説明

ポジトロンイメージング装置

【課題】 良好な時間分解能でのγ線対のTOF計測が可能なポジトロンイメージング装置を提供する。
【解決手段】 γ線対を検出する放射線検出器10、15と、γ線の検出に対応してタイミング信号71、72を生成する信号処理回路11、16と、タイミング信号の時間差によってγ線対の飛行時間差を計測する計測回路20と、タイミング信号71、72に対応する校正信号81、82を供給する校正信号供給装置40とによって、イメージング装置1Aを構成する。そして、γ線対計測用のタイミング信号と、校正計測用の校正信号との両者を、同一の計測期間内において計測回路20へと入力するとともに、校正信号による校正データを用いて、タイミング信号による飛行時間差の計測データの校正を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽電子によって生成されるγ線対を同時計数することによって、測定対象についての情報を得るポジトロンイメージング装置に関するものである。
【背景技術】
【0002】
ポジトロンイメージング装置は、人体や動物及び植物などの測定対象に対して、陽電子(ポジトロン)を放出する放射性同位元素(RI)で標識された物質をトレーサとして投入し、RI物質から放出された陽電子が通常物質中の電子と対消滅して生成される一対のγ線を計測することによって、測定対象についての情報を得るものである(例えば、特許文献1参照)。
【0003】
電子・陽電子対消滅によって発生するγ線対は、それぞれ電子あるいは陽電子の質量とほぼ等しいエネルギー(511keV)で、互いに反対方向に放出される。したがって、測定対象を挟んで配置された放射線検出器によってγ線対を同時計数し、対消滅の発生位置を同定することによって、測定対象内の各位置における物質分布等を測定することが可能である。
【特許文献1】特開平6−347555号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上記したポジトロンイメージング装置においては、γ線の放射線検出器までの飛行時間(TOF:Timeof Flight)を利用し、γ線対を構成する2つのγ線同士での飛行時間差を計測する場合がある。すなわち、γ線対の元となった対消滅の発生位置は、γ線対が検出された検出器対を結ぶ直線上にあるが、放射線検出器の時間分解能が良好であれば、飛行時間差の計測データから、検出器対を結ぶ直線上における対消滅の発生位置を特定することができる。
【0005】
このようなTOF計測を行う場合、γ線の飛行時間を計測するための計測回路における直線性、あるいは個々の素子のばらつきなどの時間分解能への影響が問題となる。また、ポジトロンイメージング装置では、例えばPET装置において計測回路が大規模となる場合があるが、このような場合には、回路の発熱等による経時的な計測条件の変化がその時間分解能に影響するという問題がある。
【0006】
本発明は、以上の問題点を解決するためになされたものであり、良好な時間分解能でのγ線対のTOF計測が可能なポジトロンイメージング装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
このような目的を達成するために、本発明によるポジトロンイメージング装置は、測定対象中において電子・陽電子対消滅で生成されて、互いに反対方向に放出されるγ線対を計測するポジトロンイメージング装置であって、(1)少なくとも2個の放射線検出器を含み、電子・陽電子対消滅で生成されたγ線対のそれぞれを検出可能に構成された検出手段と、(2)γ線対の一方のγ線に対応して検出手段から出力された第1検出信号によって第1タイミング信号を生成する第1信号処理手段と、(3)γ線対の他方のγ線に対応して検出手段から出力された第2検出信号によって第2タイミング信号を生成する第2信号処理手段と、(4)第1タイミング信号及び第2タイミング信号の時間差によって、γ線対の飛行時間差を計測する計測手段と、(5)計測手段に対して、第1タイミング信号及び第2タイミング信号にそれぞれ対応する第1校正信号及び第2校正信号を供給する校正信号供給手段とを備え、(6)γ線対計測用の第1タイミング信号及び第2タイミング信号と、校正計測用の第1校正信号及び第2校正信号との両者を、同一の計測期間内において計測手段へと入力するとともに、第1校正信号及び第2校正信号による校正データを用いて、第1タイミング信号及び第2タイミング信号による飛行時間差の計測データの校正を行うことが可能に構成されていることを特徴とする。
【0008】
