説明

中性子検出用のホウ素含有コーティング

【課題】中性子を検出するための中性子変換部の不純物含有を最小限とし、薄く均一な中性子変換材の塗布方法、および、それを用いた中性子検出器を提供する。
【解決手段】中性子検出器10は、内部容積の境界となる外殻20と、カソードであり微細特徴を有する壁部分30と、内部容積の内部に位置するアノードである中心構造54と、壁部分30上にホウ素コーティング60を含む。ホウ素コーティング60は、静電噴霧工程により塗布され、壁部分30上の微細特徴に適合する。壁部分30は、2から5ミクロンの間の厚さを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、中性子検出用のホウ素コーティングに関係し、具体的には、中性子検出用のホウ素コーティングの静電噴霧塗布に関係する。
【背景技術】
【0002】
管状の中性子検出器は、通過する中性子と相互作用し、密閉容積内に帯電した粒子を放出して電気信号を生成するために、ホウ素コーティングを含み得る。中性子検出器の最適な性能は、中性子検出器の長さにわたって比較的薄く均一なホウ素コーティング、他の元素および化合物が最小限に微量であること、ならびに、総ホウ素コーティング含有量中の特定のホウ素の同位体の比を含む、いくつかの要因によって決まり得る。
【0003】
ホウ素を中性子検出器の面上に堆積させる、以前から知られている方法では、中性子検出器の長さにわたって不均整の厚さのホウ素コーティングを生成する場合がある。その同じ方法は、望ましくない隙間が、検出器の面の微細特徴の付近で、毛管作用により引き起こされる状態で、ホウ素コーティングを生成する場合がある。他の知られている方法は、ホウ素を中性子検出器に付着させるために結合剤を使用することを含むが、中性子検出を妨害する可能性がある不純物を取り入れる。さらに、ホウ素を中性子検出器の面上に堆積させる、一部の以前から知られている方法は、比較的高価である場合がある。したがって、他の元素および化合物が最小限に微量である、中性子検出器の長さにわたって比較的薄く均一なホウ素コーティングを生成する、最適化したホウ素塗布工程が求められている。
【発明の概要】
【0004】
以下の概要では、本明細書で考察するシステムおよび/または方法の一部の態様の基本的な理解をもたらすために、単純化した概要を提示する。この概要は、本明細書で考察するシステムおよび/または方法の広範囲な概観ではない。重要な/決定的な要素を特定すること、または、そのようなシステムおよび/もしくは方法の範囲を線引きすることは意図されない。その唯一の目的は、後で提示される、より詳細な説明に対する導入部として、一部の概念を単純化した形式で提示することである。
【0005】
一態様によれば、本発明は、内部容積の境界となる外殻を含む中性子検出器を提供する。中性子検出器は、カソードの働きをする少なくとも1つの壁部分を含む。一例では、壁部分は、微細特徴を有する。中性子検出器は、内部容積の内部に位置し、アノードの働きをする中心構造を含む。中性子検出器は、壁部分上にホウ素コーティングを含み、ホウ素コーティングは、静電噴霧工程により塗布される。一例では、ホウ素コーティングは、壁部分上の微細特徴に適合する。中性子検出器は、中心構造により収集した信号を伝送するために、中心構造に動作可能に接続される電気コネクタを含む。
【0006】
別の態様によれば、本発明は、内部容積の境界となる外殻を含む中性子検出器を提供する。中性子検出器は、カソードの働きをし、微細特徴を有する少なくとも1つの壁部分を含む。中性子検出器は、内部容積の内部に位置し、アノードの働きをする中心構造を含む。中性子検出器は、壁部分上にホウ素コーティングを含む。ホウ素コーティングは、壁部分上の微細特徴に適合し、2から5ミクロンの間の厚さを有する。中性子検出器は、中心構造により収集した信号を伝送するために、中心構造に動作可能に接続される電気コネクタを含む。
【0007】
別の態様によれば、本発明は、ホウ素コーティングを中性子検出器の面上に堆積させる方法を提供する。この方法は、中性子検出器の導電面を用意するステップを含む。一例では、壁部分は、微細特徴を有する。この方法は、中性子検出器の導電面に、中性子検出器の導電面にわたるホウ素コーティングをもたらすホウ素含有粉末を静電噴霧するステップを含む。一例では、ホウ素コーティングは、中性子検出器の導電面上に位置する微細特徴に適合する。
【0008】
本発明の前述の、および他の態様は、添付の図面を参照して以下の説明を読むことによって、本発明が関係する当業者に明らかとなろう。
【図面の簡単な説明】
【0009】
【図1】本発明の態様による、ホウ素コーティングを伴う一例の中性子検出器の概略図である。
