212で、ランプの印加電圧が変更されることになる。選択された対物レンズに適正な照度を与えるため、ステップ214で、コンデンサダイヤフラム176は必要に応じて適正に選択された開口を有することになる。ステップ216で、フィルタタレット180はカメラセンサに供給される適正な光波長フィルタを選択する。特に、試料が汚れている場合は、必要に応じて、例えば、赤フィルタ、青フィルタ、または緑フィルタが選択される。ステップ218で、フィールドダイヤフラム174は開口を変更させることになる。ステップ220で、中性灰色フィルタホィール170により中性灰色フィルタが選択され、ステップ222で、中性灰色フィルタホィール172により中性灰色フィルタも選択される。ステップ224で、Xオフセット、Yオフセット、およびZオフセットを使用して、記録されているイメージがこの倍率で再構築され、ステップ226で、精度が0.10μのステージ内のエンコーダから現在位置がリードされる。
【0086】
選択された領域を識別するために、図14に示すステップ240におけるポインティングオペレーションにより、マウスがこの領域に移動される。選択された領域の周りにボックスを描画するように、マウスを移動させることができる。ステップ242で、選択された領域のエッジに対して、Xスクリーン点およびYスクリーン点が計算され、顕微鏡のステージを制御するために、計算されたイメージ点またはピクセル点がステージ座標点に変換される。ステップ244で、当該対物レンズに対してステージを位置決めするため、全てのXフィールドのリストがRAMにストアされ、ハードディスク上にバックアップさせることができる。
【0087】
対物レンズに対するXオフセットと、ステージオフセットとからの情報が使用され、同様に、スライドを対物レンズの下方に適正に位置決めしてミクロイメージをキャプチャするため、フィールドのサイズが使用される。
【0088】
当該スライドが適正に位置決めされると、図15に示すように、ステップ250で、ステージ座標値中のX座標値およびY座標値のそれぞれについて、ステージが位置決めされ、デジタル化されたイメージがカメラによってキャプチャされ、RAMにストアされ、ハードディスク上にバックアップされる。ついで、上記米国特許出願に記載されたような種々の方法で、定量的にイメージを分析することができる。任意選択であるが、ステップ254で、当該イメージをアーカイブのためにストアすることができる。
【0089】
図12に示すような特定の制御機能をオーバライド(override)するため、図13に示すようなスクリーンが用意されている。このスクリーンで、X−Yステップサイズを編集することができ、X、Y、およびZオフセットを編集することができ、ランプ電圧を選択することができ、中性灰色フィルタを選択するとともにフィールドダイヤフラムの開口および他の幾かの顕微鏡機能を選択することができる。図13はAxioplan 2、すなわち、コンピュータ制御顕微鏡の顕微鏡対物レンズのセッティングを示す図である。
【0090】
XおよびYの位置決めは、具体的には、図16に示すように行われる。図16には、スライド18がスライド境界270、272、274、および276とともに示してある。ステージの行程を制限するためのステージ境界により、ステージは左上隅部278から右下隅部280まで移動できる。左上隅部278では、移動終了位置に到達したことを示す信号が出力され、ついで、ステージがX方向の短い距離282およびY方向の短い距離284に変換され、左上隅部の基準点290を基準として第1のタイル288が画定される。マクロイメージタイル288のサイズが分かっているので、ステージを適正に移動させることにより、しかも、イメージ処理を行なわずに、カウンタに入れたステージ位置から、ステージの位置を測定することによって、次のマクロイメージタイル292を第1のタイル288に連続するように配置することができる。イメージタイル288とイメージタイル292は、実質的に重ね合せずに互いに当接させることも、あるいは1ピクセルだけ重なり合うようにわずかに重ね合わせることもできる。1ピクセルの重なり合いは、互いに当接されたイメージタイルの互いに隣接するエッジのぼやけとして無視することができる。タイル292の左上隅部300はタイル292の残りの部分を画定し、同様にして、他のタイルも画定することができる。ミクロイメージタイルはコンポジットイメージに干渉しないように、連続するがほとんど重なり合わないように画定することができる。従って、次のような問題を避けることができる。すなわち、イメージどうしを一致させるか、あるいは、イメージどうしを隣接させても、連続するイメージタイルのエッジがぼやけないようにするため、1つのフレームストレージか、複数のフレームストレージのデジタルイメージに対して拡張された計算を行なわなければならないとした場合に遭遇する問題を避けることができる。当然のことであるが、低倍率イメージ24は低倍率イメージ24内に複数のミクロイメージが画定され、これらのミクロイメージがタイル化され、個々のタイル312、314、316等としてより高い倍率で示されている。その上、ウィンドウ26に示すように、拡大された領域310は、ウィンドウ26の境界を越える可能性があり、したがって、ウィンドウ26には、スクロールバーまたは他の手段であって、ウィンドウ26よりも大きなイメージ310をウィンドウ26内から調べることができるものを含めることができる。