上記したポジトロンイメージング装置においては、γ線対を構成する2つのγ線の検出タイミングに対応する第1タイミング信号及び第2タイミング信号から、対消滅の発生位置を示すγ線対の飛行時間差を計測する。また、これらのタイミング信号とは別に、校正信号供給手段によって、時間差が既知である第1校正信号及び第2校正信号を計測手段に供給する。そして、第1タイミング信号及び第2タイミング信号を用いたγ線対計測と、第1校正信号及び第2校正信号を用いた校正計測とを、同一の計測期間内に並行して実行する構成としている。
【0009】
このような構成によれば、同一の計測期間について、飛行時間差の計測データと、校正データとの両者を同時に収集することができる。これにより、γ線対を計測するポジトロンイメージング装置において、良好な時間分解能でのTOF計測が可能となり、したがって、良好な位置分解能での測定対象についての情報の取得が可能となる。
【0010】
ここで、校正計測に用いられる第1校正信号及び第2校正信号については、計測手段に対して、その校正時間差が少なくとも2つの異なる時間差となるように供給されることが好ましい。この場合には、校正データを用いた飛行時間差の計測データの校正を精度良く行うことができる。あるいは、第1校正信号及び第2校正信号については、校正時間差が1つの時間差となるように供給される構成としても良い。
【0011】
また、ポジトロンイメージング装置は、第1校正信号及び第2校正信号による校正データを用いて、第1タイミング信号及び第2タイミング信号による飛行時間差の計測データの校正を行う校正手段を備えることが好ましい。このような校正手段を設けた場合には、データ収集と同時に計測データの校正を行うことができる。また、データ収集後に計測データの校正を行う構成としてもよい。
【0012】
また、ポジトロンイメージング装置は、γ線対計測用の第1タイミング信号及び第2タイミング信号と、校正計測用の第1校正信号及び第2校正信号とを識別するための信号識別手段を備えることが好ましい。このような信号識別手段を設けた場合には、飛行時間差の計測データの収集と、校正データの収集とを同時かつ確実に行うことが可能となる。
【0013】
また、計測手段への校正信号の供給については、第1校正信号及び第2校正信号は、計測手段に直接に供給される構成を用いることができる。あるいは、第1校正信号及び第2校正信号は、それぞれ第1信号処理手段及び第2信号処理手段を介して計測手段に供給される構成としても良い。
【発明の効果】
【0014】
本発明のポジトロンイメージング装置によれば、第1タイミング信号及び第2タイミング信号を用いたγ線対計測と、第1校正信号及び第2校正信号を用いた校正計測とを、同一の計測期間内に並行して実行することにより、良好な時間分解能でのγ線対のTOF計測が可能となる。
【発明を実施するための最良の形態】
【0015】
以下、図面とともに本発明によるポジトロンイメージング装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0016】
図1は、本発明によるポジトロンイメージング装置の第1実施形態の構成を概略的に示すブロック図である。本イメージング装置は、人体や動物及び植物などの測定対象中において電子・陽電子対消滅で生成されて、互いに反対方向に放出されるγ線対を計測することによって、測定対象についての情報を得るものである。このようなγ線対計測は、例えば、測定対象に対して陽電子放出核種を含む薬剤を投与して行われる。
【0017】
図1に示すポジトロンイメージング装置1Aは、一対の放射線検出器10、15を備えている。これらの放射線検出器10、15は、電子・陽電子対消滅で生成されたγ線対のそれぞれを検出するための検出手段を構成している。ここで、γ線対の放出位置となる測定対象中での対消滅の発生位置をPとする。また、一般には、γ線対の検出に用いられる検出手段は、少なくとも2個の放射線検出器を含んで構成される。
【0018】
第1放射線検出器10は、γ線対の一方のγ線G1を検出し、それに対応した第1検出信号61を出力する。また、この検出器10に対して、第1信号処理回路11が設けられている。信号処理回路11は、検出器10から出力された検出信号61に対して所定の信号処理を行って、γ線G1の検出タイミングに対応する第1タイミング信号71を生成して出力する。
【0019】
