説明

二軸延伸ポリアミド樹脂フィルム

【課題】層状化合物を含まない従来のポリアミド樹脂と同様の延伸条件で延伸することを可能とすることにより、層状無機化合物を大量に含有しつつも十分な面配向を有し、突き刺し強度に優れた二軸延伸ポリアミド樹脂フィルムを提供すること。
【解決手段】層状化合物を含む無機物が0.3〜20重量%添加されてなる二軸延伸ポリアミド樹脂フィルムであり、層状化合物が面内に配向しており、フィルムの面配向(ΔP)が0.057〜0.075であり、フィルムの突き刺し強度/厚みの値が0.88〜2.50(N/μm)であることを特徴とする二軸延伸ポリアミド樹脂フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般にはナノコンポジットと言われる層状化合物を含有したポリアミド樹脂からなるフィルムに関する。更に詳しくは、従来1%以上の添加量において高倍率の延伸は不可能と言われていたナノコンポジットポリアミド樹脂の二軸延伸フィルムに関する。
【背景技術】
【0002】
二軸延伸ポリアミド樹脂フィルムは、力学特性、バリア性、耐ピンホール性、透明性などに優れ、包装用材料として広く用いられている。しかしながら、樹脂骨格中のアミド結合に由来する吸湿性の高さにより、湿度変化により力学強度が変化し、吸湿伸びが発生するほかに各種工程で問題が発生しやすい。また、樹脂そのもののガラス転移点はあまり高くなく、耐熱性、特に高温での力学特性の改良が望まれている。
【0003】
ポリアミド樹脂の耐熱性や吸湿性の改善方法として、層状ケイ酸塩を均一に分散させることが知られており、この手法はナノコンポジット化として知られている。ナノコンポジット化により上記の各種特性は改善されることから、フィルム化により特性が改善されたフィルムが得られるものと期待されるが、実際には、これらの樹脂は一般的に延伸性に乏しく、延伸フィルム用樹脂としては不適とされている。特に、力学特性改善の効果を充分高めるためにはポリアミド樹脂中に層状ケイ酸塩を重量残渣で1%以上添加することが必要であると言われているが、このような高い層状ケイ酸塩含有量のポリアミド樹脂では延伸の困難性は顕著なものであった。
【0004】
特許文献1では層状ケイ酸塩を含有する二軸延伸ポリアミドフィルムが開示されているが、延伸の困難性を克服するために逐次延伸で長さ方向に次ぐ幅方向の延伸で最高到達温度を180−200℃という高温を必須としており、生産上の困難さだけでなく、幅方向に充分な延伸が達成される前に結晶が過度に進むために、層状ケイ酸塩が充分に配向されておらず種々の層状ケイ酸塩の添加効果が出ない、微細な領域での厚み斑が発生する、耐ピンホール性が達成されない、と言った問題があった。
【特許文献1】特開2003−20349号公報
【0005】
さらに、このような特殊な方法を採っても特許請求の範囲から分かる通り、実用上は1重量%以下(層間に含有する有機分も含む)であり、それを越えると、延伸時の白化、高延伸倍率時の生産性の悪さなどが指摘されている。この原因について、延伸時に層状化合物の先端に応力が集中しやすく、グレーズやクラックが発生しやすいため、と考えられる。
【0006】
また、特許文献2には層状無機化合物を0.5〜5%添加した系での延伸フィルムについての特許も開示されているが、前述の延伸性が乏しい点を解決するための具体的な方策について全く記載はなく、実験室で小片を同時二軸延伸したレベルでの検討結果となっており、1%以上の高濃度での層状化合物が添加された系での逐次二軸延伸による工業的な生産性を具備した延伸方法についての技術的な開示は全く見られない。また、本文中にはモンモリロナイトなどの層状無機化合物は吸水性の遮断により滑り性の改善に効果があるとの記載があるが、モンモリロナイトのような材料をナイロン樹脂に添加すると樹脂の平衡吸水率は増加する。このことから、該発明の本質は無機滑剤の添加の効果によるところが大きいものといえる。
【特許文献2】特開2003−313322号公報
【0007】
以上のように、従来技術の延長線上では、上記の各種特性に優れるポリアミド樹脂からなる延伸フィルムの工業的生産は困難であった。
【0008】
特に、突き刺し強度については、この特性はポリアミド樹脂の面配向を高めることにより発現する性能であるが、突き刺し強度を更に高めるために層状化合物を添加すると逆に延伸倍率が高くならないことから突き刺し強度は層状無機化合物を添加しない系よりもほとんど向上しないなどの問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、従来延伸が困難とされていた層状ケイ酸塩などに代表される層状化合物を均一に分散させたポリアミド樹脂を、層状化合物を含まない従来のポリアミド樹脂と同様の延伸条件で延伸することを可能とすることにより、層状無機化合物を大量に含有しつつも十分な面配向を有し、突き刺し強度に優れた二軸延伸ポリアミド樹脂フィルムを提供することを課題とする。
【課題を解決するための手段】
【0010】
本発明者らは、層状化合物の面に対して垂直の方向の応力により、層状化合物に沿って容易にクラックが発生することが延伸における問題と考え、層状化合物の配向状態と延伸応力の低減について検討した結果、従来の方法では、層状化合物により分子鎖が固定されていたためにキャストシートを縦に延伸する際に幅や厚み方向にも分子鎖に大きな応力がかかっており、引き続く幅方向の高延伸が困難であったと考え、せん断応力がキャスト時のシートにより均一にかかるようにして面内方向への層状化合物の配向を促進させ、層状化合物先端に集中する応力により発生するクレーズやクラックの発生を抑制できる方法、と同時に厚み方向の絡み合い密度を下げることが可能な方法を見出し、更に詳細に延伸性低下の原因について検討を加えた。さらに、このような方法を採用して得られたフィルムは層状化合物が高いレベルで配向しており、従来にはない優れた特性を持つことを見出し、本発明に至った。
【0011】
すなわち、本発明は、以下の構成よりなる。
1. 層状化合物を含む無機物が0.3〜20重量%添加されてなる二軸延伸ポリアミド樹脂フィルムであり、層状化合物が面内に配向しており、フィルムの面配向(ΔP)が0.057〜0.075であり、フィルムの突き刺し強度/厚みの値が0.88〜2.50(N/μm)であることを特徴とする二軸延伸ポリアミド樹脂フィルム。