【0091】
ステージ200は図16Aに最も良く示されているが、ステージ200には、Xステッパモータ279およびYステッパモータ282が含まれている。Xステッパモータ279およびYステッパモータ282は、それぞれ、エンコーダを有し、閉ループシステムが提供されている。このため、閉ループシステムがない場合に、大部分の顕微鏡ステージの精度が、通常、5μまたは6μであるのに対して、この閉ループシステムを有するステージ200は0.1μの精度が得られる。この閉ループシステムとこの非常に高い精度により、イメージをほとんど重ね合せず、しかも、現行の時間のかかる高価なソフトウェアを用いずに、高倍率イメージと低倍率イメージの両方についてタイルイメージどうしを当接させることができ、互いに隣接するイメージタイルの重なり合ったエッジでの重なり合いとぼやけをなくすことができる。厳密に位置決めされたステージを用いるとともに、スライドがスライドの中心点CPに対して厳密に位置決めされ、点278の既知の位置が常に同じ点から得られる図16に関して説明したタイル化システムを使用することによって、タイルを水平方向に厳密に位置決めし、かつ垂直方向に厳密に位置決めして、マクロイメージおよびミクロイメージを再構築することができる。この再構築は、水平方向または垂直方向に重なり合ったイメージタイルや、イメージタイルのでたらめな配向がなくすため、従来技術とは異なり、広範囲なソフトウェア処理を使用せずに行われている。
【0092】
本発明にも、システムをネットワーク通信機能、例えばネットワークインタフェースを介してイントラネットに結合するか、あるいはモデムまたはその他の適正なコネクションを介してInternetに結合することにより、リモート観測が可能な機能が含まれている。そのため、一度、イメージがスキャンされ、ハードディスクまたは他のストレージにストアされると、リモートユーザは低倍率イメージにアクセスすることができ、同様に、高倍率イメージにアクセスすることができ、両方のイメージ内で移動して、サンプルの組織特性に関する判定を下すことができる。
【0093】
本システムには、その他の機能として、ネットワーク化された複数のワークステーションが含まれており、ネットワーク化された複数のワークステーションが第1コンピュータコンソール12に結合してあり、第1コンピュータコンソールはディスプレイスクリーン22を有し、顕微鏡14に接続してある。サテライトワークステーション350および352は、ワークステーション12と実質的に同一であって、コンピュータ354および356を個々に含み、コンピュータ354および356はディスプレイ358および360に個々に結合してある。これらの装置は入力装置360および362により処理することができ、入力装置360および362にはキーボードおよびマウス等を含めることができる。ディスプレイ372と、コンピュータ374と、入力装置376とを有するワークステーション370を含むものを、第3の装置として、本システムに接続することもできる。これらの装置は、それぞれ、個別のネットワークライン380、382、384を介して、コンピュータ12に接続してあり、それらの伝送はネットワークまたはネットワークのようなもののいずれかを介して行なうことができる。物理的に別個のビューイングステーションにいる異なるオペレータは、それぞれ、マクロビューにより、組織断面全体のビューから各領域を突き止めることができ、その後にスキャンおよび/または定量分析を行えるように、これらの領域にラベル付けをすることができる。計器ステーション12にいる1人のオペレータが、組織断面全体をビューして、各領域を突き止めることができる。これらの領域にラベル付けをすることができる。このラベル付けは、物理的に離れたビューイングステーション、例えば、手術室や個々の病理学者のサインアウト領域で、その後にスキャンおよび/または定量分析を行い、その後に検討するためである。このようにするのは、組織の全体的なマクロビューおよび/またはストアされている個々のイメージ(これらのイメージから定量的な結果が得られる)を保持するとともに検討しながら、分析結果を検討するためである。ビューイングステーション350、352、および370は、デスクトップコンピュータ、ラップトップ、等を備えることができる。ネットワークステーション350、352、および370には、顕微鏡は必要でない。
【0094】
