説明

偏光板及び液晶表示装置

【課題】液晶表示装置の正面コントラストを低下させることなく、従来技術と比較して、視野角の拡大並びに黒表示及び白表示〜中間調表示時の表示特性の改善に寄与する偏光板を提供する。
【解決手段】偏光層10、第1の光学異方性層14及び第2の光学異方性層12、及び光拡散層18を有する偏光板であって、第1の光学異方性層14が液晶組成物から形成された層であり、波長450nmにおけるReと波長550nmにおけるReの比Re/Reが0.9〜1.1であり、第2の光学異方性層12のReが40〜120nmであり、且つ波長550nmにおける厚さ方向のレターデーションRthが40〜100nmであり、及び光拡散層18の極角30°方向の散乱光強度が0.01〜0.2%であることを特徴とする偏光板である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示装置の視野角の拡大に寄与する偏光板、及びそれを用いた液晶表示装置に関する。
【背景技術】
【0002】
従来、TNモード液晶表示装置用の光学補償フィルムとして、透明支持体上に、液晶組成物から形成された光学異方性層を有する光学補償フィルムが種々提案されている。この構成の光学補償フィルムでは、一般的には、液晶組成物から形成された光学異方性層にTNモード液晶セルの光学補償に必要なレターデーションを持たせ、液晶セルを補償して視野角を拡大している。一方、液晶組成物から形成された光学異方性層を支持するポリマーフィルム等からなる透明支持体の光学特性を所定の範囲とした光学補償シートとしては、例えば、特許文献1及び2に記載の光学補償シートが挙げられる。
また、TNモード液晶表示装置の視野角をさらに拡大するために、所定の光拡散フィルムを利用する技術も提案されている(特許文献3)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2002−169023号公報
【特許文献2】特開2003−21718号公報
【特許文献3】特開2003−43218号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、テレビ(TV)やTV機能付きパーソナルコンピューター(PC)では、その表示画面を複数の観察者が様々な位置から観察する場合が多く、従来のPCの表示モニターが満足する視野角特性では、TV(又はTV機能付きPC用の表示モニター)では、充分ではない。また、黒表示時のみならず、白〜中間調表示時にも、広視野角特性が求められる。
さらに、広視野角化する一つの手段として、上記した通り、光拡散フィルムを利用することが挙げられるが、本発明者が種々検討した結果、上記従来のTNモード液晶表示装置の視野角をTV用途にも充分な程度に拡大するために、光拡散フィルムを利用すると、正面コントラストが顕著に低下することがわかった。
【0005】
本発明は、液晶表示装置の正面コントラストを低下させることなく、従来技術と比較して、視野角の拡大並びに黒表示及び白表示〜中間調表示時の表示特性の改善に寄与する偏光板を提供することを課題とする。
また、本発明は、正面のみならず、広視野角範囲において高コントラストを達成し、並びに黒表示時及び白〜中間調表示時の表示特性が良好な液晶表示装置を提供することを課題とする。
【課題を解決するための手段】
【0006】
前記課題を解決するための手段は以下の通りである。
[1] 偏光層、第1及び第2の光学異方性層、及び光拡散層を有する偏光板であって、前記第1の光学異方性層が液晶組成物から形成された層であり、波長450nmにおけるRe(450)と波長550nmにおけるRe(550)の比Re(450)/Re(550)が0.9〜1.1であり、前記第2の光学異方性層のRe(550)が40〜120nmであり、且つ波長550nmにおける厚さ方向のレターデーションRth(550)が40〜100nmであり、及び前記光拡散層のゴニオフォトメータの散乱光プロファイルが、出射角0°(層面に対して法線方向)の光強度に対して、散乱強度が最大となる方位角において極角30°方向の散乱光強度が0.01〜0.2%であることを特徴とする偏光板。
[2] 前記第1の光学異方性層が、少なくとも一種のディスコティック液晶化合物を含有する液晶組成物から形成された層であることを特徴とする[1]の偏光板。
【0007】
[3] 前記少なくとも一種のディスコティック液晶化合物が、下記一般式(DI)で表される液晶化合物であることを特徴とする[1]又は[2]の偏光板:
【化1】

[式中、
11、Y12及びY13は、それぞれ独立に置換されていてもよいメチン又は窒素原子を表し;
1、L2及びL3は、それぞれ独立に単結合又は二価の連結基を表し;
1、H2及びH3は、それぞれ独立に一般式(DI−A):
【0008】
【化2】

(一般式(DI−A)中、
YA1及びYA2は、それぞれ独立にメチン又は窒素原子を表し;
XAは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。)
又は一般式(DI−B):
【化3】

(一般式(DI−B)中、
YB1及びYB2は、それぞれ独立にメチン又は窒素原子を表し;
XBは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。)を表し;