2. 縦方向の延伸倍率と横方向の延伸倍率の積により求められる二軸延伸による面積換算の延伸倍率が8.5倍以上であることを特徴とする上記第1記載の二軸延伸ポリアミド樹脂フィルム。
3. 二軸延伸が縦延伸−横延伸の順の逐次二軸延伸であり、フィルムの幅方向中央部分の屈折率をNyとするとき、縦延伸前のシートのNyであるNy(A)と一軸延伸後のシートのNyであるNy(B)との差Ny(A)-Ny(B)が0.003以上であることを特徴とする上記第1又は第2に記載の二軸延伸ポリアミド樹脂フィルム。
【発明の効果】
【0012】
本発明によると、従来の延伸方法では強度や外観の面で良好なものを得るのが困難とされていた、層状化合物を均一に分散させたポリアミド樹脂を均一にかつ外観の低下もなく高倍率で延伸することが可能であり、この方法により突き刺し強度に優れたポリアミド樹脂フィルムを提供することが可能となる。
【発明を実施するための最良の形態】
【0013】
以下に、本発明を詳細に説明する。
(ポリアミド樹脂)
本発明で使用されるポリアミド樹脂は、環状ラクタムの開環重合体、ジアミンとジカルボン酸の縮合物、アミノ酸類の自己縮合物など特に限定されないが、例示すると、ナイロン6、ナイロン7、ナイロン66、ナイロン11、ナイロン12、ナイロン4、ナイロン46、ナイロン69、ナイロン612、メタキシリレンジアミン系ナイロンなどが挙げられるがこれらに限定されるものではない。また共重合型ポリアミド樹脂を使用することも可能である。具体的にはメタキシリレンジアミンを共重合したナイロン6およびナイロン66、ナイロン6T、ナイロン6I、ナイロン6/6T共重合体、ナイロン6/6I共重合体、ナイロン6/ポリアルキレングリコール樹脂、ナイロン11/ポリアルキレングリコール樹脂、ナイロン12/ポリアルキレングリコール樹脂、ナイロン6/MXD6共重合体などの芳香族系ポリアミド樹脂が挙げられるがその他の成分を共重合したものも使用可能であるが、好ましくはナイロン6、ナイロン66、メタキシリレンジアミン系ナイロンが好ましい。特にメタキシリレンジアミン系ナイロン樹脂からなる層を少量積層させることでガス透過率を大幅に低減でき、本発明における好ましい例の一つである。
【0014】
また、これらの樹脂に対して後述のポリアミド樹脂のほか、その他の樹脂や添加剤を添加して使用しても差し支えない。また、経済性の面から、本特許で製造される回収フィルムをポリアミド樹脂の一部または全部として使用することが好ましい実施形態のひとつである。その他の樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂など公知の樹脂が使用可能であり、これらに限定されるものではない。
【0015】
(層状化合物)
層状化合物としては膨潤性雲母、クレイ、モンモリロナイト、スメクタイト、ハイドロタルサイトなどの層状化合物が挙げられるが、これらに限定されるものではなく、無機、有機にかかわらず使用できる。
【0016】
層状化合物の形状は、特に限定されるものではないが、長径の平均長さが0.01乃至50μm、好ましくは0.03乃至20μm、特に好ましくは0.05乃至12μm、アスペクト比は5乃至5000、好ましくは10乃至5000であるものを好適に用いることができる。
【0017】
上記のポリアミド樹脂に対する添加量は、0.3〜20重量%が好ましい。無機層状化合物は有機処理された層状化合物として添加される場合があり、添加量と後述の重量残渣による無機物の含有量(添加量)とは必ずしも一致しない場合がある。また、後述のように重量残渣から求める方法を採用すれば、他に層状無機化合物以外の無機物が少量添加されている場合もあり、本発明においては層状化合物を含む無機物の添加量として求められることになる。本発明における層状化合物を含む無機物の添加量は熱量計測装置(TGA)により得られる重量残渣から灰分を差し引いた値であり、具体的には層状化合物を含有する樹脂の室温から500℃まで昇温後の重量残渣を求め、その後樹脂灰分の値を差し引くことにより得られ、実施例1の場合では、TGAによる重量残渣4.4%、樹脂由来の重量残渣1.8%を差し引いて無機含有量2.6%と求めることができる。また、層状化合物中の有機処理剤の比率をTGAにより別途求め、その数値より計算することでも求めることができる。
【0018】
層状化合物含有量の下限値は、0.3%以上がより好ましく、0.5%以上が更に好ましく、最も好ましくは0.7%以上である。0.3%未満では寸法安定性や力学特性の面で小さいため層状化合物添加の効果が小さく好ましくない。また、静摩擦係数が大きくなり、滑り性が低下することがある。また、上限は、20%以下がより好ましく、15%以下が更に好ましい。20%を超えると寸法安定性や突き刺し強度などの面での効果が飽和するため経済的ではなく、また溶融時の流動性も低下するため、好ましくない。また、表面粗さが不必要に大きくなりすぎたり、ヘイズが低下する。
【0019】
これらの層状化合物は一般的なものが使用できるが、後述のモノマー挿入重合法において好適に使用される有機処理された市販品としては、Southern Clay Products製のCloisite、コープケミカル製ソマシフやルーセンタイト、ホージュン製エスベンなどが挙げられる。
【0020】
層状化合物は前述のポリアミド樹脂中に均一に分散されていることが本発明において好ましいが、その製造方法を例示すると、
1.層間挿入法:
1)モノマー挿入重合法
2)ポリマー挿入法
3)有機低分子挿入(有機膨潤)混練法
2.In-situ法:In-situフィラー形成法(ゾルーゲル法)
3.超微粒子直接分散法
などが挙げられる。市販の材料としては、Nanopolymer Composite Corp.製のCress Alon NF3040、NF3020、宇部興産製のNCH 1015C2、Nanocor製Imperm103、Imperm105などが挙げられる。ポリアミド樹脂中に含まれる層状化合物の粗大物の発生を抑制するために層状化合物の分散性を高めることを目的に各種の有機処理剤で層状化合物は処理されることが好ましいが、溶融成形時の処理剤の熱分解による悪影響を避けるために、熱安定性の良い低分子化合物の使用や低分子の化合物を使用しないモノマー挿入重合法などの方法を用いて得られたものが好ましい。熱安定性については、処理を行った層状化合物の5%重量減少温度が150℃以上の化合物が好ましい。測定にはTGAなどが使用できる。熱安定性の低いものでは、フィルム中に気泡が発生したり、着色の原因となったりするため好ましくない(挑戦するナノテク材料 用途展開の広がるポリマーナノコンポジット、発行:住ベ・筒中テクノ(株)ご参照)。