第2放射線検出器15は、γ線対の他方のγ線G2を検出し、それに対応した第2検出信号62を出力する。また、この検出器15に対して、第2信号処理回路16が設けられている。信号処理回路16は、検出器15から出力された検出信号62に対して所定の信号処理を行って、γ線G2の検出タイミングに対応する第2タイミング信号72を生成して出力する。また、本実施形態では、この第2タイミング信号72は、固定遅延回路17によって所定の遅延時間だけ遅延される。このタイミング信号72の遅延は、タイミング信号71、72の間での時間差を計測するために付与されるものである。
【0020】
信号処理回路11からの第1タイミング信号71、及び信号処理回路16からの第2タイミング信号72は、それぞれOR回路21、22を介して時間差計測回路20へと入力される。この時間差計測回路20は、タイミング信号71、72の時間差によって、γ線対の飛行時間差を計測する計測手段である。また、計測回路20によって取得された飛行時間差の計測データ等の必要なデータは、データ収集装置30によって収集される。
【0021】
図2は、電子・陽電子対消滅で生成されたγ線対のTOF計測について示す模式図である。上述したように対消滅によるγ線対は互いに反対方向に放出されるため、γ線対の元となった対消滅の発生位置Pは、γ線G1、G2が検出された放射線検出器10、15を結ぶ直線上にある。また、γ線G1の検出器10までの飛行時間(TOF)をT1、γ線G2の検出器15までの飛行時間をT2とすると、γ線対の飛行時間差はT2−T1である。ここで、検出器10、15の中間位置から対消滅の発生位置Pまでの距離を図2に示すようにXとし、γ線の飛行速度である光速をcとする。このとき、検出器10、15を結ぶ直線上での対消滅の発生位置Pを示す距離Xは、X=0.5×(T2−T1)×cによって求めることができる。
【0022】
本実施形態によるポジトロンイメージング装置1Aは、図1に示すように、さらに校正信号供給装置40を備えている。この校正信号供給装置40は、時間差計測回路20に対して、γ線対計測用の第1タイミング信号71及び第2タイミング信号72にそれぞれ対応する校正計測用の第1校正信号81及び第2校正信号82を供給する校正信号供給手段である。
【0023】
図1においては、校正信号供給装置40は、制御回路41と、パルス源42と、遅延回路45とを有して構成されている。このような構成において、パルス源42は、制御回路41によって設定された出力時間間隔で校正計測用のロジックパルスを出力する。パルス源42から出力されたロジックパルスは、2つのパルス信号に分岐される。そして、分岐された一方のパルス信号は、第1校正信号81として出力され、第1タイミング信号71とともにOR回路21を介して計測回路20へと入力される。また、分岐された他方のパルス信号は、遅延回路45によって所定の遅延時間が付与された後に第2校正信号82として出力され、第2タイミング信号72とともにOR回路22を介して計測回路20へと入力される。
【0024】
また、遅延回路45は、遅延時間が異なる2つの出力を有する遅延素子43と、パルス信号の出力を切り換えるスイッチ44とによって構成されている。これにより、第1校正信号81及び第2校正信号82が、計測回路20に対して校正時間差が2つの異なる時間差となるように供給される構成となっている。また、スイッチ44による校正信号81、82の間での校正時間差の切り換えは、制御回路41によって制御されている。この校正時間差の切り換えは、例えばパルス信号の出力1回毎に行うことが好ましい。
【0025】
以上の構成において、本実施形態によるポジトロンイメージング装置1Aは、γ線対計測用のタイミング信号71、72と、校正計測用の校正信号81、82との両者を、同一の計測期間内において時間差計測回路20へと入力することが可能な構成となっている。また、このとき、同一の計測期間内での校正信号81、82による校正データを用いて、タイミング信号71、72によるγ線対の飛行時間差の計測データの校正を行うことが可能である。
【0026】
本実施形態によるポジトロンイメージング装置の効果について説明する。
【0027】
図1に示したポジトロンイメージング装置1Aにおいては、γ線対を構成する2つのγ線G1、G2の検出器10、15での検出タイミングに対応する第1タイミング信号71及び第2タイミング信号72から、対消滅の発生位置Pを示すγ線対の飛行時間差T2−T1(図2参照)を計測する。また、これらのタイミング信号71、72とは別に、校正信号供給装置40によって、その時間差が校正時間差として既知である第1校正信号81及び第2校正信号82を計測回路20に供給する。そして、タイミング信号71、72を用いたγ線対計測と、校正信号81、82を用いた校正計測とを、同一の計測期間内に並行して実行する構成としている。