1、R2及びR3は、それぞれ独立に下記一般式(DI−R):
【0009】
一般式(DI−R)
−(−L21−Q2n1−L22−L23−Q1
(一般式(DI−R)中、
は一般式(DI)におけるH1〜H3側と結合する位置を表し;
21は単結合又は二価の連結基を表し;
2は少なくとも1種類の環状構造を有する二価の基を表し;
1は、0〜4の整数を表し、L22は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、*−N(R)−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、ここで、**はQ2側と結合する位置を表し;
22は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、*−N(R101)−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、R101は、炭素数1〜5のアルキル基を表し、**はQ2側と結合する位置を表し;
23は、−O−、−S−、−C(=O)−、−NH−、−CH2−、−CH=CH−及びC≡C−ならびにこれらの組み合わせからなる群より選ばれる二価の連結基を表し;
1は重合性基又は水素原子を表す)
を表す。]
【0010】
[4] 前記第1の光学異方性層が、下記一般式(I)又は一般式(II)で表される化合物を含有する、又は下記一般式(I)又は(II)で表される化合物から誘導される繰り返し単位を含むポリマーを含有することを特徴とする[1]又は[2]の偏光板:
【化4】

式中、L1及びL2は各々独立に単結合又は二価の連結基を表し;A1及びA2は各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す)、−S−及び−CO−からなる群から選ばれる基を表し;R1、R2、及びR3は各々独立に置換基を表し;Xは第14〜16族の非金属原子を表し、ただし、Xには水素原子又は置換基が結合してもよく;nは0〜2の整数を表し;
【化5】

式中、MG1及びMG2はそれぞれ独立に、2〜8個の環状基から構成される液晶相の発現を誘起する液晶コア部であり、液晶コア部を構成する環状基としては、芳香族環、脂肪族環、及び複素環のいずれでもよく;MG1及びMG2を構成する環状基の1つは、L11及びL12で置換され;R11、R12、R13、及びR14はそれぞれ液晶コア部の分子長軸方向に置換している液晶相の発現を誘起する柔軟性のある置換基、双極子作用基及び水素結合性基であり;L11及びL12はそれぞれ独立に、液晶コア部MG1及びMG2に置換する連結基であり、下記式(II)−LA又は式(II)−LBで表され;
【化6】

式中、*はMG1を構成する環状基に置換する位置を表し;#はP1と連結する位置を表し;A11、A13及びA14はそれぞれ独立に、―O−、−NH−、−S−、−CH2−、−CO−、−SO−、又は−SO2−を表し;A12は−CH=又は−N=を表し;L11及びL12の双方が式(II)−LAで表される基の場合、置換基P1は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びそれらの組み合わせからなる群より選ばれる二価の連結基を表し;L11及びL12の一方が、式(II)−LBで表される基で、他方が式(II)−LAで表される基の場合、置換基P1は、*=CH−P11−#、又は*=N−P11−#で表され(*は式(II)−LBで表される基との連結位置を表し、#は式(II)−LAで表される基との連結位置を表す);P11は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びこの組み合わせから選ばれる二価の連結基を表し;L11及びL12の双方が式(II)−LBで表される基の場合、置換基P1は、二重結合、=CH−P11−CH=、=N−P11−CH=、=N−P11−N=を表し;P11は上記P11と同義である。
【0011】
[5] 前記第2の光学異方性層が、セルロースアシレートフィルムであることを特徴とする[1]〜[4]のいずれかの偏光板。
[6] 前記第2の光学異方性層が、シクロオレフィン系ポリマーフィルム又はポリカーボネートフィルムであることを特徴とする[1]〜[4]のいずれかの偏光板。
[7] 前記第2の光学異方性層の面内の遅相軸と前記偏光層の面内の透過軸との交差角が略0度であることを特徴とする[1]〜[6]のいずれかの偏光板。
[8] 少なくとも一方に電極を有する対向配置された一対の基板と、該一対の基板間に挟持され、ネマチック液晶材料を含み、黒表示時に該ネマチック液晶材料の液晶分子が前記一対の基板の表面に対して略垂直に配向し、厚さd(ミクロン)と屈折率異方性Δnとの積Δn・dが0.1〜1.5μmである液晶層とを有する液晶セル、及び[1]〜[7]のいずれかの偏光板を有することを特徴とする液晶表示装置。
[9] 前記偏光板が、前記液晶セルに対して表示面側に配置される偏光板であることを特徴とする[8]の液晶表示装置。
【発明の効果】
【0012】
本発明によれば、液晶表示装置の正面コントラストを低下させることなく、従来技術と比較して、視野角の拡大並びに黒表示及び白表示〜中間調表示時の表示特性の改善に寄与する偏光板を提供することができる。