【図2】本発明の態様による、ホウ素堆積工程の間の図1の一例の中性子検出器の一部分の断面図である。
【図3】本発明の態様による、結合剤を含むホウ素堆積工程の間の図1の一例の中性子検出器の一部分の断面図である。
【図4】本発明の態様による、ホウ素コーティングを中性子検出器の面上に堆積させる一例の方法の最上位レベルの流れ図である。
【発明を実施するための形態】
【0010】
本発明の1つまたは複数の態様を組み込む一例の実施形態を、説明し、図面に例示する。これらの例示した例は、本発明に関する限定であることは意図されない。例えば、本発明の1つまたは複数の態様は、他の実施形態、および他のタイプのデバイスででも利用され得る。さらに、ある種の専門用語が、単に便宜のために本明細書で使用されるが、本発明に関する限定とみなされるべきではない。その上さらに、図面では、同じ参照番号が同じ要素を指定するために利用される。
【0011】
一例の中性子検出器10の概略透視図を、図1内に全体的に示す。図1は可能な構造/構成/その他の一例を示すこと、および、他の例が本発明の範囲内で考えられることを理解されたい。一具体例では、中性子検出器10は、例えば、中性子により引き起こされる核反応で放出される帯電した粒子を観測することにより、通過する中性子を検出するために使用される。中性子検出器10は、使用済み核燃料の放射線モニタリングなどの様々な用途で、または、国土安全保障の用途で使用され得る。
【0012】
中性子検出器10は、外殻20を含み得る。外殻20は、円筒形の外殻20を形成することで、円形の断面を有し得るが、他の断面の形状もまた考えられる。外殻20は、気体を包含し得る内部容積50の境界となるように、壁30および2つの端部40を含み得る。壁30は、壁部分30の一例である。壁部分は、壁の全部もしくは一部、または、外殻20に電気的に接続される壁面を有する他の任意の構造であり得ることを理解されたい。
【0013】
電気回路では、外殻20はカソードとして作動し得る。中心構造54を定位置に保持し、電荷が中心構造54と外殻20との間を直接の接触によって通過するのを防止するために、絶縁体52が、外殻20の2つの端部40上に位置し得る。中心構造54は、全体的に、外殻20の中心軸の近くに位置し得る。中心構造54は、電線と同様の寸法比のものであり得るとともに、電気回路ではアノードとして作動し得る。ホウ素コーティング60は、壁30の内面を覆う。中性子検出器10は、中心構造54により収集した信号を伝送するために、絶縁体52の1つの上に装着される電気コネクタ61をさらに含む。
【0014】
図2に移ると、電気塗装としても知られている、静電噴霧塗布により、ホウ素コーティング60が壁30の内面に塗布される。図2および3に示すホウ素コーティング60を編成する粒子は、単に例示目的のためのものであり、実際の粒径または縮尺サイズを表さず、したがって、相対的な寸法設定のために使用されるべきではない(例えば、粒径は誇張される場合がある)ことを理解されたい。さらに、粒子の形状は、ホウ素含有粉末粒子の球状表現のみである。ホウ素含有粉末粒子は、不均整な形状および輪郭を含み得る。静電噴霧塗布は、ホウ素の小粒子すなわちホウ素含有粉末62を分散媒の内部で流動化させることを含む。分散媒の例には、空気、窒素、アルゴン、および当技術分野で知られているような他の気体などの圧縮気体がある。流動化した粒子は、アトマイザを通され、静電帯電される。静電帯電は、高圧電極からのコロナ放電によって、または、当技術分野で知られているような他の任意の粒子帯電方法によって、摩擦電気的に発生し得る。静電噴霧作業は、当技術分野で知られているような標準的な静電噴霧ガン66を使用することを含み得る。流動化した粒子は、中性子検出器10の外殻20の壁30の内面であり得る導電面上に噴霧される。静電噴霧ガン66は、導電面の領域全体に達するように、内部容積50を通って移動され得る。導電面の例には、金属、金属化した堆積層を伴う非金属、および加熱ガラスがあるが、それらに限定されない。静電噴霧工程の間、導電面は電気的に接地され、それによって、導電面と、ホウ素含有粉末62の静電帯電した流動化した粒子との間に、電気的引力(または付着力)をもたらす。
【0015】
ホウ素含有粉末62の流動化した粒子の静電噴霧塗布の際には、静電鏡像力が、流動化した粒子を導電面に付着させ、帯電した物体が導電体の付近に持ち込まれるときは常に生起する。平衡状態では、導体内に電場は存在し得ない。したがって、電荷はその表面に、任意の外部の電荷の場を遮蔽するように移動する。導体の外側では、この表面電荷の影響は、導体が除去され、その後、外部の帯電体の大きさが等しく反対の鏡像により置換される場合に観測されることになるものと同一である。帯電した流動化した粒子と、導体内のそれらの「像」との間の引力が、流動化した粒子のコーティングを定位置に保持する。静電鏡像力は、流動化した粒子の静電堆積の直後は、付着の主要な力である。これらの力は、典型的には、比較的短い期間内で消失するが、数分から数時間持続する場合もある。