他の代替実施形態では、リモートワークステーション400、402、404、406、および408を、パケット交換網を介して供給することのできるサーバ410を介して、接続することができる。サーバ410としては、World Wide Webに使用されている種類のHTTP(hypertext transport protocol)ベースのサーバか、あるいは、以前Internetリモートオペレーション・アプリケーションで使用されているtelnet型サーバでもよい。サーバ410は通信チャネル414を介してローカルコンピュータ416と通信している。ローカルコンピュータ416はディスプレイ418が関係付けしてある。ローカルコンピュータ416は顕微鏡420に接続してある。リモートワークステーション400、402、404、406、および408は、それぞれ、ステーション350、352、および370と同じオペレーションをパフォームすることができる。ただし、リモートワークステーションはこのオペレーションを近傍のビルディングからか、あるいは、世界中からでさえもパフォームする。したがって、入手され顕微鏡420下で観察されている試料を、他人が利用する点において、融通性がさらに増大する。その上、ストアされているイメージをさらに分析し検討するために、ストアされているイメージをサーバ410を介してリモートサーバ400ないし408へ配信することができる。
【0095】
以上、本発明の特定の実施形態を例示し説明したが、当業者は、当然、多数の変更および修正を行なうことができる。しかし、これらの変更および修正は、請求の範囲においても、本発明の真の精神および範囲内を逸脱しないものとする。
【図面の簡単な説明】
【0096】
【図1】顕微鏡スライド上の試料のイメージのデータ構造を作成し、イントラネットまたはInternetを介してローカルに伝送する、本発明によるシステムのブロック図である。
【図1a】80個のタイル化イメージとしてスキャンされるように任意に割り当てられた顕微鏡スライドを表す図である。
【図1b】タイル化される選択されたイメージ領域を検出した後の、CCD光学アレイ内の個々のピクセルセンサの検出信号と、検出信号を記述した情報を含む参照データファイルとを表す図である。
【図2】1つのウィンドウ内の顕微鏡スライド上の試料の低倍率イメージと、低倍率イメージの、領域マーカによって選択された部分の高倍率イメージと、制御ウィンドウとを示す、本発明を実現するシステムのスクリーン図である。
【図3】制御ウィンドウと、内部に示された複数の高倍率ミクロイメージ領域を有する低倍率ウィンドウと、1つまたは複数のミクロイメージ領域を含む高倍率ウィンドウとを示す、本発明を実現する装置のディスプレイスクリーンの図である。
【図4】コンピュータモニタ上でビューされる1.25倍で表示された実際の乳ガン試料のマクロイメージの図である。
【図5】40倍の倍率で表示された、病理学者によって選択された当該の領域を示す図4のグリッド部の図である。
【図6】光学センサアレイからのスキャンされたイメージをメモリ内のコンピュータビットマップにマップし、ユーザのモニタ上のディスプレイにマップするステップのブロック図である。
【図7a】は乳ガン試料のデータ構造に含まれるデータファイルを示すWindows95ファイルマネージャの下で観察されるようなファイルリストを示す図である。
【図7b】はデータ構造を制御するJavaアプレットのファイルリストである。
【図8】は乳ガン試料の代替データ構造に含まれるデータファイルを示すWindows95ファイルマネージャの下で観察されるようなファイルリストを示す図である。
【図9A】本発明を実現する装置のブロック図である。
【図9B】本発明を実現する装置のブロック図である。
【図10】顕微鏡の機械的構成の詳細を示す図9に示した装置の一部のブロック図である。
【図11】装置の動作に関する流れ図である。
【図12】図11中の1つのステップの詳細の流れ図である。
【図13】ディスプレイスクリーン上で処理すべき制御パラメータを示すディスプレイスクリーンを示す図である。
【図14】領域アウトラインルーチンのフローチャートである。
【図15】スキャン分析ルーチンのフローチャートである。
【図16】イメージタイルに対する顕微鏡ステージの移動の制限の概略図である。
【図16A】顕微鏡ステージと、ステップモータと、モータの閉ループ駆動を行うエンコーダの斜視図である。
【図17】複数のワークステーションが顕微鏡にアクセスし、顕微鏡をローカルに各ワークステーションで操作することを可能にするネットワーク化システムのブロック図である。
【図17A】図10に関して記載されたシステムの図である。
【図18】診断イメージおよびデータ、すなわち、HTTPベースのサーバを通して直接、あるいはパケットネットワーグを介してバーチャル顕微鏡スライドを配信し、かつそのようなスライドにアクセスするリモートネットワーク化システムのブロック図である。