また、本発明は、正面のみならず、広視野角範囲において高コントラストを達成し、並びに黒表示時及び白〜中間調表示時の表示特性が良好な液晶表示装置を提供することができる。
【図面の簡単な説明】
【0013】
【図1】本発明の偏光板の一例の断面模式図である。
【図2】本発明の液晶表示装置の一例の断面模式図である。
【発明を実施するための形態】
【0014】
以下、本発明について詳細に説明する。尚、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
まず、本明細書における、Re(λ)、Rth(λ)、チルト角及び平均チルト角の詳細について以下に記す。
(Re、Rthの測定)
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のレターデーション及び厚さ方向レターデーションを表す。Re(λ)はKOBRA 21ADH又はWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
測定されるフィルムが1軸又は2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
上記において、法線方向から面内の遅相軸を回転軸として、あるチルト角度にレターデーションの値がゼロとなる方向をもつフィルムの場合には、そのチルト角度より大きいチルト角度でのレターデーション値はその符号を負に変更した後、KOBRA 21ADH又はWRが算出する。
尚、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値及び入力された膜厚値を基に、以下の式(1)及び式(2)よりRthを算出することもできる。
【0015】
【数1】

注記:
上記式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnx及びnyに直交する方向の屈折率を表し、dは膜厚を表す。
【0016】
測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(optic axis)がないフィルムの場合には、以下の方法によりRth(λ)は算出される。
Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADH又はWRにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRが算出する。
上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:
セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。
これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADH又はWRはnx、ny、nzを算出する。この算出されたnx、ny、nzよりNz=(nx−nz)/(nx−ny)がさらに算出される。
【0017】
(チルト角の測定)
ディスコティック液晶性化合物や棒状液晶性化合物を配向させた光学異方性層において、光学異方性層の一方の面におけるチルト角θ1及び他方の面のチルト角θ2を、直接的にかつ正確に測定することは困難である。そこで本明細書においては、θ1及びθ2は、以下の手法で算出する。本手法は本発明の実際の配向状態を正確に表現していないが、光学フィルムのもつ一部の光学特性の相対関係を表す手段として有効である。
本手法では算出を容易にすべく、下記の2点を仮定し、光学異方性層の2つの界面におけるチルト角とする。
1.光学異方性層はディスコティック液晶性化合物や棒状液晶性化合物を含む層で構成された多層体と仮定する。さらに、それを構成する最小単位の層(ディスコティック液晶性化合物又は棒状液晶性化合物のチルト角は該層内において一様と仮定)は光学的に一軸と仮定する。
2.各層のチルト角は光学異方性層の厚み方向に沿って一次関数で単調に変化すると仮定する。
具体的な算出法は下記のとおりである。
(1)各層のチルト角が光学異方性層の厚み方向に沿って一次関数で単調に変化する面内で、光学異方性層への測定光の入射角を変化させ、3つ以上の測定角でレターデーション値を測定する。測定及び計算を簡便にするためには、光学異方性層に対する法線方向を0°とし、−40°、0°、+40°の3つの測定角でレターデーション値を測定することが好ましい。このような測定は、KOBRA−21ADH及びKOBRA−WR(王子計測器(株)製)、透過型のエリプソメーターAEP−100((株)島津製作所製)、M150及びM520(日本分光(株)製)、ABR10A(ユニオプト(株)製)で行うことができる。
(2)上記のモデルにおいて、各層の常光の屈折率をno、異常光の屈折率をne(neは各々すべての層において同じ値、noも同様とする)、及び多層体全体の厚みをdとする。さらに各層におけるチルト方向とその層の一軸の光軸方向とは一致するとの仮定の元に、光学異方性層のレターデーション値の角度依存性の計算が測定値に一致するように、光学異方性層の一方の面におけるチルト角θ1及び他方の面のチルト角θ2を変数としてフィッティングを行い、θ1及びθ2を算出する。