【0016】
静電鏡像力が消失した後では、3種類の付着力が、静電堆積した流動化した粒子の、導電面への最終的な付着の原因となるのに十分な大きさおよび範囲を有する。これらの力は、静電接触電位力、ファンデルワールス力、および毛管力である。静電接触電位力は、流動化した粒子を導電面に向けて付着させ、これらの静電力は、静電鏡像力が消失した後、付着の主要な力のままである。流動化した粒子上の電荷の符号は、この付着機構からのクーロン力が、流動化した粒子を帯電させる、摩擦電気的およびコロナ帯電の両方の方法に起因する力を建設的に増大するようなものである。静電接触電位力は、接触する異種材料に対してのみ当てはまる。したがって、それは、導電面へのコーティングの付着の一助になり得るが、流動化した粒子の相互に対する凝集力の一助にはなり得ない。静電噴霧装置がもはや電場を生出しない場合、または、導電面が後続の工程処理のために引き離される場合、静電接触電位力は消滅する。
【0017】
ファンデルワールス力もまた、流動化した粒子を導電面に付着させる助けとなる。ファンデルワールス力は、物体が密接に接触される任意のシステムで存在することになる。これらの力の大きさは、いくらかは、(ホウ素含有化合物などの)流動化した粒子の選定に左右されるが、それは、典型的には、粒子が十分に小さく、ホウ素コーティング60が粒子間の数多くの密接した接触を与えるような形で形成されるならば、導電面への流動化した粒子の充分な付着性をもたらすのに十分に大きい。密接した接触状態の流動化した粒子に対して、ファンデルワールス力は、非常に強いものであり得るが、その力は、実際の接触の領域に対して有効であるのみである。
【0018】
毛管力もまた、流動化した粒子を導電面に付着させる助けとなる。2つの流動化した粒子間の、または、流動化した粒子と導電面との間の接触の部位に存在する液体が、付着力に非常に影響を与える場合がある。毛管力は、説明した他の付着力より大きい程度の大きさであり得る。このため、静電堆積したコーティングの付着性を一時的に向上させるために、水蒸気処理作業が使用される場合もある。水が蒸発する際に、毛管力は消滅する。それでも、毛管力が存在する場合、局所的な小さな粒子の再配列または接触領域の増大に起因して、有益な残留性の付着の増大となることが多い。
【0019】
図3に移ると、説明した付着性力が、流動化した粒子と導電面との間に必要な付着性を提供しない場合、添加剤または結合剤70が、粉末または液体のいずれかの形態で工程に加えられる場合がある。これらの結合剤70は、典型的には、熱硬化であり得るポリマー、または、溶媒の蒸発によって硬化することになる溶媒和したポリマーである。しかしながら、添加剤または結合剤70は、必ずしも存在するわけではない。
【0020】
ホウ素またはホウ素含有粉末の、結果として得られる静電噴霧堆積に著しく影響を与える4つのパラメータ、すなわち、粒径、粒子導電率、湿度、および噴霧装置に対する高圧設定を決定した。粒径は、ホウ素コーティング60の形成に強い影響を与える。個別の粒子に関する飽和電荷は、粒子半径の2乗(r2)に比例して変動する。コーティングの単位厚さあたりの粒子数は、粒子半径の3乗の逆数(1/r3)に比例して変動するので、コーティング上の電荷は、粒子半径の逆数(1/r)に比例する。したがって、粒径が小さいほど、電荷が大きくなり、静電付着性が良好になる。
【0021】
粒径は、その粒子終端速度との関係のために、ホウ素またはホウ素含有粉末の、結果として生じる静電噴霧堆積にさらに影響を与える。流動化した粒子の終端速度は、粒子半径に正比例する。サイズが小さいほど、静電噴霧アトマイザの分散媒に対する速度が小さくなり、したがって、堆積率が低くなる。さらに、流動化した粒子が変形可能である場合、粒子速度がより小さいと、導電面との衝突の際に引き起こす弾性変形がより小さくなり、考えられるファンデルワールス付着力よりいくらか弱いものをもたらすことになる。
【0022】