【特許請求の範囲】
【請求項1】
バーチャル顕微鏡スライドを表すデータ構造を構築する装置であって、
顕微鏡スライド上の試料からイメージをデジタルにスキャンするコンピュータ制御顕微鏡撮像システムと、
前記顕微鏡スライドを支持する顕微鏡ステージであって、前記顕微鏡の対物レンズに対してアドレス可能な座標システムに従って移動可能な顕微鏡ステージと、
デジタルにスキャンし、前記顕微鏡スライド上の試料の一部から得られる第1の一連のデジタル化イメージを格納するプログラムであって、前記プログラムによって、
前記座標システム内で前記顕微鏡ステージを増加的に移動させて、前記増加のそれぞれの段でデジタルイメージを、前記システムの前記アドレス可能な座標と一緒にそれぞれの段で格納し、
前記増加のサイズは、第1の一連の連続するイメージタイルを生成するように選択され、
前記顕微鏡は全体ビューを形成することを可能とする第1の光学倍率であり、
前記プログラムはさらに、デジタルにスキャンし、前記顕微鏡スライド上の前記試料の一部から得られる第2の一連のデジタル化イメージを格納することを提供し、前記プログラムによって、
前記同一の座標システム内で前記顕微鏡ステージを増加的に移動させて、前記増加のそれぞれの段でデジタルイメージを、前記システムの前記アドレス可能な座標と一緒にそれぞれの段で格納し、
前記増加のサイズは、第2の一連の連続するイメージタイルを生成するように選択され、
前記第2のより高い光学倍率で前記顕微鏡を備えており、
前記プログラムはさらに、前記データ構造に前記第1および第2の一連のデジタル化され格納されたイメージと、前記格納されたアドレス可能な座標システムを提供して、前記データ構造のユーザに前記試料からの多様な解像度イメージを提供し、その結果、前記イメージが共に縫い合わされ、より高倍率のイメージ上の点を、より低倍率のイメージ上の同一の点に対して容易に見つけることを可能とするように構成される、プログラムと
を備えることを特徴とする装置。
【請求項2】
デジタルにスキャンされたイメージを大幅に圧縮してインターネットを介して送信可能にするデータ圧縮器をさらに備えることを特徴とする請求項1に記載の装置。
【請求項3】
前記圧縮されたデータをインターネットチャネルを介して遠隔地に送信するための、前記装置と接続するインターネット通信チャネルを備えることを特徴とする請求項2に記載の装置。
【請求項4】
前記データ構造は、前記格納されたイメージを操作し解釈するために専用ビューワ上で使用可能なアクティブ制御プログラムをさらに含むことを特徴とする請求項2に記載の装置。
【請求項5】
隣接するイメージの一部を前記ユーザがビュー内にスクロールすることを可能にするビューワを備えることを特徴とする請求項2に記載の装置。
【請求項6】
多様なビューワが分析および注釈のために同一の領域を特定することを支援するために前記座標を表示するアドレスディスプレイをさらに含むことを特徴とする請求項2に記載の装置。
【請求項7】
動的な自己実行型プログラムを格納するブラウザと、前記データ構造からの前記イメージをビューし、低解像度のマクロイメージと、高解像度のミクロイメージとの間でイメージを切り替えるためのモニタをさらに備えることを特徴とする請求項2に記載の装置。
【請求項8】
前記ビューワは、低解像度マクロイメージ上のアドレス可能な領域をマークして、前記アドレスされた領域が前記モニタ上の高解像度であるミクロイメージに現れるようにするマーカを含むことを特徴とする請求項5に記載の装置。
【請求項9】
前記顕微鏡ステージは、前記顕微鏡撮像システムの単一のピクセル範囲よりも多くのステージ移動の増加を有することを特徴とする請求項1に記載の装置。
【請求項10】
前記イメージタイルの光学倍率は、少なくとも40x倍率で約0.2ミクロンであることを特徴とする請求項1に記載の装置。

【図1】
image rotate

【図1a】
image rotate

【図1b】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図16A】
image rotate

【図17】
image rotate

【図17A】
image rotate

【図18】
image rotate


【公開番号】特開2009−53701(P2009−53701A)
【公開日】平成21年3月12日(2009.3.12)
【国際特許分類】
【出願番号】特願2008−232718(P2008−232718)
【出願日】平成20年9月10日(2008.9.10)
【分割の表示】特願平10−538644の分割
【原出願日】平成10年3月2日(1998.3.2)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.JAVA
2.WINDOWS
3.PENTIUM
【出願人】(503222477)バクス ラボラトリーズ インコーポレイテッド (7)
【Fターム(参考)】