ここで、no及びneは文献値、カタログ値等の既知の値を用いることができる。値が未知の場合はアッベ屈折計を用いて測定することもできる。光学異方性層の厚みは、光学干渉膜厚計、走査型電子顕微鏡の断面写真等により測定数することができる。
【0018】
また、本明細書において、測定波長を特に付記しない場合は、波長550nmにおけるRe及びRthであるとする。また、本明細書において、光学特性等を示す数値及び数値範囲については、液晶表示装置やそれに用いられる部材について一般的に許容される誤差を含む数値又は数値範囲であると解釈されるものとする。光学的な軸(偏光子の透過軸や光学異方性層の遅相軸等の関係(「平行」及び「直交」等)やその軸間の角度(例えば、「0度」等)についても同様である。
【0019】
[偏光板]
本発明は、偏光層、第1及び第2の光学異方性層、及び光拡散層を有する偏光板であって、前記第1の光学異方性層が液晶組成物から形成された層であり、Re(450)/Re(550)が0.9〜1.1であり、前記第2の光学異方性層のRe(550)が40〜120nmであり、且つRth(550)が40〜100nmであり、及び前記光拡散層のゴニオフォトメータの散乱光プロファイルが、出射角0°(層面に対して法線方向)の光強度に対して、散乱強度が最大となる方位角において極角30°方向の散乱光強度が0.01〜0.2%であることを特徴とする偏光板に関する。本発明では、前記光学特性を満足する第1及び第2の光学異方性層と、前記所定の特性を満足する光拡散層とを組み合わせることで、光拡散層によって液晶表示装置の正面コントラストを損なうことなく、視野角化の拡大に寄与するとともに、黒表示時のみならず、白〜中間調表示時において表示特性の改善に寄与する偏光板を提供している。
【0020】
図1に、本発明の偏光板の一例の断面模式図を示す。図1の偏光板Pは、偏光層10の一方の表面に、ポリマーフィルムからなる第2の光学異方性層12と、液晶組成物から形成された第1の光学異方性層14とを有するとともに、他方の表面に、偏光層10の保護層16と、光拡散層18とを有する。第1及び第2の光学異方性層14及び12は、上記所定の光学特性を満足し、用いられる液晶表示装置の液晶セルの斜め方向に発生する複屈折を補償し、広視野角化に寄与するとともに、黒表示時の表示特性の改善に寄与する。光拡散層18は、上記所定の特性を満足し、入射光を光拡散することによって、広視野角化に寄与するとともに、白〜中間調表示の表示特性の改善に寄与する。
【0021】
図1の偏光板Pは、表示面側に配置される偏光板として液晶表示装置に用いられるのが好ましい。また、液晶表示装置に用いられる際は、光拡散層が、偏光板の最表面に配置された構成を示したが、光拡散層は、偏光層10と保護層16の間、光学異方性層12と偏光層10の間、光学異方性層14と光学異方性層12の間、及び液晶セルと光学異方性層14の間に配置されていてもよく、また10〜16の各層が光拡散層を兼ねたものであってもよい。また、図1では、光拡散層と偏光層との間に偏光層を保護するための保護層を配置した態様を示したが、光拡散層が自己支持性のあるポリマーフィルムからなる場合等は、光拡散層が偏光層の保護層として、偏光層の表面に貼り合せられていてもよい。また、光散乱層は、保護層(図1では保護層16)がポリマーフィルムからなる場合は、ポリマーフィルムの表面に塗布により形成された層であってもよい。
【0022】
また、図1の偏光板Pでは、第2の光学異方性層が、偏光層の表面に貼り合せられ、偏光層を保護する保護層としても機能する態様を示したが、偏光層と第2の光学異方性層との間には、勿論、別途、低透湿性ポリマーフィルムからなる保護層が配置されていてもよい。但し、その態様では、偏光層と第2の光学異方性層との間に配置される保護層は、第1及び第2の光学異方性層の光学補償能に影響を与えない程度の、光学的に等方性なポリマーフィルムを用いるのが好ましい。
【0023】
以下、本発明の偏光板の各部材について詳細に説明する。
(光拡散層)
本発明に用いる光拡散層は、ゴニオフォトメータの散乱光プロファイルが、出射角0°(層面に対して法線方向)の光強度Iに対して、散乱強度が最大となる方位角において極角30°方向の散乱光強度I30の比、即ちI30/Iが、0.01〜0.2%である。極角30°方向の散乱光強度I30を上記範囲とすることにより、正面コントラストを低下させずに、具体的には正面コントラストを光拡散層を使用しない形態と比べて90%以上に維持しつつ、広視野角化及び白〜中間調表示の表示特性改善に寄与する。同観点から、I30/Iは、0.02〜0.18%が好ましく、0.03〜0.16%がより好ましく、0.04〜0.14%がさらに好ましい。I30/Iが0.02%よりも小さい場合、散乱光強度が弱いため所望の表示特性改善効果が得られない。一方で、I30/Iが0.18%よりも大きい場合、散乱光強度が強すぎるために光拡散層を使用しない形態と比べて正面コントラストを90%以上に保つことができない。
本発明の偏光板を利用した液晶表示装置は、正面コントラストを光拡散層を使用しない形態と比べて90%以上を達成可能であり、好ましくは95%以上を達成する。
【0024】