【0028】
このような構成によれば、同一の計測期間について、飛行時間差の計測データと、校正データとの両者を同時に収集することができる。これにより、γ線対を計測するポジトロンイメージング装置1Aにおいて、γ線対計測と校正計測とをそれぞれ別個の計測期間で行う構成に比べて、その時その時で最適な校正を行って良好な時間分解能でのTOF計測を行うことが可能となり、したがって、良好な位置分解能での測定対象についての情報の取得が可能となる。
【0029】
また、このような構成では、計測回路20が大規模となって、その発熱等による経時的な計測条件の変化が問題になるような場合でも、校正信号供給装置40のみについて充分な温度管理を行えば、常に信頼性が高い校正を行うことが可能である。例えば、図1に示した構成では、温度安定性を左右するものとして遅延素子43があるが、受動素子で構成すれば温度変化の影響を受けにくく、例えば数10ppm/℃程度は容易に実現が可能である。
【0030】
時間差計測回路20におけるタイミング信号71、72、あるいは校正信号81、82の間での時間差の計測については、様々な構成を用いることができる。図3は、γ線対の飛行時間差の具体的な計測方法の例を示す図である。図3の構成例(a)では、タイミング信号71、72の時間差を計測する計測回路20として、TAC(時間−波高変換器)26、及びPHA(波高分析器)27を用いている。また、構成例(b)では、計測回路20として、TDC(時間−デジタル変換器)28を用いている。
【0031】
また、図1に示した構成では、タイミング信号71、72のうち、信号処理回路16から出力された第2タイミング信号72に対して遅延回路17を設けている。このため、図3の構成例(a)、(b)では、第1タイミング信号71をTACまたはTDCのスタート入力に、また、第2タイミング信号72をストップ入力に、それぞれ入力している。また、この構成に対応して、校正信号供給装置40では、校正信号81、82のうち、第2タイミング信号72に対応する第2校正信号82に対して遅延回路45を設けている。
【0032】
ここで、遅延回路17によってタイミング信号に付与される遅延時間については、計測回路20において計測される時間差のフルスケール、検出器10、15間の距離、測定対象の形状等を考慮するとともに、検出器10、15による視野の中央が計測される時間差のスケールの中央と略一致するように設定することが好ましい。
【0033】
また、上記実施形態では、校正計測に用いられる校正信号81、82の間での校正時間差が2つの異なる時間差となるように、遅延回路45を含む校正信号供給装置40を構成している。これにより、校正データを用いた飛行時間差の計測データの校正を精度良く行うことができる。
【0034】
一般には、校正信号81、82については、計測回路20に対して、その校正時間差が少なくとも2つの異なる時間差となるように供給されることが好ましい。校正時間差を2つの時間差として校正計測を行った場合には、2点の校正データ点間を結ぶ直線を校正直線として、データの校正を行うことができる。また、校正時間差を3つ以上の時間差として校正計測を行った場合には、3点以上の校正データ点から最小二乗法などによって校正直線を求めることができる。
【0035】
図4は、ポジトロンイメージング装置を用いたγ線対計測及び校正計測の一例を示す図である。図4(a)に示すように、ポジトロンイメージング装置におけるγ線対の検出手段としては、例えば、測定対象Sを囲むように複数の放射線検出器Dをリング状に配置した構成のPET(Positron Emission Tomography)装置Rを用いることができる。このような構成において、校正用の放射線源を用いてデータの校正を行う場合、図4(a)中に示すように、校正線源Cを視野外で回転させて校正計測を行うのが通常である。
【0036】
これに対応して、図1に示したポジトロンイメージング装置1Aにおける校正計測について考えると、図4のグラフ(b)に示すように、校正計測によって取得される校正データが、測定対象Sに起因する計測データの外側(視野外)となるように、校正信号供給装置40の遅延回路45における遅延時間を設定することが好ましい。このように、校正データがγ線対計測の視野外に位置する構成とすることによって、飛行時間差の計測データと校正データとが、容易に識別可能となる。
【0037】