粒径は、ホウ素コーティング60の厚さの寸法にさらに影響を与える。導電面に当たる最初の流動化した粒子は、粒子電荷の2乗を粒子半径の2乗の4倍で割ったもの(q2/4r2)に等しいそれらの鏡像力により、導電面に引きつけられる。大部分の状況では、堆積した粒子は、それらの電荷がゆるやかに消失し、各個の後続の層が、面の電位を上昇させる。最終的に、ある程度の限定的なホウ素コーティング60の厚さで、導電面へのそれ以上の堆積は行われなくなる。この臨界の厚さを超えるためのいかなる試みも、層の絶縁耐力より高く面の電位を持ち上げることになり、限局性の放電をもたらし、電荷の大部分が導電面に漏洩することになる。余分なホウ素含有粉末62を導電面上に電気噴霧することでのいかなる試みも、余分な流動化した粒子は、コーティング面上でそれらの位置を維持するための付着性力が十分でないために、コーティングから落下する結果になる。限定的なコーティングの厚さは、粒径によって決まることになり、より小さな粒径は、典型的には、低減した限定的なコーティングの厚さをもたらす。一例では、限定的なコーティングの厚さは約25ミクロンであり得る。
【0023】
粒子導電率は、ホウ素またはホウ素含有粉末の、結果として生じる静電噴霧堆積に著しく影響を与え得る別の要因である。約10-8ジーメンス・センチメートル-1(Scm-1)を超える導電率を呈する流動化した粒子に対しては、摩擦帯電は最小であり、コロナ電荷は導電面に対して急速に失われ、導電面に対する粉末の付着性を低下させる。流動化した粒子がさらに大きな導電率を呈すると、電荷が導電面から得られ得るとともに、粉末はそれ自体を導電面から反発させる傾向を持つようになる。約10-12から10-14Scm-1未満の導電率を呈する粉末に対しては、堆積の間は収集面により電荷が中和され得ないので、堆積効率は悪化する。導電率がほとんどない流動化した粒子は、外側の粉末層間に電圧勾配を生成する傾向があり、導電面は、それを、空気のスパーク絶縁破壊の間に超えることができ、「バックコロナクレータリング(back−corona cratering)」または「電圧ホール(voltage hole)」として知られている状況を生成する。限局性の絶縁破壊は、粉末の電荷を中和する、反対に帯電したイオンを生成し、堆積した粉末内にクレータを生成する。流動化した粒子の導電率は、静電噴霧堆積塗布での粉末堆積効率において重要な要因である。静電堆積環境の温度または湿度を調節することで、粉末の導電率を有益に変えることができる。一般的な条件剤は、水蒸気、トリエチルアミン、H2SO4、SO2、NaCl、およびNaOHを含み得るが、それらに限定されない。
【0024】
静電堆積環境の湿度は、ホウ素またはホウ素含有粉末の、結果として生じる静電噴霧堆積に著しく影響を与え得る別の要因である。静電噴霧機器と導電面との間に印加され得る、それを過ぎると空気のスパーク絶縁破壊が発生する最大電圧が存在する。一般に、一定温度では、印加される最大電圧は、より高い湿度レベルでは上昇され得る。したがって、湿度が高いほど、使用可能な帯電および駆動電圧が、より高く、静電堆積塗布で利用され得る。しかしながら、湿度が高いために水分が実際に静電噴霧機器上に凝縮するならば、他の電圧漏洩経路が生じる可能性がある。さらに、粉末が高い導電率を呈するならば、高い湿度が、粉末の帯電工程に悪影響を与える場合がある。湿度はさらに、前に説明した毛管力においても重要な役割を演じる。
【0025】
静電噴霧機器に対する高圧設定は、ホウ素またはホウ素含有粉末の、結果として生じる静電噴霧堆積に著しく影響を与え得る別の要因である。粒子の最大電荷と静電噴霧デバイスの高圧設定との間に、直接の関係が存在する。したがって、静電噴霧デバイスの電圧の大きさの増大により、粉末粒子の電荷の大きさが増大し、静電噴霧デバイスの電極では、より高密度の粉末粒子雲が形成されるので、粉末のコーティングの厚さは増大し得る。粉末のコーティングの厚さの、結果として得られる増大によって、所望のホウ素コーティング60の厚さを実現するために、より高速の静電噴霧デバイスの線速度およびより少ない塗布を可能にすることにより、導電面のより有効なホウ素粉末のコーティングが生じ得る。
【0026】
中性子検出器10の内面上にホウ素コーティング60を生成するための、ホウ素含有粉末62の静電噴霧は、導電面の面の特徴に均一に適合するさらなる利益を提供することができる。導電面の表面上の隆起およびくぼみなどの微細特徴が存在し得るとともに、そのような微細特徴は、典型的なホウ素コーティング塗布により不充分に覆われる場合がある。例えば、ホウ素コーティング塗布の一方法は、ホウ素またはホウ素化合物の水性分散液に導電面を浸漬することを含む。水分子の毛管作用が、ホウ素またはホウ素化合物が、導電面の微細特徴を均一に覆うことを妨げる場合がある。中性子検出器用のホウ素コーティングの一部の塗布は、円筒体の内部に対するホウ素コーティングのスラリー塗布を含み得る。後続の乾燥作業の際に、スラリーが完全な乾燥の前に流れる場合があるため、重力がホウ素コーティングの厚さに影響を与える場合がある。ホウ素含有粉末の静電噴霧塗布は、ホウ素含有粉末のスラリーに関する重力の望ましくない影響をなくすることができる。