また、本発明では、内部ヘイズが45%以上の光拡散層を用いるのが好ましく、50%〜90%が好ましく、55%〜80%が特に好ましい。上記範囲の内部ヘイズの光拡散層を用いると、外光がある中での黒しまりを保ちつつ、極角30°方向の散乱強度を効率的に増加できるので好ましい。
【0025】
光拡散層は、透光性樹脂と、透光性樹脂の屈折率とは異なる屈折率を有する透光性粒子とを含む層であってもよい。透光性粒子と透光性樹脂の屈折率差、透光性粒子の粒子径、透光性粒子の含有量により散乱光プロファイル及びヘイズ値を調整することができる。透光性粒子として、同一粒径及び同一材質の透光性粒子のみを用いてもよいし、粒径及び/又は材質の異なる複数種の透光性粒子を用いてもよい。後者のほうが、散乱光プロファイル及びヘイズ値を調整できる点で好ましい。
【0026】
透光性粒子の屈折率と、光拡散層の主成分である透光性樹脂の屈折率(後述する、層の屈折率調整のために無機微粒子等を透光性樹脂に添加した場合は、その光学的な平均屈折率)との差が0.03〜0.30であることが好ましい。屈折率差が0.03未満の場合は、両者の屈折率の差が小さ過ぎて、光拡散効果を得にくく、屈折率差が0.30よりも大きい場合は、光拡散性が大き過ぎて、フィルム全体が白化する。屈折率差は、0.06〜0.25がより好ましく、0.09〜0.20がよりさらに好ましい。
【0027】
本発明においては、視角特性改善ために適度な散乱性を得るために、透光性粒子(第1の透光性粒子)の粒子径は、0.5〜3.5μmが好ましく、0.5〜2.0μmであることがより好ましく、0.6〜1.8μmであることがさらに好ましい。拡散効果が大きければ大きい程、視角特性は向上する。しかし、表示品位という点で正面の明るさを維持するためには、出来る限り透過率を高めることも必要である。前記粒子径を0.5μm未満とした場合、拡散の効果が大きく、視角特性は向上するが、後方散乱が大きくなり明るさの減少が大きい。一方、3.5μmを超える場合は、拡散効果が小さくなり、視角特性の向上は小さくなっていく。
【0028】
また、拡散効果付与を主目的としない透光性粒子(第2の透光性粒子)をさらに添加することも好ましい。拡散層の表面に凹凸を設け、映り込み防止機能を設ける等に用いられる。第2の透光性粒子の粒子径は第1の透光性粒子の粒子径より大きいことが好ましく、2.5μm〜10.0μmであることが更に好ましい。これにより、好適な表面散乱を付与することができる。良好な表示品位を達成するには、外光の写り込みを防止することも重要である。表面のヘイズ値が低いほど外光による白茶け感が小さくなり、明瞭なディスプレイ表示を得ることができるが、表面ヘイズ値が低すぎると、映り込みが大きくなるため、最外層に光拡散層の屈折率よりも低い屈折率の低屈折率層を設け、低反射率化することも好ましい。表面ヘイズ値を制御するには、第2の透光性粒子により樹脂層表面に適度な凹凸を設けることが好ましいが、この限りではない。粒子径を2.5μm以下にした場合、所望の表面凹凸を設ける場合に、層の厚みを薄くせざるを得ず、膜硬度の点で好ましくなく、一方、10μm以上にした場合、粒子1個1個の重量が大きくなるため、塗布液中の粒子沈降安定性の点で必ずしも好ましくない。従って、第2の透光性粒子の粒子径は、2.7〜9.0μmが好ましく、3.0〜8.0μmがより好ましい。
【0029】
第2の透光性粒子の屈折率は、光拡散層の主成分である透光性樹脂の屈折率との差が第1の透光性粒子より小さいことが好ましい。
【0030】
前記光拡散層の表面凸凹は、表面粗さRaが0.5μm以下であることが好ましく、0.3μm以下であることが更に好ましく、0.2μm以下であるのがよりさらに好ましい。表面粗さRa(中心線平均粗さ)の測定は、JIS−B0601に準じて行うことができる。
【0031】
光拡散層のヘイズ値、特に透過光の拡散に寄与が大きい内部散乱へイズ(内部ヘイズ)は、視角特性改良効果と強い相関関係がある。バックライトから出射された光が視認側の偏光板表面に設置された光拡散層で拡散されることにより、視角特性が改善される。しかし、拡散され過ぎると正面輝度が減少するため、光拡散層の内部ヘイズは、45%以上が好ましく、50%〜90%がより好ましく、55%〜80%が特に好ましい。内部散乱へイズを上昇させる方法として、拡散性付与を目的とする透光性粒子の塗布量を上げる、同一塗布量の場合は粒子径を下げる、膜厚を厚くする、さらには、粒子と樹脂の屈折率差を大きくするなどの方法がある。
【0032】
前記光拡散層の表面散乱起因のヘイズ(表面ヘイズ)は、映り込み低減と白茶け感低減の両立の観点から、0.1〜30%が好ましく、10%以下が好ましく、5%以下が特に好ましい。外光による白茶け感低減を重視するのであれば、4%以下が好ましく、2%以下が更に好ましい。表面ヘイズを低減すると映り込みが大きくなるため、低屈折率層を設け、5度入射における積分反射率の450nmから650nmまでの波長領域での平均値を3.0%以下にすることが好ましく、2.0%以下がより好ましく、さらに好ましくは1.0%以下である。本発明における、表示品位を上げる(視角特性改善)ことに関しては、前述の内部散乱性の調整が必要であるが、同時に表面ヘイズ及び/又は反射率を好適な範囲にすることで、明室下でのコントラストが改善され、より好ましい効果を発現できる。
【0033】