また、図4のグラフ(b)に示したデータの取得例では、計測データの両側においてそれぞれ1点ずつの校正データを取得している。この場合、図4のグラフ(c)の収集データ値と時間差とのグラフに示すように、2点の校正データ点から校正直線を求めることができる。例えば、回路の発熱等によって経時的な計測条件の変化が生じた場合、時間差計測回路20でのデータ変換特性がドリフトし、図4のグラフ(c)に示す校正直線の傾き等が変化する。
【0038】
ここで、PET計測においては、通常、数秒〜数10分の時間単位(計測フレーム)毎にデータのヒストグラミングを行う。この場合、それぞれのフレームのデータは、そのフレーム内の校正データによる校正直線を用いて、収集データ−時間差−距離の変換を行えば良い。また、ヒストグラミングを行わずにデータを収集するモード(リストモード)で計測を行う場合には、計測データから最も近い校正データを用いれば良い。
【0039】
なお、γ線対の検出に用いられる検出手段の具体的な構成については、図4(a)に示したリング状の構成に限らず、例えばポジトロンイメージングプローブシステム(特開平6−347555号公報参照)などの簡易な検出器構成を用いても良い。また、時間差計測回路20でのデータ変換特性のドリフトは、通常は急激には起こらないので、校正信号の供給頻度は、例えば1秒毎の供給に設定すれば良い。このことは、データの収集モードがヒストグラムモードであるかリストモードであるかに関わらず同様である。
【0040】
また、校正信号をγ線対計測用のタイミング信号とともに計測回路20に入力する上記構成では、校正信号とタイミング信号とが偶発的に同時計数されてしまう可能性がある。これに対して、上述のように校正信号の供給頻度が1秒毎程度であれば、そのような偶発的な同時計数データが発生する確率を充分に低くすることができる。
【0041】
図5は、本発明によるポジトロンイメージング装置の第2実施形態の構成を概略的に示すブロック図である。本イメージング装置1Bにおいて、放射線検出器10、15、第1信号処理回路11、第2信号処理回路16、遅延回路17、時間差計測回路20、及びOR回路21、22については、図1に示したイメージング装置1Aの構成と同様である。また、計測回路20によって取得された飛行時間差の計測データ等の必要なデータは、データ収集装置30によって収集されている。
【0042】
本実施形態によるポジトロンイメージング装置1Bは、図5に示すように、さらに校正信号供給装置40を備えている。この校正信号供給装置40は、制御回路41と、パルス源42と、遅延回路45とを有し、図1の供給装置40と同様に構成されているが、制御回路41が識別信号85を出力している点で異なる。この識別信号85は、例えば、校正信号供給装置40から校正計測用の校正信号81、82が出力された際に、それを示すロジックパルスを出力する。
【0043】
また、データ収集装置30は、校正部31と、信号識別部32とを有している。校正部31は、校正信号81、82によって時間差計測回路20で計測された校正データを用いて、タイミング信号71、72による飛行時間差の計測データの校正を行う校正手段である。また、信号識別部32は、計測回路20に入力される信号について、γ線対計測用のタイミング信号71、72と、校正計測用の校正信号81、82とを識別するための信号識別手段である。本実施形態においては、この信号識別部32は、校正信号供給装置40から入力された識別信号85を参照して、タイミング信号71、72と校正信号81、82との識別を行う。
【0044】
図5に示したポジトロンイメージング装置1Bにおいては、上記したように、データ収集装置30に校正部31を設けている。このような校正部31を設けた場合には、データ収集と同時に計測データの校正を行うことができる。また、データ収集装置30には校正部31を設けず、データ収集後に計測データの校正を行う構成としてもよい。このような計測データの具体的な校正方法については、例えば、データの収集モードがヒストグラムモードであるかリストモードであるか等の条件を考慮して設定することが好ましい。
【0045】
また、本イメージング装置1Bにおいては、タイミング信号71、72と、校正信号81、82とを識別する信号識別部32を設けている。このような信号識別部32を設けた場合には、飛行時間差の計測データの収集と、校正データの収集とを同時かつ確実に行うことが可能となる。
【0046】
具体的には、上記構成では、校正信号供給装置40からの識別信号85を参照して信号の識別を行っている。この場合、例えば、データに識別ビットを設け、データ収集装置30において識別信号85が有効な時は校正データであるとして識別ビットを1とする方法を用いることができる。このような方法を用いることにより、図6に示すように、グラフ(a)に示す計測データ及び校正データのうちで、グラフ(b)の計測データと、グラフ(c)の校正データとを完全に区別することが可能となる。また、この場合、図6のグラフ(c)に示すように、校正信号とタイミング信号とが偶発的に同時計数されたデータについても、容易に識別可能である。