例えば、円筒形の中性子検出器の構成要素が、内径をコーティングするスラリーを乾燥するために、円筒の軸が垂直方向にあるように吊着され得る。その後当然ながら、重力が、円筒の長さにわたって不均等なホウ素コーティングおよび不定の内径を生成するように、スラリーを下方に円筒を通して引いて動かす。ホウ素コーティングの不定の内径は、この乾燥方法の後、典型的には、円筒の頂部でのより薄いコーティングおよび円筒の底部でのより厚いものとなる。これは、より長い長さの円筒では特に問題となり得る。代わりに、静電噴霧塗布は、ホウ素含有粉末62の静電引力を直接、限局性の隆起およびくぼみなどの任意の存在する微細特徴を含めて、導電面の表面のすべての領域に提供する。これによって、円筒の内径上に、より良好な、端から端までのコーティングの一貫性が生まれる。
【0027】
ホウ素含有粉末62は、純粋なホウ素、ホウ素化合物、またはホウ素を含有する混合物を含み得ることを理解されたい。ホウ素含有粉末62は、特有の比の自然発生同位体のホウ素をさらに含み得る。例えば、総ホウ素含有量が、重量単位で約97%の最小値である場合があり、総ホウ素含有量に対する10B同位体の比が、重量単位で約98%の最小値である場合がある。ホウ素には、2つの自然発生同位体、10Bおよび11Bがあり、典型的には、約20%の10Bと約80%の11Bの比で発見される。平均的な状況では、2つの同位体は、自由中性子と相互作用する場合にまったく異なって反応する。理想的には、中性子検出器10に入る中性子は、10Bにより吸収され、その後10Bは、粒子の相互作用のカスケードを引き起こすことが可能な他の帯電した粒子を放出し、その後カスケードは、中性子検出器10の中心構造54のアノード部分と相互作用する(図1で最良に確認される)。典型的な中性子検出器10は、検出した中性子または中性子の群を表す信号を生じさせるために、これらの放出した帯電した粒子、および他の結果として生じる粒子の相互作用のカスケードに依存する。しかしながら、11B同位体は、他の帯電した粒子を放出することなく単に中性子を吸収し、中性子検出用途での使用に対して11Bは無力であると考えられる。2つの自然発生ホウ素同位体間の中性子吸収の挙動でのこの違いは、総ホウ素含有量に対する10B同位体の比が、中性子検出器10の有効性に近似的に等しいことを意味する。例えば、ホウ素コーティング60が、92%の10Bおよび8%の11Bを含有するならば、中性子検出器10は、コーティングした領域にわたって(コーティング内の小量の不純物を無視すると)92%有効であることになる。したがって、実際的に達成可能であるほどに高い、ホウ素含有粉末62内の総ホウ素含有量に対する10B同位体の比を生成することが望ましい。
【0028】
一例では、ホウ素含有粉末62は、ジェットミルを使用してホウ素供給原料を指定の粒径にすることにより生成される結晶性ホウ素粒子を含み得る。例えば、約75%を超える粒子が、直径が約1ミクロン未満であり、約95%を超える粒子が、直径が約3ミクロン未満であり、本質的には、すべての粒子が、粒子の直径が約15ミクロン未満である。最適な中性子検出器10の性能は、部分的には、外殻20の中性子検出器の壁30に塗布される比較的薄いホウ素コーティング60によって決まる。理想的には、中性子検出器10に入る中性子は、ホウ素により吸収され、その後ホウ素は、内部容積50の内部で粒子の相互作用のカスケードを引き起こすことが可能な他の帯電した粒子を放出し、その後カスケードは、中性子検出器10のアノード部分と相互作用する。しかしながら、ホウ素粉末塗布が比較的厚いならば、ホウ素は、他の帯電した粒子を放出することなく単に中性子を吸収し、「セルフトラッピング」となり、中性子検出器10を無力にすることになる。したがって、中性子検出器10の面上の比較的薄いコーティングを可能にするために、直径が約1ミクロンの粒径である最適化したホウ素粉末を得ることが望ましい。ホウ素の粒径を約1ミクロンにすることは、静電噴霧ガン66による静電噴霧塗布に対して、さらに中性子検出用のホウ素含有粉末62の堆積の様々な他の方法において特に有効である。中性子検出器10内の望ましいホウ素コーティング60の厚さは、2〜5ミクロンの厚さ、または代わりに、3〜4ミクロンの厚さであり得る。
【0029】