前記透光性粒子は、単分散の有機微粒子であっても、無機微粒子であってもよい。粒径にばらつきがないほど、散乱特性にばらつきが少なくなり、ヘイズの設計が容易となる。前記透光性粒子としては、プラスチックビーズが好適であり、特に透明度が高く、透光性樹脂との屈折率差が前述のような数値になるものが好ましい。有機微粒子としては、ポリメチルメタクリレートビーズ(屈折率1.49)、アクリル−スチレン共重合体ビーズ(屈折率1.52〜1.57)、メラミンビーズ(屈折率1.57〜1.65)、ポリカーボネートビーズ(屈折率1.57)、スチレンビーズ(屈折率1.60)、架橋ポリスチレンビーズ(屈折率1.61)、ポリ塩化ビニルビーズ(屈折率1.60)、ベンゾグアナミン−メラミンホルムアルデヒドビーズ(屈折率1.68)等が用いられる。無機微粒子としては、シリカビーズ(屈折率1.44〜1.46)、アルミナビーズ(屈折率1.63)等が用いられる。透光性粒子は、透光性樹脂100質量部に対して5〜30質量部含有させるのが好ましい。
【0034】
透光性粒子の中には、樹脂組成物(透光性樹脂)中で沈降し易いものもあるので、沈降防止のためにシリカ等の無機フィラーを添加してもよい。なお、無機フィラーは添加量が増す程、透光性粒子の沈降防止に有効であるが、塗膜の透明性に悪影響を与える。従って、好ましくは、粒径0.5μm以下の無機フィラーを、透光性樹脂に対して塗膜の透明性を損なわない程度に、0.1質量%未満程度含有させるとよい。
【0035】
透光性樹脂としては、主として紫外線・電子線によって硬化する樹脂、即ち、電離放射線硬化型樹脂、電離放射線硬化型樹脂に熱可塑性樹脂と溶剤を混合したもの、熱硬化型樹脂の3種類が使用される。ハードコート性を付与するためには、電離放射線硬化型樹脂が主成分であることが好ましい。光拡散層の厚さは通常1.5〜30μm、好ましくは3〜20μmとするとよい。光拡散層がハードコート層としての機能を兼ねる場合が一般的であるが、光拡散層の厚さが1.5μmよりも薄くなると、ハードコート性が十分でなくなる方向であり、一方、30μmよりも厚くなると、カールや脆性の点で好ましくない方向である。透光性樹脂の屈折率は、低屈折率層を設ける場合は、好ましくは1.46〜2.00であり、より好ましくは1.48〜1.90であり、更に好ましくは1.50〜1.80である。なお、透光性樹脂の屈折率は、透光性粒子を含まずに測定した光拡散層平均の値である。光拡散層の屈折率が小さすぎると反射防止性が低下する。大きすぎると、反射光の色味が強くなり、好ましくない方向である。この点から上記範囲が好ましい。光拡散層の屈折率の設定は、反射防止性と反射光色味の点から所望の値に設定することができる。
【0036】
該透光性樹脂に用いるバインダーは、飽和炭化水素又はポリエーテルを主鎖として有するポリマーであることが好ましく、飽和炭化水素を主鎖として有するポリマーであることがさらに好ましい。また、バインダーは架橋していることが好ましい。飽和炭化水素を主鎖として有するポリマーは、エチレン性不飽和モノマーの重合反応により得ることが好ましい。架橋しているバインダーを得るためには、分子内に二個以上のエチレン性不飽和基を有するモノマーを用いることが好ましい。
【0037】
二個以上のエチレン性不飽和基を有するモノマーの例には、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,3,5−シクロヘキサントリオールトリメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンの誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)及びメタクリルアミドが含まれる。これらの中でも、少なくとも3つの官能基を有するアクリレートもしくはメタアクリレートモノマー、さらには少なくとも5つの官能基を有するアクリレートモノマーが、膜硬度、即ち耐傷性の観点で好ましい。ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物が市販されており、特に好ましく用いられる。
【0038】
これらのエチレン性不飽和基を有するモノマーは、各種の重合開始剤その他添加剤と共に溶剤に溶解して調製した塗布液を、表面に塗布及び乾燥後、電離放射線又は熱による重合反応を進行させて、硬化させることができる。
【0039】
二個以上のエチレン性不飽和基を有するモノマーの代わり又はそれに加えて、架橋性基の反応により、架橋構造をバインダーに導入してもよい。架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基及び活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステル及びウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。これら架橋性官能基を有するバインダーは塗布後、加熱することによって架橋構造を形成することができる。
【0040】