【0047】
例えば、TOFポジトロンイメージングプローブシステムに上記構成を適用することを考えると、測定対象と検出器との間隔が狭いような場合、収集データ上では計測データと校正データの識別が困難なことも考えられる。このような場合、校正信号供給装置40からの識別信号85を用いる方法は有効である。ただし、このような信号識別方法については、具体的には識別信号以外にも様々な方法を用いて良い。例えば、図4に関して上述したように計測データと校正データとが収集データ上で分離している場合には、その収集データ値から信号を識別する方法を用いても良い。また、この信号識別については、データ収集装置30に信号識別部32を設ける構成に限らず、データ収集後の解析時に信号識別を行う構成としても良い。
【0048】
なお、図5のイメージング装置1Bにおいて、データ収集装置30に示した校正部31及び信号識別部32については、他の実施形態においても、必要に応じて設けることとすれば良い。
【0049】
図7は、本発明によるポジトロンイメージング装置の第3実施形態の構成を概略的に示すブロック図である。本イメージング装置1Cにおいて、放射線検出器10、15、第1信号処理回路11、第2信号処理回路16、遅延回路17、時間差計測回路20、OR回路21、22、及びデータ収集装置30については、図1に示したイメージング装置1Aの構成と同様である。
【0050】
本実施形態によるポジトロンイメージング装置1Cは、図7に示すように、さらに校正信号供給装置40を備えている。この校正信号供給装置40は、制御回路41と、パルス源42と、遅延回路とを有し、図1の供給装置40と同様に構成されているが、遅延回路がスイッチを含まず、単一出力の遅延素子46のみによって構成されている点で異なる。
【0051】
このように、図4のグラフ(c)に示したように複数点(例えば2点)の校正データ点から校正直線を求めるのではなく、図8のグラフに示すように1点の校正データ点から求めた比例直線で充分な精度の校正が可能な場合には、校正信号供給装置40から供給される校正信号81、82の時間差を単一の校正時間差としても良い。また、このような構成においても、識別信号85を用いた信号識別等については他の構成と同様である。
【0052】
図9は、本発明によるポジトロンイメージング装置の第4実施形態の構成を概略的に示すブロック図である。本イメージング装置1Dにおいて、放射線検出器10、15、第1信号処理回路11、第2信号処理回路16、遅延回路17、時間差計測回路20、及びデータ収集装置30については、図1に示したイメージング装置1Aの構成と同様である。
【0053】
本実施形態によるポジトロンイメージング装置1Dは、図9に示すように、さらに校正信号供給装置40を備えている。この校正信号供給装置40は、制御回路41と、パルス源42とによって構成されており、遅延回路を含んでいない点で図1の供給装置40とは異なる。また、校正信号供給装置40からの校正信号81、82は、図1に示した構成のように計測回路20に直接に供給されるのではなく、それぞれ信号処理回路11、16を介して計測回路20に供給される構成となっている。
【0054】
ここで、信号処理回路11、16は、図1におけるOR回路21、22の機能を併せ持っている。また、信号処理回路16の後段の遅延回路17は、図1における校正信号供給装置40の遅延回路45(あるいは図7における校正信号供給装置40の遅延素子46)の機能を併せ持っている。このような構成によれば、校正信号供給装置40において遅延素子を省略して、その構成を簡略化することができる。
【0055】
本発明によるポジトロンイメージング装置は、上記した実施形態に限られるものではなく、様々な変形が可能である。例えば、上記各実施形態では、一対の放射線検出器10、15のうちで一方の検出器15からの信号に対して遅延回路17を設けているが、このような遅延回路の構成及び配置については、時間差計測回路20の具体的な構成等を考慮して、適宜設定することが好ましい。これは、校正信号供給装置40における遅延回路の構成についても同様である。
【産業上の利用可能性】
【0056】
本発明は、良好な時間分解能でのγ線対のTOF計測が可能なポジトロンイメージング装置として利用可能である。
【図面の簡単な説明】
【0057】