【0021】
これらの層状化合物は得られるフィルム中において、その面内に配向していることが特性発現のために好ましい。面内への配向については、断面を透過型電子顕微鏡、走査型電子顕微鏡を用いて観察することにより確認できる。
【0022】
(製膜方法)
本発明における層状無機化合物を含有する樹脂の延伸において、一般的に経済的な面で利点のある逐次二軸延伸を用いて延伸する際の問題については、(1)縦方向(以下MDと略)の延伸において、延伸時の熱で結晶化が進み、一軸延伸後に横方向(以下TDと略)の延伸性が失われてしまう、(2)TD延伸時に破断が起こる、(3)TD延伸後の熱固定時に破断が起こる、の3点が挙げられるが、(1)については、TD延伸が可能なMD延伸条件とTD延伸が不可なMD延伸条件を整理したところ、MD延伸後の一軸延伸シートの幅方向の屈折率(Y軸方向の屈折率、以下Nyと略)に違いがあることがわかった。具体的にはTD延伸可能な一軸延伸シートのNyはMD延伸後にNyが小さくなっているのに対して、TD延伸ができない(すなわちTD延伸時に白化する、または破断してしまう)一軸延伸シートのNyはMD延伸後にNyの変化が小さいあるいは変化が見られないことがわかった。通常のポリアミド樹脂の延伸においては、MD延伸後のNyはMD延伸時に幅方向にネックインが起こると同時にNyが小さくなるが、層状化合物が添加されている場合にはネックインは起こるがその層状化合物とポリアミド樹脂分子との相互作用でNyが小さくなりにくい傾向があることがわかった。これは、延伸前のフィルムの分子鎖はMD、TD方向にランダムに向いているため、MD延伸で分子鎖がMD方向に引き延ばされる際にはTD方向への力も発生するが、通常のポリアミド樹脂の延伸ではTD方向にネックインすることでTD方向にもかかる力を逃がすことができる一方、層状化合物を含有するポリアミド樹脂の場合には、分子鎖が層状化合物に拘束されているためにTD方向の力を逃がすことができずに、あたかもTD方向にも分子鎖が引き延ばされた様な状態になってしまうためや、MD延伸の際に層状化合物が回転し、それによりMD方向以外の方向にも分子が引っ張られるためと考えられた。すなわち一軸延伸後に面配向が既に高い状態にある。このため、続いて行うTD延伸時の延伸応力が高くなり破断してしまうものと考えられた。
【0023】
これを解決する方法として、MD延伸後にNyが小さくなる延伸条件を採用することにより、つづいて行うTD延伸も破断等生じさせることなく高倍率で延伸が可能となり、本発明のフィルムを工業的な規模で製造することが可能となった。
【0024】
縦延伸前の幅方向の屈折率をNy(A)、縦延伸後の幅方向の屈折率をNy(B)とした場合にNy(A)-Ny(B)が0.001以上となることが好ましい。さらには0.002以上、最も好ましくは0.003以上となることが好ましい。
【0025】
一軸延伸後のNyを下げる方法としては、MD延伸速度を大幅に下げる方法が適用可能であるが、それ以外に同様の効果が溶融押し出し後の未延伸シートを多層化することにより得られる。これは、多層化により厚み方向に分子鎖の絡み合い密度を下げることで、分子鎖の変形のしやすさを改善することでNyが小さくなることが可能となり、その結果、MD延伸時の面配向の上昇を抑制でき、TD延伸性を改善できる。これらの方法により、二軸延伸性改善が可能となり、工業的に実用性の高い製造方法と特性に優れた延伸フィルムを実現できることを見出した。
【0026】
(フィルムの構成)
本発明の二軸延伸ポリアミド樹脂フィルムは、本質的には層状化合物が均一に分散されたポリアミド樹脂層を有する未延伸ポリアミド樹脂シートを延伸して得られるものであり、基本的には単層構成のものでも延伸可能であるが、工業的な側面からは多層化されたシートを延伸するほうが好適である。
【0027】
以下に多層化の場合について記載する。
全層数や層の厚みについて、層数の下限は、6層以上がより好ましく、8層以上が更に好ましい。6層未満では、層状化合物の延伸前の状態での面内配向が低く、また、延伸応力の低減に対しても効果が小さいため、好ましくない。
【0028】
層数の上限については、10000層以下が好ましく、5000層以下が更に好ましい。10000層を超えると延伸性改善の効果が飽和し、また熱収縮率の低下などが見られるため好ましくない。また、層の厚みの下限値は、延伸前の状態で層の厚みが10nmがより好ましく、100nmが更に好ましい。10nm未満では層中の結晶サイズが小さくなりすぎ、熱収縮率が大きくなるため好ましくない。また層の厚みの上限値は、30μmが好ましく、20μmが更に好ましい。30μmを超えると層状化合物の延伸前の状態での面内配向が低く、また、延伸応力の低減に対しても効果が小さいため、好ましくない。
【0029】
(積層方法)
本発明において前述のポリアミド樹脂を多層化する際に、一般に採られる異種の樹脂を積層する以外に、同種の樹脂を積層することも可能である。ここで、同種の樹脂を後述の方法で多層化することに物理的な意味を見出すことが一見したところ難しいかもしれないが、実際の系において、同種の樹脂を同一の温度において溶融押出し積層した場合においても層の界面は消えずに延伸後においても存在する。これは射出成型品のウエルドラインを消すことが非常に難しいことと同義である。このように同種の樹脂であっても多層状態が維持され、厚み方向での分子の絡み合いを低く抑えることを維持できる。同種の樹脂を溶融押出し積層した際の層の界面の存在を確認する方法としては、サンプルを氷や液体窒素で冷却後、カミソリなどで切り出し断面を作製後、それをアセトンなどの溶剤に浸漬後に断面を顕微鏡で観察する方法などで観察できる。
【0030】
ポリアミド樹脂および必要に応じてその他の層を構成する樹脂組成物は、それぞれ別の押出機に供給され、溶融温度以上の温度で押し出されるが、溶融温度は分解開始温度よりも5℃低い温度以下であることが好ましい。また、樹脂中の層状化合物の割れを抑制するためにも、溶融条件や溶融温度は注意して設定されるべきで、例えば高分子量のポリアミド樹脂の場合には、融点+10℃未満のような低温での溶融を行うと層状化合物が割れてしまい、アスペクト比が最初の状態よりも小さくなり、高アスペクト比の層状化合物を用いる効果が小さくなるため、熱安定性の面で問題がない範囲の高温で溶融させることが好ましい。