静電噴霧塗布は、粉末を導電面全体に1度に1つの層で堆積させる静電付着力によって、均一で薄いコーティングを導電面に塗布するのに特に良好に適している。例えば、静電噴霧作業に起因する付着力は、粉末粒子を、ホウ素粒子を引きつけるための最大の力を付与する導電面上の領域に向けるので、帯電したホウ素粒子の不均等な塗布は起こらない。ホウ素粒子を引きつけるための最大の力を付与する領域は、導電面を覆うホウ素粒子の層がない領域である。追加的なホウ素粒子は、ホウ素粒子の層によりすでに覆われた領域には、引きつけられず、また付着もしないことになり、必然的に、ホウ素粒子を有さない領域にまず向けられることになる。導電面の面全体がホウ素粒子で覆われた後にのみ、ホウ素の第2の層が、前に堆積したホウ素粒子に付着することになる。ホウ素含有粉末62の静電噴霧塗布は、噴霧装置の1回のパスで、中性子検出に対して有効であるホウ素粒子の単一の層を堆積させることができるが、噴霧装置の複数回のパスもまた考えられる。
【0030】
静電噴霧塗布が完了した後、導電面およびホウ素コーティング60は、ホウ素コーティング60を導電面にさらに付着させるために後続の工程処理を受ける場合があるが、これは必須のステップではない。一例では、導電面およびホウ素コーティング60は、ホウ素分子が導電面内に移動する、導電面のホウ化を行うために、上昇した温度を必要とする場合がある。しかしながら、多くの場合では、説明した付着性力は、さらなる工程処理なしで、ホウ素コーティング60を壁30の内面に充分に付着させることになる。ホウ素コーティング60および導電面上の何らかの不要な静電荷を除去するための水分処理を含む、静電噴霧の後の他の作業が行われる場合もある。
【0031】
中性子検出用途用のホウ素含有粉末62の一例では、ホウ素粉末と混合された可溶性残留物は、ホウ素の1グラムあたり7.00×10-4グラム未満の可溶性残留物である。可溶性残留物の一例は、有機汚染物質である。有機という用語は、広範囲かつ拡張的な部類であることを理解されたい。一部では、その部類は、炭素成分を含有する材料を含む。有機汚染物質は、空気圧縮機の油、ジェットミルの内部上で使用されるポリマーの内張り材料の粒子、および、ポリマーの内張り材料をジェットミルの内壁に付着させるために使用される付着材料などの供給源から、ジェットミルを使用する作業の間にホウ素粉末に取り入れられる場合がある。ホウ素含有粉末62の静電噴霧は、必ずしも、粉末を導電面に付着させるための結合剤70を必要としない。したがって、ホウ素含有粉末62の静電噴霧塗布は、ゴム結合剤ベースの分散液を用いた油中ホウ素粉末などの、一部の以前から知られているホウ素塗布工程と比較して、完成したホウ素コーティング60内の可溶性残留物の量を低減することができる。
【0032】
最適な中性子検出器10の性能は、部分的には、中性子検出器10の面に塗布されるホウ素粉末内の可溶性残留物の最小レベルによって決まる。有機汚染物質などの可溶性残留物は、気体を放出し、中性子検出器10の内部容積50に有機化合物をもたらす場合がある。製作工程の間に、内部容積50は、中性子検出器10の有効な動作のために特有の配合組成の気体で満たされる。気体の放出に起因する有機化合物は、この特有の配合組成の気体を汚染し、中性子検出器10の有効な動作を抑制する場合がある。したがって、中性子検出用途用に、ホウ素含有粉末62が、ホウ素の1グラムあたり7.00×10-4グラム未満の可溶性残留物を含有することが特に望ましい。
【0033】
ホウ素含有粉末の静電噴霧塗布はさらに、中性子検出器の壁30の内面へのホウ素コーティング60の塗布において、結合剤70を不要にする場合がある。静電噴霧作業では、ホウ素含有粉末62を導電面に推進し、粉末を導電面に付着させるために、圧縮気体および電磁力に依存し得る。電磁付着力は、ホウ素コーティング60を導電面上で維持するために必要な唯一の力であるように利用され得る。
【0034】
中性子検出器10の有効性は、ホウ素コーティング60でホウ素と混合された化学元素および化学化合物により悪影響を受ける場合がある。ホウ素コーティング塗布工程から結合剤70の材料を除去することは、中性子検出器10の有効性を低減する場合がある、ホウ素コーティング60内の材料の量を制限する助けとなる。ガンマ線が、ホウ素以外の材料に、中性子検出器10の内部容積50に帯電した粒子を放電するように強いる場合がある。さらに、これらの帯電した粒子は、中性子検出器10の中心構造54のアノードに引きつけられ、誤った正の中性子検出信号を生成する場合がある。ホウ素は、ガンマ線の影響を受けないので、誤った正の中性子検出信号を生成する、ガンマ線との相互作用に起因する帯電した粒子を放電しないことになる。したがって、結合剤70を不要にすることで、より有効な中性子検出器10をもたらすことができる。さらに、結合剤70の除去は、ホウ素含有粉末62と混合され得る可溶性残留物の量を制限する助けとなる。最適な中性子検出器10の性能は、前に説明したように、部分的には、中性子検出器10の導電面に塗布されるホウ素含有粉末62内の可溶性残留物の最小レベルによって決まる。
【0035】