【図1】ポジトロンイメージング装置の第1実施形態の構成を概略的に示すブロック図である。
【図2】電子・陽電子対消滅で生成されたγ線対のTOF計測について示す模式図である。
【図3】γ線対の飛行時間差の具体的な計測方法の例を示す図である。
【図4】γ線対計測及び校正計測の一例を示す図である。
【図5】ポジトロンイメージング装置の第2実施形態の構成を概略的に示すブロック図である。
【図6】γ線対計測及び校正計測の他の例を示す図である。
【図7】ポジトロンイメージング装置の第3実施形態の構成を概略的に示すブロック図である。
【図8】校正計測の他の例を示す図である。
【図9】ポジトロンイメージング装置の第4実施形態の構成を概略的に示すブロック図である。
【符号の説明】
【0058】
1A〜1D…ポジトロンイメージング装置、10、15…放射線検出器、11…第1信号処理回路、16…第2信号処理回路、17…遅延回路、20…時間差計測回路、21、22…OR回路、30…データ収集装置、31…校正部、32…信号識別部、40…校正信号供給装置、41…制御回路、42…パルス源、43…遅延素子、44…スイッチ、45…遅延回路、46…遅延素子、
61…第1検出信号、62…第2検出信号、71…第1タイミング信号、72…第2タイミング信号、81…第1校正信号、82…第2校正信号、85…識別信号、S…測定対象、P…対消滅の発生位置、G1、G2…γ線。

【特許請求の範囲】
【請求項1】
測定対象中において電子・陽電子対消滅で生成されて、互いに反対方向に放出されるγ線対を計測するポジトロンイメージング装置であって、
少なくとも2個の放射線検出器を含み、電子・陽電子対消滅で生成されたγ線対のそれぞれを検出可能に構成された検出手段と、
前記γ線対の一方のγ線に対応して前記検出手段から出力された第1検出信号によって第1タイミング信号を生成する第1信号処理手段と、
前記γ線対の他方のγ線に対応して前記検出手段から出力された第2検出信号によって第2タイミング信号を生成する第2信号処理手段と、
前記第1タイミング信号及び前記第2タイミング信号の時間差によって、前記γ線対の飛行時間差を計測する計測手段と、
前記計測手段に対して、前記第1タイミング信号及び前記第2タイミング信号にそれぞれ対応する第1校正信号及び第2校正信号を供給する校正信号供給手段とを備え、
γ線対計測用の前記第1タイミング信号及び前記第2タイミング信号と、校正計測用の前記第1校正信号及び前記第2校正信号との両者を、同一の計測期間内において前記計測手段へと入力するとともに、前記第1校正信号及び前記第2校正信号による校正データを用いて、前記第1タイミング信号及び前記第2タイミング信号による前記飛行時間差の計測データの校正を行うことが可能に構成されていることを特徴とするポジトロンイメージング装置。
【請求項2】
前記第1校正信号及び前記第2校正信号は、前記計測手段に対して、その校正時間差が少なくとも2つの異なる時間差となるように供給されることを特徴とする請求項1記載のポジトロンイメージング装置。
【請求項3】
前記第1校正信号及び前記第2校正信号による校正データを用いて、前記第1タイミング信号及び前記第2タイミング信号による前記飛行時間差の計測データの校正を行う校正手段を備えることを特徴とする請求項1または2記載のポジトロンイメージング装置。
【請求項4】
γ線対計測用の前記第1タイミング信号及び前記第2タイミング信号と、校正計測用の前記第1校正信号及び前記第2校正信号とを識別するための信号識別手段を備えることを特徴とする請求項1〜3のいずれか一項記載のポジトロンイメージング装置。
【請求項5】
前記第1校正信号及び前記第2校正信号は、それぞれ前記第1信号処理手段及び前記第2信号処理手段を介して前記計測手段に供給されることを特徴とする請求項1〜4のいずれか一項記載のポジトロンイメージング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2006−343233(P2006−343233A)
【公開日】平成18年12月21日(2006.12.21)
【国際特許分類】
【出願番号】特願2005−169736(P2005−169736)
【出願日】平成17年6月9日(2005.6.9)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成17年度、文部科学省、科学技術試験研究委託費、光技術を融合した生体機能計測技術の研究開発、産業活力再生特別措置法第30条の適用を受ける特許出願
【出願人】(000236436)浜松ホトニクス株式会社 (1,479)
【Fターム(参考)】