【0031】
ポリアミド樹脂および必要に応じてその他の層を構成する樹脂組成物は、各種の方法により積層されるが、フィードブロック方式、マルチマニホールド方式などの方法が利用できる。フィードブロック方式の場合には積層した後、ダイ幅まで幅を押し広げる際に、積層する層間での溶融粘度差や積層時の温度差が大きいと積層ムラとなり、外観の低下、厚みムラの発生が起こるため、製造の際には注意を払うことが好ましい。ムラ発生などを抑制するためには、(1)温度を下げる、(2)多官能のエポキシ化合物、イソシアネート化合物、カルボジイミド化合物などの各種添加剤を添加する、などにより押出時の溶融粘度の調整を行うことが好ましい。
【0032】
なお、本発明においては、積層時のせん断力により層状化合物の面内への配向を促進することも、延伸時の応力集中を層状化合物の先端に集中させることで破断を起こりにくくすることに対して効果があり、このような目的に対する好適な方法としてはフィードブロック方式やスタティックミキサー方式での積層が好ましい。
【0033】
ポリアミド樹脂の積層時の各層の溶融温度差は70℃以下、好ましくは50℃以下、更に好ましくは30℃以下である。また、層間の樹脂の溶融粘度差は、ダイ内での推定されるせん断速度において30倍以内、好ましくは20倍以内、より好ましくは10倍以内とすることで積層時の外観、ムラの抑制が可能となる。溶融粘度の調節においては、前述の多官能化合物の添加が使用できる。積層時のスタティックミキサー温度またはフィードブロック温度は150〜330℃、好ましくは170〜220℃、より好ましくは180〜300℃の範囲が好ましい。積層時には粘度が高いもののほうが積層状態は良好となることから、フィードブロック温度やスタティックミキサー温度は低いほうが好ましいがフィードブロック温度やスタティックミキサー温度が低すぎる場合は溶融粘度が高くなりすぎて押出機への負荷が大きくなりすぎるため好ましくない。温度が高い場合は粘度が低すぎて積層ムラが発生するため好ましくない。
【0034】
また、マルチマニホールド方式での積層も可能であり、上述の積層ムラの問題は起こりにくいが、溶融粘度差のある層を積層させる場合に、端部での各層樹脂の回り込み不良が発生し端部での積層比率ムラが生じるなどの生産性の面で問題があり、この場合にも溶融粘度差を制御することが好ましい。
【0035】
ダイ温度については、上述と同様であるが、150〜300℃、好ましくは170〜290℃、より好ましくは180〜285℃の範囲が好ましい。温度が低くなりすぎると溶融粘度が高くなりすぎて表面の荒れなどが発生し外観が低下する。温度が高くなりすぎると、樹脂の熱分解が起こる以外に、上述のように溶融粘度差が大きくなりムラなどが発生し、特にピッチの小さいムラが発生するため好ましくない。
【0036】
延伸を行う前の各層の厚みについて、各層を0.01〜30μmの範囲内とすることが好ましい。樹脂層の厚みが30μmを超えると延伸性改善の効果が低く、本発明に対して好ましくない。0.01μm未満では熱固定後の熱収縮率が大きくなり、各種特性とのバランス化が困難になるため、好ましくない。
【0037】
(延伸方法)
本発明の二軸延伸ポリアミド樹脂フィルムはTダイより溶融押出しした未延伸のシートを逐次二軸延伸、同時二軸延伸により延伸できるほか、チューブラー方式など方法が使用可能であるが、十分な配向を行わせるためには、二軸延伸機による方法が好ましい。特性と経済性などの面からみて好ましい方法は、ロール式延伸機で縦方法に延伸した後、テンター式延伸機で横方向に延伸する方法(逐次二軸延伸法)が挙げられる。また、MD延伸については、前述のとおりTD延伸性を改善するためにMD延伸の際にNyを小さくすることが好ましいことを述べたが、MD延伸倍率を上げつつ、Nyを小さくするためにはMD多段階延伸を使用することが好ましい。
【0038】
Tダイより溶融押出されて得られる実質的に未配向のポリアミド樹脂シートをポリアミド樹脂のガラス転移温度Tg℃以上、ポリアミド系樹脂の昇温結晶化温度150℃以下の温度で縦方向に2.5〜10倍に延伸した後、更に得られた縦延伸フィルムを50℃以上、155℃以下の温度で3.0〜10倍横延伸し、次いで前記二軸延伸ポリアミド樹脂フィルムを150〜250℃の温度範囲で熱固定して得ることが好適である。
【0039】
昇温結晶化温度は、DSCにより、樹脂を溶融後に急冷したサンプルを昇温することで求めることができる。
【0040】
MD延伸において、フィルムの温度がポリアミドのガラス転移点温度(Tg)未満の場合は、延伸による配向結晶化による破断や厚み斑の問題が発生する。一方、フィルムの温度が、150℃を超える場合は、熱による結晶化により破断が発生し不適である。また、MD延伸における延伸倍率は、1.1倍未満では厚み斑などの品質不良および縦方向の強度不足などの問題が発生し、10倍を超えると後続のTD延伸が難しくなるなどの問題がある。好ましい延伸倍率は3.0〜5.0倍である。
【0041】
更に、TD延伸におけるフィルムの温度が50℃未満の低温の場合では、TD延伸性が悪く破断が発生し、かつ、ネック延伸に起因するTD方向の厚み斑が増大して好ましくなく、また、フィルムの温度が155℃を超える高温では、厚み斑が増加し好ましくない。また、ピンホールが発生したり、突き刺し強度が満足できないことがある。また、TD延伸倍率が1.1倍未満では、TD方向の厚み斑が増大し好ましくない点や、TD方向の強度が低くなる点以外に、面配向が低くなるため、TD方向ばかりかMD方向の特性も低くなるため好ましくなく、3倍以上の延伸倍率が好ましい。また、TD延伸倍率が10倍を超える高倍率では、実質上延伸が困難である。特に好ましいTD延伸倍率は3.0〜5.0倍である。
【0042】
本発明の二軸延伸ポリアミド樹脂フィルムの面配向(ΔP)が0.057〜0.075、フィルムの突き刺し強度/厚み(N/μm)の値が0.88〜2.0であるフィルムを得るためには、フィルムの延伸倍率について、長手方向と幅方向の延伸倍率の積により求められる二軸延伸後の面積換算の延伸倍率が8.5〜40倍の範囲にあることが好ましく、更に好ましくは12倍以上が好ましい。8.5倍未満では面配向が高くならず、突き刺し強度が改善しないため、好ましくない。40倍を超えると操業性が悪くなることから好ましくない。