ホウ素含有粉末62の静電噴霧はさらに、中性子検出器10の製作のコストを下げることができ、一方でさらに、一貫性のある中性子検出器10の感度を確実にする助けとなる。例えば、ホウ素含有粉末62の静電噴霧は、室温および大気圧で行われ得るものであり、ホウ素コーティング塗布用の特別な環境を維持するコストが不要になる。ホウ素含有粉末62の静電噴霧はさらに、カバーガスをほとんどまたは少しも用いずに行われ得るものであり、特別な環境のコストが不要になる。製作工程でこれらの変動値が不要になることは、さらに、中性子検出器10の感度レベルでの、繰り返し可能で再現可能な結果を確実にする助けとなる。ホウ素コーティング60の静電噴霧塗布は、真空蒸着などのホウ素含有粉末塗布技法の他の方法と比較して、中性子検出器10に対する製造コストを低くすることができる。
【0036】
ホウ素含有粉末62の静電噴霧はさらに、最終的な製品での導電面上にとどまることになる、ホウ素含有粉末62の実際の量により近い、所定の量のホウ素含有粉末62を導電面上に塗布することにより、中性子検出器10の製造工程での廃棄物の量を下げることができる。ホウ素含有粉末62のスラリー、および無関係な材料の後続の排出を利用する方法は、廃品の量が比較的大きい。
【0037】
スラリー塗布と比較してのホウ素含有粉末62の静電噴霧の別の利点は、塗布に先立つホウ素材料の保管に関係する、低減したコストおよび労力である。ホウ素含有粉末62の静電噴霧を利用する中性子検出器10の製作作業は、乾燥したホウ素粉末の保管を含む。代わりに、以前から知られているホウ素のスラリー塗布は、ホウ素含有液体の保管を含む。これらの液体は、保管した液体での適正な粘度の維持、カビの増殖、菌類の増殖、中性子検出器10の円筒に無関係に塗布されたとして排出された液体の回収、液体のろ過、および液体内の凝集体の最小化などの、保管および製作工程の懸念をもたらす。ホウ素含有粉末62の保管および静電噴霧には、これらの懸念が何一つない。
【0038】
さらに、ホウ素含有粉末62の静電噴霧は、スラリーベースの塗布と比較して、ホウ素分子の酸化に対する懸念を低減する。ホウ素スラリー内の水の存在は、遊離酸素がホウ素分子と結合することを可能にする、水分子の解離に対する可能性をもたらす。酸化ホウ素分子は、中性子検出器10のホウ素コーティング60に含まれる場合、中性子検出器10の効率を低減することが知られている。
【0039】
ホウ素コーティング60を中性子検出器の導電面上に堆積させる一例の方法を、図4で全体的に説明する。この方法は、図1に示す一例の中性子検出器、ならびに、図2および3に示す流動化した粒子の塗布に関連して遂行され得る。この方法は、中性子検出器の導電面を用意するステップ110を含む。導電面は、金属、金属化した堆積層を伴う非金属、または、その導電率を向上させるために加熱されるガラスで製作され得る。導電面は、円筒の内面であり得るが、内面を含む他の幾何形状もまた考えられる。
【0040】
この方法は、中性子検出器の導電面に、ホウ素含有粉末を静電噴霧するステップ120をさらに含む。静電噴霧工程の間、導電面は電気的に接地され、それによって、導電面と、ホウ素含有粉末の静電帯電した流動化した粒子との間に、電気的付着力をもたらす。付着力は、流動化した粒子を導電面に結合する。結果として生じるホウ素コーティング60は、中性子検出器の導電面にわたって均一に塗布されて、最適な厚さを有する。さらに、ホウ素コーティング60は、中性子検出器の導電面上に位置する、任意の存在する微細特徴に適合する。
【0041】
この方法の一例では、ホウ素含有粉末の流動化した粒子の静電噴霧と同時に、結合剤が導電面に塗布され得る。静電付着力が、ホウ素コーティングを導電面上で定位置に保持するのに十分に強くない場合は、この追加的なステップが必要となり得る。この方法の別の例では、ホウ素コーティングの均一の厚さは、2から5ミクロンの間である。この方法のさらに別の例では、ホウ素コーティングの均一の厚さは、3から4ミクロンの間である。
【0042】
この方法の別の例では、ホウ素含有粉末は、重量単位で約97%の最小の総ホウ素含有量、および、重量単位で約98%の、総ホウ素含有量に対する最小の比の10B同位体を含む。この方法の別の例では、ホウ素含有粉末は、ホウ素の1グラムあたり7.00×10-4グラム未満の可溶性残留物の、ホウ素と混合された所定の量の可溶性残留物を含む。
【0043】
本発明を、上記で説明した一例の実施形態を参照して説明した。本明細書を読み、理解することによって、他者が修正および代替方法に想到するであろう。本発明の1つまたは複数の態様を組み込む一例の実施形態は、すべてのそのような修正および代替方法を、それらが添付の特許請求の範囲の範囲内にある限り、含むことが意図される。