透光性樹脂は、上記バインダポリマーに加えて、これに高屈折率を有するモノマー及び/又は高屈折率を有する金属酸化物超微粒子等から形成されることが好ましい。高屈折率モノマーの例には、ビス(4−メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4−メタクリロキシフェニル−4‘−メトキシフェニルチオエーテル等が含まれる。高屈折率を有する金属酸化物超微粒子の例には、ジルコニウム、チタン、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも一つの酸化物からなる粒径100nm以下、好ましくは50nm以下の微粒子を含有することが好ましい。高屈折率を有する金属酸化物超微粒子としてはAl、Zr、Zn、Ti、In及びSnから選ばれる少なくとも1種の金属の酸化物超微粒子が好ましく、具体例としては、ZrO2、TiO2、Al23、In23、ZnO、SnO2、Sb23、ITO等が挙げられる。これらの中でも、特にZrO2が好ましく用いられる。高屈折率のモノマーや金属酸化物超微粒子の添加量は、透光性樹脂の全質量の10〜90質量%であることが好ましく、20〜80質量%であると更に好ましい。
【0041】
上記のような電離放射線硬化型樹脂組成物の硬化方法としては、前記電離放射線硬化型樹脂組成物の通常の硬化方法、即ち、電子線又は紫外線の照射によって硬化させる方法が挙げられる。
【0042】
上記光ラジカル重合開始剤としては、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類、アゾ化合物、過酸化物類(特開2001−139663号公報等)、2,3−ジアルキルジオン化合物類、ジスルフィド化合物類、フルオロアミン化合物類、芳香族スルホニウム類、ロフィンダイマー類、オニウム塩類、ボレート塩類、活性エステル類、活性ハロゲン類、無機錯体、クマリン類などが挙げられる。これらの開始剤は単独で使用しても、混合して使用してもよい。その他、「最新UV硬化技術」,(株)技術情報協会,1991年,p.159、及び、「紫外線硬化システム」 加藤清視著、平成元年、総合技術センター発行、p.65〜148にも種々の例が記載されており本発明に有用である。また、市販の光ラジカル重合開始剤としては、日本化薬(株)製のKAYACURE(DETX−S,BP−100,BDMK,CTX,BMS,2−EAQ,ABQ,CPTX,EPD,ITX,QTX,BTC,MCAなど)、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(127,184,500,651, 819,907,369,1173,1870,2959,4265,4263など)、サートマー社製のEsacure(KIP100F,KB1,EB3,BP,X33,KT046,KT37,KIP150,TZT)等及びそれらの組み合わせが好ましい例として挙げられる。
【0043】
光重合開始剤は、多官能モノマー100質量部に対して、0.1〜15質量部の範囲で使用することが好ましく、より好ましくは1〜10質量部の範囲である。
【0044】
(低屈折率層)
本発明の偏光板は、光拡散層とともに、該光拡散層よりも屈折率が低い低屈折率層を有していてもよい。低屈折率層は、光拡散層のより外側であって、光拡散層に隣接させて配置されるのが好ましい。低屈折率層を形成することで、反射防止性能が得られ、外光の映り込みが抑えられ、明室環境下でのコントラストをより向上させることができる。
【0045】
前記低屈折率層の屈折率は、1.20〜1.50であるのが好ましく、1.25〜1.45であるのがより好ましく、1.30〜1.40であるのが更に好ましい。前記低屈折率層の形成に用いる材料については特に制限はない。例えば、含フッ素化合物を主成分として含有する硬化性組成物、又は分子内に複数個の結合性基を有するモノマーと低屈折率の粒子とを含有する硬化組成物等を硬化させて形成することができる。より具体的には、好ましい硬化物組成の例には、(1)架橋性若しくは重合性の官能基を有する含フッ素ポリマーを含有する組成物、(2)含フッ素のオルガノシラン材料の加水分解縮合物を主成分とする組成物、(3)2個以上のエチレン性不飽和基を有するモノマーと中空構造を有する無機微粒子を含有する組成物、などが含まれる。
【0046】
(透明基板)
本発明の偏光板は、前記光拡散層を支持する透明基板を有していてもよい。例えば、透明基板の表面に、光拡散層形成用塗布液を塗布して、前記光拡散層を形成することができる。透明基板には、透明ポリマーフィルム、及び透明ガラス板などを用いることができる。透明ポリマーフィルムとしては、セルロースエステルフィルム(例、トリアセチルセルロースフィルム、ジアセチルセルロースフィルム、代表的には富士フイルム社製TAC−TD80U,TD80UFなど)、ポリアミドフィルム、ポリカーボネートフィルム、ポリエステルフィルム(例、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム)、ポリスチレンフィルム、ポリオレフィンフィルム、ノルボルネン系樹脂フィルム(アートン:商品名、JSR社製)、非晶質ポリオレフィンフィルム(ゼオネックス:商品名、日本ゼオン社製)、などが挙げられる。このうちトリアセチルセルロースフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルムが好ましく、特にトリアセチルセルロースフィルムが好ましい。透明基板の厚みは、薄型化ニーズ及びハンドリング性(搬送適性)の観点から、20〜200μmが好ましく、30〜100μmがより好ましく、35〜90μmがさらに好ましく、40〜80μmよりさらに好ましい。