【0043】
延伸温度は層状ケイ酸塩の添加効果を充分に発揮させ、フィルムの厚み斑、耐ゲルボフレックス性などの面で、低温での延伸が好ましい。好ましい条件としては、TD延伸時にフィルム温度が155℃以下となるように延伸を行うことが挙げられる。
【0044】
また本発明において、スタティックミキサー方式またはフィードブロック方式により多層化された未延伸シートの幅方向の両端部を、必要に応じて切除するなどの方法を用いて切り取り、延伸前の最端部において積層されている各層の厚みを少なくとも30μm以下の厚みとなるようにした後、少なくとも一方向に延伸を行うことが好ましい。上記の多層化方法において、ダイの構造にも依存するが、積層時の層の分割の不完全さや層の乱れにより、端部の層数は少なくなっている場合があり、この場合、必然的に延伸性の悪い層状化合物を分散させたポリアミド樹脂の層厚みは大きくなっていることがある。このため、層厚みが30μmよりも大きくなり、端部のみ大幅に延伸性が低下し、延伸時に端部の白化や破断などの現象が見られることがある。本発明においては、この場合には製造時に端部の層厚みを目的の厚みにまで修正することを目的に、未延伸シートの端部をトリミングしてから延伸を行うことは好ましい製造方法のひとつである。
【0045】
(熱固定)
熱固定温度が150℃未満の低温の場合は、フィルムの熱による熱固定化の効果が小さく不適切である。一方、250℃を超える高温では、ポリアミドの熱結晶化に起因する白化による外観不良および機械的強度の低下を引き起こし不適切である。
【0046】
なお、TD延伸後の熱固定において結晶化による密度の増加とそれに伴う体積収縮が起こるが、層状化合物を含有する樹脂の場合、発生する応力が非常に大きいため、急激な加熱ではMD方向に応力がかかり破断してしまう。このため、熱固定時の加熱方法としては段階的に加熱の熱量を増やして急激な収縮応力の発生を抑制することが好ましい。具体的な方法としては、熱固定ゾーンの入り口付近から出口付近に向けて徐々に温度を上げるまたは風量を上げるなどの方法があり、延伸・熱固定後の熱収縮率の面では風量を徐々に上げるような熱固定方法が好ましい。
【0047】
また弛緩処理については、縦方向の熱収縮率とのバランスなどを考慮し、その弛緩率を決定することが好ましい。本発明においては、縦方向の吸湿寸法変化が小さいため、弛緩率は0〜5%の範囲が好ましい。5%を超えると幅方向の熱収縮率の低減に対して効果が小さいため好ましくない。
【0048】
次に、他の方法として挙げたMD延伸速度を大幅に下げる方法を説明する。
MD延伸速度を大幅に下げる方法としては、MD延伸速度を2000%/分以下にすることが好ましい。さらには1000%/分以下であることが好ましい。
【0049】
このような低速のMD延伸では、層状化合物によって拘束されている分子鎖を解きほぐしながら延伸することが可能であるため、MD延伸後にNyが小さくなるものと推測される。 なお、MD延伸の温度、TD延伸条件、熱固定条件は上記した条件を採用することが出来る。
【0050】
このようにして得られたフィルムは工業的には、紙管などに巻き取られたロールフィルムの形態として、そのままもしくは印刷やラミネートなどの加工を経て各種の用途に用いられる。ロールフィルムは幅で30cm以上であることが好ましい。長さは500m以上であることが好ましい。幅の上限は通常600cm程度であり、長さの上限は20000m程度である。製膜直後の幅の広いものや長さの長いものは、用途に合わせてスリットされ、通常、幅200cm以下、長さ8000m以下のロールフィルムとして使用される。
【0051】
(面配向)
本発明における二軸延伸ポリアミド樹脂フィルムは二軸延伸・熱固定・弛緩処理後の面配向(ΔP)が0.057〜0.075、好ましくは0.059〜0.07であることが好ましい。面配向は屈折率計より複屈折を求め、長手方向の屈折率をNx、幅方向の屈折率をNy、厚み方向の屈折率をNzとするとき、長手方向の屈折率をNx、幅方向の屈折率をNy、厚み方向の屈折率をNzとするとき、以下の式により求められる。

ΔP=(Nx+Ny)/2-Nz

面配向の増加は二軸延伸倍率、特にTD延伸倍率を高めることで可能であり、面配向が0.057未満では突き刺し強度が低下し、好ましくない。また0.075を超えると生産性が低下するため、好ましくない。
【0052】
(フィルム特性−突き刺し強度)
本発明における二軸延伸ポリアミド樹脂フィルムの突き刺し強度は、突き刺し強度/厚み(N/μm)の値が0.80〜2.0の関係式を満たすことが好ましい。突き刺し強度が0.80N/μm未満では突き刺し強度が低く、本発明の目的に対して好ましくない。さらには0.90以上であることが好ましい。また上限は1.80以下であることが好ましい。1.80を超える製造条件では操業性が低下するため、好ましくない。
【0053】
突き刺し強度は層状化合物による効果と面配向を高める効果の両方により改善し、突き刺し強度の改善には、層状化合物の添加量を高めつつ、面配向を高めることが好ましい。少なくとも、層状化合物は0.3%以上、面配向は0.057以上の条件を満たすことが好ましい。高い突き刺し強度を有するフィルムを得るためには、先に述べた様に、二軸延伸後の面積換算の延伸倍率が8.5以上にすることが好ましく、更に好ましくは12倍以上が好ましい。8.5倍未満では面配向が高くならず、突き刺し強度が改善しないため、好ましくない。また、面積換算の延伸倍率が8.5〜40倍の範囲にあることが好ましく、40倍を超えると操業性が悪くなることから好ましくない。
【0054】
(フィルム特性―ヘイズ)
本発明における二軸延伸ポリアミド樹脂フィルムのヘイズは1.0〜20%の範囲にあることが好ましい。延伸時のヘイズが1.0%未満では、安定して製造することが困難であり好ましくない。ヘイズが20%を超えると、使用時の内容物などが見えにくくなる以外に、意匠性が低下するため好ましくない。
【0055】