【符号の説明】
【0044】
10 中性子検出器
20 外殻
30 壁
40 端部
50 内部容積
52 絶縁体
54 中心構造
60 ホウ素コーティング
61 電気コネクタ
62 ホウ素含有粉末
66 静電噴霧ガン
70 結合剤
110、120 ステップ

【特許請求の範囲】
【請求項1】
内部容積の境界となる外殻と、
カソードの働きをする少なくとも1つの壁部分と、
前記内部容積の内部に位置し、アノードの働きをする中心構造と、
前記壁部分上のホウ素コーティングであって、静電噴霧工程により塗布されるホウ素コーティングと、
前記中心構造により収集した信号を伝送するために、前記中心構造に動作可能に接続される電気コネクタと
を含む中性子検出器。
【請求項2】
前記壁部分が、微細特徴を有し、前記ホウ素コーティングが、前記壁部分上の前記微細特徴に適合する、請求項1記載の中性子検出器。
【請求項3】
前記壁部分が、前記外殻の一部である、請求項2記載の中性子検出器。
【請求項4】
前記ホウ素コーティングの厚さが、2から5ミクロンの間である、請求項2記載の中性子検出器。
【請求項5】
前記ホウ素コーティングの厚さが、3から4ミクロンの間である、請求項2記載の中性子検出器。
【請求項6】
前記ホウ素コーティングが、重量単位で約97%の最小の総ホウ素含有量、および、重量単位で約98%の、前記総ホウ素含有量に対する最小の比の10B同位体を含む、請求項2記載の中性子検出器。
【請求項7】
前記ホウ素コーティングが、ホウ素の1グラムあたり7.00×10-4グラム未満の可溶性残留物の、前記ホウ素と混合された所定の量の可溶性残留物を含む、請求項2記載の中性子検出器。
【請求項8】
前記内部容積が、少なくとも1つの気体を含む、請求項2記載の中性子検出器。
【請求項9】
前記壁部分が、円筒である、請求項2記載の中性子検出器。
【請求項10】
前記壁に対する前記ホウ素コーティングの付着性を増大するための結合剤をさらに含む、請求項2記載の中性子検出器。
【請求項11】
内部容積の境界となる外殻と、
カソードの働きをし、微細特徴を有する少なくとも1つの壁部分と、
前記内部容積の内部に位置し、アノードの働きをする中心構造と、
前記壁部分上のホウ素コーティングであって、前記壁部分上の微細特徴に適合し、2から5ミクロンの間の厚さを有するホウ素コーティングと、
前記中心構造により収集した信号を伝送するために、前記中心構造に動作可能に接続される電気コネクタと
を含む中性子検出器。
【請求項12】
前記壁部分が、前記外殻の一部である、請求項11記載の中性子検出器。
【請求項13】
前記ホウ素コーティングの前記厚さが、3から4ミクロンの間である、請求項11記載の中性子検出器。
【請求項14】
前記ホウ素コーティングが、重量単位で約97%の最小の総ホウ素含有量、および、重量単位で約98%の、前記総ホウ素含有量に対する最小の比の10B同位体を含む、請求項11記載の中性子検出器。
【請求項15】
ホウ素コーティングを中性子検出器の面上に堆積させる方法であって、
前記中性子検出器の導電面を用意するステップと、
前記中性子検出器の前記導電面に、前記中性子検出器の前記導電面にわたるホウ素コーティングをもたらすホウ素含有粉末を静電噴霧するステップと
を含む方法。
【請求項16】
前記中性子検出器の導電面を用意する前記ステップが、微細特徴が前記導電面上に位置する前記導電面を用意するステップを含み、前記中性子検出器の前記導電面に、ホウ素含有粉末を静電噴霧する前記ステップが、前記導電面上に位置する前記微細特徴に適合する、前記導電面にわたるホウ素コーティングをもたらす、請求項15記載の方法。
【請求項17】
前記導電面に対する結合剤の塗布をさらに含む、請求項16記載の方法。
【請求項18】
前記ホウ素コーティングの厚さが、2から5ミクロンの間である、請求項16記載の方法。
【請求項19】
前記ホウ素コーティングの厚さが、3から4ミクロンの間である、請求項16記載の方法。
【請求項20】
前記ホウ素含有粉末が、重量単位で約97%の最小の総ホウ素含有量、および、重量単位で約98%の、前記総ホウ素含有量に対する最小の比の10B同位体を含む、請求項16記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−61328(P2013−61328A)
【公開日】平成25年4月4日(2013.4.4)
【国際特許分類】
【出願番号】特願2012−193653(P2012−193653)
【出願日】平成24年9月4日(2012.9.4)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)
【Fターム(参考)】