本発明の系におけるヘイズは、樹脂由来、層状無機化合物由来、層状無機化合物表面での延伸時の樹脂の剥離による空隙由来の合計となるが、特に空隙由来のヘイズを減らすことが好ましく、そのためにも延伸条件は注意深く設定されることが好ましい。具体的にはMD温度が低すぎる場合には空隙の生成によりヘイズが高くなるため、好ましくない。また、TD温度が高すぎる場合にも結晶化によるヘイズの上昇が見られ、好ましくない。好ましい温度範囲は前述の通りであるが、これを参考に調整することが出来る。さらに、層状化合物の大きさ、種類により調節することが出来る。例えば、層状化合物の大きさを可視光の波長以下の小さなものを使用することでヘイズを小さくすることが可能であるだけでなく、樹脂の屈折率と近い屈折率を持つ層状化合物を採用することでヘイズを小さくすることが出来る。
【0056】
(フィルム特性−熱収縮率)
本発明における二軸延伸ポリアミド樹脂フィルムは160℃、10分での熱収縮率が縦方向、横方向いずれも-3〜3%の範囲にあることが好ましい。熱収縮率をゼロに近づけるためには、延伸条件や熱固定条件の最適化のほか、層の厚みの最適化することが好ましい。延伸性の改善のためには各層の厚みが小さいほうが有利であるが、層が薄くなりすぎると、熱固定などにより熱収縮率を低減できなくなり、目的とする熱収縮率にあわせて層構成を決定することが好ましいが、熱収縮率と延伸性の両立のためには、延伸前の各層の厚みが1〜30μmの範囲内がより好ましく、更に好ましくは2〜20μmの範囲内である。前記熱収縮率の下限値は0%以上がより好ましく、0.1%以上が更に好ましい。上限値は3.0%以下が好ましく、2.5%以下が更に好ましい。
【0057】
(フィルム特性−耐ピンホール性)
本発明における二軸延伸フィルムは耐ピンホール性に優れており、23℃でのゲルボフレックス試験1000回後のピンホール数が0〜30個であることが好ましい。耐ピンホール性に対して影響を与えるのは、主に延伸条件であり、その中でも特にTD延伸時の温度を高くしすぎないことが好ましい。TD延伸性が悪い場合には温度を上げる場合があるが、延伸温度を低温結晶化温度を超えて上げすぎると、充分な延伸が出来ないまま部分的に結晶化が進み、微細領域での厚みむらやピンホールが発生しやすくなる。また、得られたフィルムもピンホールが発生しやすくなる。TD延伸温度について、具体的には155℃以下であることが好ましい。155℃を超えるとフィルムが脆くなり、耐ピンホール性が悪化するため好ましくない。
【0058】
(フィルム特性)
本発明における二軸延伸ポリアミド樹脂フィルムは、25℃、相対湿度35%から25℃、相対湿度85%に変化させた場合の寸法変化が縦および横方向のいずれにおいて0.1〜1.0%の範囲にあることが好ましい。幅方向の熱収縮率や吸湿寸法変化率は、熱固定時の幅方向の弛緩率により若干の調整が可能であるが、縦方向については本質的な問題であり、特に逐次二軸延伸においては、その吸湿寸法変化率を小さくすることは他の特性とのバランス化を考えると非常に困難である。従来のポリアミド樹脂は分子鎖間のアミド基による水素結合が水により切れて寸法変化を起こしやすくなるが指摘されているが、層状化合物を均一に分散させたポリアミド樹脂は、層状化合物と分子鎖中のアミド基との相互作用により、水による影響を低減したものであり、これらを使用することで吸湿寸法変化を抑制することは可能であると推定できるが、従来では適当な延伸方法が存在しなかったことから実際での実現は達成されていなかった。本発明における多層構造としたシートを延伸することにより、高度の吸湿時の寸法安定性の付与が可能となったものである。
【0059】
本発明における二軸延伸ポリアミド樹脂フィルムは、層状化合物が面内に配向しており、バリア性に優れており、15μm換算での酸素透過度が5〜20cc/m2/day/atmの範囲にあることが好ましい。前記酸素透過度の上限値は19cc/m2/day/atm以下が好ましく、18cc/m2/day/atm以下がより好ましい。酸素バリア性はポリアミド樹脂(X)および(Y)における層状化合物の添加量に依存するため、層状化合物添加量はフィルム全体に対して2〜20重量%の範囲内にあることが好ましい。2重量%未満ではバリア性の効果が小さく、20重量%を超えるとバリア性改善の効果が飽和し経済的ではない。
【0060】
本発明の二軸延伸ポリアミド樹脂フィルムは、用途によっては接着性や濡れ性を良くするためにコロナ処理、コーティング処理や火炎処理が行われても良い。コーティング処理においては、フィルム製膜中にコーティングしたものを延伸するインラインコート法が好ましい実施形態のひとつである。本発明の二軸延伸ポリアミド樹脂フィルムは、更に用途に応じて、印刷、蒸着、ラミネートなどの加工が行われるのが一般的である。
【0061】
本発明の二軸延伸ポリアミド系樹脂フィルムには耐加水分解改良剤、酸化防止剤、着色剤(顔料、染料)、帯電防止剤、導電剤、難燃剤、補強剤、充填剤、無機滑剤、有機滑剤、核剤、離型剤、可塑剤、接着助剤、粘着剤などを任意に含有せしめることができる。
【実施例】
【0062】
次に、実施例により本発明を更に詳細に説明するが、本発明はその要旨を越えない限りこれらの例に何ら制約されない。本発明で用いた測定法を以下に示す。
【0063】
(1)重量残渣
TAインストルメンツ製TGAを用いて、サンプル量0.1g、窒素気流下、昇温速度20℃/分、500℃まで昇温させた後の重量残渣を求め、その値を層状化合物含有量とした。
【0064】
(2)ガラス転移温度(Tg)測定および低温結晶化温度(Tc)測定
未配向ポリアミド樹脂シートを液体窒素中で凍結し、減圧解凍後にセイコー電子社製DSCを用い、昇温速度20℃/分で測定した。
【0065】
(3)フィルム中の層状化合物の配向状態の観察
以下の方法でサンプルを調製し透過型電子顕微鏡を用いて観察した。まず、サンプルフィルムをエポキシ樹脂中に包埋した。エポキシ樹脂としては、ルアベック812、ルアベックNMA(以上ナカライテスク社製)、DMP30(TAAB社製)を、100:89:3の重量割合で良く混合したものを用いた。サンプルフィルムをエポキシ樹脂中に包埋した後、温度60℃に調整したオーブン中に16時間放置し、エポキシ樹脂を硬化せしめ包埋ブロックを得た。
得られた包埋ブロックを、日製産業製ウルトラカットNに取り付け、超薄切片を作成した。まず、ガラスナイフを用いてフィルムの観察に供したい部分の断面がレジン表面に現れるまでトリミングを実施した。次に、ダイアモンドナイフ(住友電工製、スミナイフSK2045)を用いて超薄切片を切りだした。切りだした超薄切片をメッシュ上に回収した後、薄くカーボン蒸着を施した。
電子顕微鏡観察は、日本電子製JEM−2010を用いて、加速電圧200kVの条件で実施した。フィルム断面の電子顕微鏡撮影で得られた像をイメージングプレート(富士写真フイルム製、FDLUR−V)上に記録した。画像より、50個の層状化合物を無作為に抽出し、それぞれの傾きを評価した。 いずれの層状化合物の傾きのばらつきが角度20度以下におさまる場合、面内に配向しているとした。面内で配向しているものを○、配向していないものを×と記載した。
【0066】
(4)力学特性(弾性率、破断強度)
JIS K 7113に準ずる。フィルムの長手方向および幅方向に幅10mm、長さ100mmの試料を、剃刀を用いて切り出して試料とした。23℃、35%RHの雰囲気下で12時間放置したあと、測定は23℃、35%RHの雰囲気下、チャック間距離40mm、引っ張り速度200mm/分の条件で行い、5回の測定結果の平均値を用いた。測定装置としては島津製作所社製オートグラフAG5000Aを用いた。
【0067】
(5)耐ピンホール性(耐屈曲疲労性試験)
理学工業(株)社製のゲルボフレックステスターを使用し、下記の方法により耐屈曲疲労性を測定した。ゲルボフレックステスター(理化学工業(株)製)を使用して、試験を行った。まず、得られたフィルムサンプルを直径8.89cm(3.5インチ)の固定ヘッドと、固定ヘッドから17.78cm(7インチ)離れて平行に配置されている同径の可動ヘッドに円筒状に取り付けた。可動ヘッドの真ん中に取り付けたシャフトで、可動ヘッドの動きをコントロールする。最初、可動ヘッドを440度ひねりながら固定ヘッドに8.89cm(3.5インチ)近づけ、次に水平運動で固定ヘッドに更に6.35cm(2.5インチ)近づけた後、正反対の動きで元の状態に戻した。このサイクルを1回として、23℃、60%RHで40回/分の速さで1000回行った。1000回繰り返し実施後のピンホール個数を測定した。個数の測定方法は以下の方法で行った。フィルムをろ紙(アドバンテック、No.50)の上に置き、4隅をセロテープ(登録商標)で固定した。インク(パイロット製インキ(品番INK−350−ブルー)を純水で5倍希釈したもの)をテストフィルム上に塗布し、ゴムローラーを用いて一面に延展させた。不要なインクをふき取った後、テストフィルムを取り除き、ろ紙に付いたインクの点の数を計測した。
【0068】
(6)動的粘弾性特性試験
アイティー計測(株)製動的粘弾性測定装置により測定し、測定長30mm、変位0.25%周波数10Hzで、かつ測定環境温度を5℃および23℃の2通りの条件で測定した。サンプルは、フィルム幅方向と平行に長さ40mm×幅5mmに切り出し、2箇所の値の平均値を用いた。また、tanδの算出は、次式により行った。

tanδ=複素弾性率の虚数部/複素弾性率の実数部
【0069】
(7)ヘイズ
JISK7105に準ずる方法で、試料を、ヘイズメーター(日本電色製、NDH2000)を用いて異なる箇所3ヶ所について測定し、その平均値をヘイズとした。
【0070】
(8)相対粘度
96%硫酸溶液 25mlに対し、0.25gのナイロンレジンを溶解し、20℃にて相対粘度を測定した。
【0071】
(9)フィルム中の層の厚み、全層数
フィルムを液体窒素で冷却してから取り出してすぐにフェザー刃でキャストフィルムまたは延伸フィルムの幅方向に切り出して断面を得た。この断面を、光学顕微鏡(オリンパス製BX60)を用いて観察し、5〜20層分の層の厚みを層数で割った値を層の厚み(A)として求めた。全層数は同様の方法により求めた。
【0072】
上記の方法で層の界面が分かりにくい場合は、以下の方法でサンプルを調製し透過型電子顕微鏡を用いて観察した。まず、サンプルフィルムをエポキシ樹脂中に包埋した。エポキシ樹脂としては、ルアベック812、ルアベックNMA(以上ナカライテスク社製)、DMP30(TAAB社製)を、100:89:3の重量割合で良く混合したものを用いた。サンプルフィルムをエポキシ樹脂中に包埋した後、温度60℃に調整したオーブン中に16時間放置し、エポキシ樹脂を硬化せしめ包埋ブロックを得た。
得られた包埋ブロックを、日製産業製ウルトラカットNに取り付け、超薄切片を作成した。まず、ガラスナイフを用いてフィルムの観察に供したい部分の断面がレジン表面に現れるまでトリミングを実施した。次に、ダイアモンドナイフ(住友電工製、スミナイフSK2045)を用いて超薄切片を切りだした。切りだした超薄切片をメッシュ上に回収した後、薄くカーボン蒸着を施した。電子顕微鏡観察は、日本電子製JEM−2010を用いて、加速電圧200kVの条件で実施した。フィルム断面の電子顕微鏡撮影で得られた像をイメージングプレート(富士写真フイルム製、FDLUR−V)上に記録した。画像より、各層の界面の間隔より最大厚みを有する層の厚みを測定した。画像より、層状化合物の密度の濃淡より、各層を決定し、5〜20層分の層の厚みを層数で割った値を層の厚み(A)として求めた。全層数は層厚みを層の厚み(A)で割った値として求めた。
【0073】
(10)酸素透過率
酸素透過度測定装置(「OX−TRAN 10/50A」Modern Controls社製)を使用し、湿度65%、温度23℃で測定した。得られた結果は厚み15μmでの値に換算した値を酸素透過率(cc/m2/day/atm)とした。15μm厚みでの値への換算は、

(15μm厚み換算のOTR)=(実測OTR)×(フィルム厚み、μm)/15(μm)

として求めた。
【0074】
(11)突刺強度
食品衛生法の規定に従い、試料を円筒状冶具に固定し、試料面に直径1.0mm、先端形状半径0.5mmの半円形の針を50mm/minの速度で突き刺し、針が貫通するまでの最大荷重(N)を測定した。
【0075】
(12)フィルム中の層状化合物の配向状態の観察
以下の方法でサンプルを調製し透過型電子顕微鏡を用いて観察した。まず、サンプルフィルムをエポキシ樹脂中に包埋した。エポキシ樹脂としては、ルアベック812、ルアベックNMA(以上ナカライテスク社製)、DMP30(TAAB社製)を、100:89:3の重量割合で良く混合したものを用いた。サンプルフィルムをエポキシ樹脂中に包埋した後、温度60℃に調整したオーブン中に16時間放置し、エポキシ樹脂を硬化せしめ包埋ブロックを得た。
【0076】
得られた包埋ブロックを、日製産業製ウルトラカットNに取り付け、超薄切片を作成した。まず、ガラスナイフを用いてフィルムの観察に供したい部分の断面がレジン表面に現れるまでトリミングを実施した。次に、ダイアモンドナイフ(住友電工製、スミナイフSK2045)を用いて超薄切片を切りだした。切りだした超薄切片をメッシュ上に回収した後、薄くカーボン蒸着を施した。
【0077】
電子顕微鏡観察は、日本電子製JEM−2010を用いて、加速電圧200kVの条件で実施した。フィルム断面の電子顕微鏡撮影で得られた像をイメージングプレート(富士写真フイルム製、FDLUR−V)上に記録した。画像より、50個の層状化合物を無作為に抽出し、それぞれの傾きを評価した。いずれの層状化合物の傾きのばらつきが角度20度以下におさまる場合、面内配向は○、それ以外は×とした。
【0078】
(実施例1)
層状化合物としてモンモリロナイトを均一に分散させたナイロン6樹脂のペレット(Nanopolymer Composite Corp.製NF3040、層状化合物添加量:4%(無機分2.6%)を100℃で一晩真空乾燥させた後、二台の押出機に供給した。285℃で溶融し、285℃の10エレメントのスタティックミキサーを用いて同種の樹脂を積層し、20℃に調整した冷却ロールにシート状に280℃に加熱したTダイから押出し、冷却固化させることで多層の未延伸シートを作製した。二台の押出機の吐出量の比率は1:1とした。未延伸シートの厚みは240μm、幅方向中央部の各層の厚みは約1μmであった。このシートのTgは35℃、融点が225℃であった。このシートをまず45℃の温度で予熱処理を行い、ついで、延伸温度85℃で変形速度4500%/分で3.5倍にMD延伸を行い、引続きこのシートを連続的にテンターに導き、余熱ゾーン65℃、延伸ゾーン135℃で3.8倍にTD延伸し、210℃で熱固定および5%の横弛緩処理を施した後に冷却し、両縁部を裁断除去して、厚さ18μmの二軸延伸ポリアミド樹脂フィルムを得た。フィルムの幅は40cm、長さは1000mであり紙管に巻き取った。このときのフィルム物性を表1に示す。
【0079】
(実施例2〜6)
表1に記載の条件でサンプルを作製した。実施例3、5および6はMD二段延伸後にTD延伸を行った。フィルムの幅は40cm、長さは1000mであり紙管に巻き取った。またフィルム特性などを表1に示す。
【0080】
(実施例7)
層状化合物としてモンモリロナイトを均一に分散させたナイロン6樹脂のペレット(Nanopolymer Composite Corp.製NF3040、層状化合物添加量:4%(無機分2.6%)有機処理モンモリロナイトの粉末(Cloisite 30B、Southern Clay Products製)をそれぞれ100℃で一晩真空乾燥させた後、重量比92/8でドライブレンドした後、二軸押出機に投入し、285℃で溶融混合した。得られた樹脂のペレットを再度、100℃の真空乾燥機中で24時間乾燥させた。この樹脂を押出機に供給し、285℃で溶融し、280℃の16エレメントのスタティックミキサーを用いて同種の樹脂を積層し、20℃に調整した冷却ロールにシート状に270℃に加熱したTダイから押出し、冷却固化させることで多層の未延伸シートを作製した。未延伸シートの厚みは180μm、幅方向中央部の各層の厚みは約1μmであった。このシートのTgは35℃、融点が225℃であった。このシートをまず45℃の温度で予熱処理を行い、ついで、表面温度85℃のロールで変形速度2000%/分で3.0倍にMD延伸を行い、引続きこのシートを連続的にテンターに導き、余熱ゾーン110℃、延伸ゾーン135℃で3.8倍にTD延伸し、210℃で熱固定および5%の横弛緩処理を施した後に冷却し、両縁部を裁断除去して、厚さ15μmの二軸延伸ポリアミド樹脂フィルムを得た。フィルムの幅は40cm、長さは1000mであり紙管に巻き取った。このときのフィルム物性を表1に示す。
【0081】
(比較例1)
層状化合物としてモンモリロナイトを均一に分散させたナイロン6樹脂のペレット(Nanopolymer Composite Corp.製NF3040、層状化合物添加量:4%)を100℃で一晩真空乾燥させた。次に、単層インフレ製膜機を用いて製膜した。ペレットを押出機に供給し、275℃で溶融した。ついで、275℃に加熱した環状ダイから押出し、空冷しつつ、吐出量、巻取り速度、チューブ径から面積換算での延伸倍率2倍になるよう調節した。チューブの中央部を裁断して厚さ15μmの二軸延伸ポリアミド樹脂フィルムを得た。このときのフィルム物性を表2に示す。
【0082】
(比較例2〜4)
表2に記載の条件でサンプルを作製した。比較例2、4ではスタティックミキサーを用いず単層とした。フィルムの幅は40cm、長さは1000mであり紙管に巻き取った。またフィルム特性などを表2に示す。
【0083】
【表1】

【0084】
【表2】

【産業上の利用可能性】
【0085】
高濃度に無機層状化合物を添加した二軸延伸ポリアミド樹脂フィルムは通常の方法では延伸倍率を高めることが困難であり、大量の層状化合物を添加しつつ面配向を高めて突き刺し強度を高めることが困難であったが、本発明により突き刺し強度や各種特性に優れた層状化合物含有二軸延伸ポリアミド樹脂フィルムを得ることができる。

【特許請求の範囲】
【請求項1】
層状化合物を含む無機物が0.3〜20重量%添加されてなる二軸延伸ポリアミド樹脂フィルムであり、層状化合物が面内に配向しており、フィルムの面配向(ΔP)が0.057〜0.075であり、フィルムの突き刺し強度/厚みの値が0.88〜2.50(N/μm)であることを特徴とする二軸延伸ポリアミド樹脂フィルム。
【請求項2】
縦方向の延伸倍率と横方向の延伸倍率の積により求められる二軸延伸による面積換算の延伸倍率が8.5倍以上であることを特徴とする請求項1記載の二軸延伸ポリアミド樹脂フィルム。
【請求項3】
二軸延伸が縦延伸−横延伸の順の逐次二軸延伸であり、フィルムの幅方向中央部分の屈折率をNyとするとき、縦延伸前のシートのNyであるNy(A)と一軸延伸後のシートのNyであるNy(B)との差Ny(A)-Ny(B)が0.003以上であることを特徴とする請求項1又は2に記載の二軸延伸ポリアミド樹脂フィルム。

【公開番号】特開2010−132744(P2010−132744A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【出願番号】特願2008−308396(P2008−308396)
【出願日】平成20年12月3日(2008.12.3)
【出願人】(000003160)東洋紡績株式会社 (3,622)
【Fターム(参考)】