なお、透明基板がポリマーフィルムからなる場合は、本発明では、透明基板を、偏光層である直線偏光膜の保護フィルムとして利用することもできる。具体的には、ポリマーフィルムとその上に光拡散層とを有する光拡散フィルムを、そのポリマーフィルムの裏面(光拡散層が形成されていない側の面)を直線偏光膜の表面と貼り合せて、該ポリマーフィルムを保護フィルムとして利用してもよい。また、前記透明基板の配置によっては、第2の光学異方性層である所定の光学特性を満足するポリマーフィルムであってもよい。
【0047】
また、本発明では、異方性光散乱フィルムを、光拡散層として利用してもよい。異方性光散乱フィルムとは、方位角により拡散角が相違するものであり、これを用いることで斜視での黒浮きを抑制できてコントラストを向上させることができ、下方向等の補償不足を生じやすい方向での階調反転を生じない角度を拡大することができる。また複屈折層に基づく色付きも低減することができる。散乱異方性フィルムは、例えばルミスティ(商品名、住友化学社製)やスペックルを記録したフィルムからなるスペックルグラムとして得ることができ、また複屈折特性が相違する微小領域を分散含有する透光性樹脂からなるフィルムとして得ることができる。
【0048】
以下代表的な異方性光散乱フィルムの態様について説明する。特に好ましくは第1の態様である。
(異方性光散乱フィルムの第1の態様)
本発明において、光拡散層として利用可能な異方性光散乱フィルムの第1の態様は、フィルム内部に屈折率が互いに異なる部分が不規則な形状・厚さで分布したフィルムである。例えば、屈折率の高低が濃淡模様に形成された部分(屈折率の異なる部分)を有し、且つその部分が、フィルムの厚さ方向に対して傾斜して層状に分布しているフィルムが好適に用いられる。この例の異方性光散乱フィルムは、上記傾斜方向に沿った角度で入射する光に対しては光散乱が生じ、上記傾斜方向に対して垂直な角度で入射する光に対しては、単なる透明フィルムとして機能するので、光散乱性に入射角度選択性を持つ。前記屈折率が異なる部分が、層状に傾斜している方向においては、屈折率の分布が一様であってもよいし、また、層状に傾斜している方向においては、屈折率の分布が不規則であってもよい。また屈折率の異なる部分が、それぞれ大きさが不規則であり、それぞれの形状が、縦長(あるいは、横長)となっており、それぞれの部分による光散乱特性が、横長(あるいは、縦長)となることで、光散乱特性に異方性を持つことが好ましい。かかる異方性光散乱フィルムは、特開2000−171619号公報に開示されている。
【0049】
前述の通り、前記第1の態様の異方性光散乱フィルムに入射した光は、入射角度によって散乱光として透過する。異方性光散乱フィルムへの入射光は、散乱光として出射されるが、当該散乱光の最大散乱方向を示す透過光と異方性光散乱フィルムの法線方向とのなす最大散乱角度θは、20°〜50°の範囲にあることが好ましい。
【0050】
前記第1の態様の異方性光散乱フィルムに用いる材料は、屈折率差が0.001〜0.2の範囲で適宜選択され、同様にフィルム厚みも前記屈折率差に応じて1000μm〜1μmの範囲で適宜選択されるであろう。屈折率の異なる部分の大きさは、光散乱を生じさせるためにランダムで規則性はないが、必要な散乱性を持たせるために、その平均の大きさは直径で0.1μm〜300μmの範囲内で適宜選択される。
【0051】
前記第1の態様の異方性光散乱フィルムは、例えば、ランダムマスクパターンを利用して作製することができる。具体的には、UV光源から出た紫外光を、コリメート光学系により平行光とし、マスク原版を照射する。マスク原版は、ガラス基板とランダムパターンであるクロムパターンとからなる。マスク原版のUV照射側と反対の面には、感光材料を密着させて配置し、マスク原版のパターンを感光材料に露光照射する。この際、UV平行光とマスク原版とは所定角度αだけ傾いて配置されているため、パターン露光は感光材料中で、所定角度傾いてなされることになる。この角度が、光散乱フィルム中の屈折率の異なる部分の傾斜角度(すなわち、入射角度依存性の最大散乱角度θ)に相当することになる。使用する感光材料は、UV光の露光部と未露光部とに屈折率の変化が生じる形態で記録可能な感光材料であり、記録しようとする濃淡模様より高い解像力を持ち、その厚みの方向にもパターンを記録できるような材料である。このような記録材料としては、体積型ホログラム用感光材料が利用でき、アグファ社製ホログラム用銀塩感光材料8E56乾板、デュポン社製ホログラム用感光材料HRFフィルム又は重クロム酸ゼラチン、ポラロイド社製DMP−128記録材料などが挙げられる。またランダムパターンを持つマスク原版は、計算機を用いた乱数計算から作製した白黒パターンデータを、所謂フォトリソグラフィーの手法によりガラス基板上の金属クロムパターンとしてエッチングしたものを用いることができる。もちろんマスク原版の作成方法としては、上記方式に限定されるものではなく、リス乾板を使った写真手法などにより作製しても同様なマスクを作製できる。
【0052】
また、前記第1の態様の異方性光散乱フィルムは、スペックルパターンを利用して作製することができる。具体的には、レーザー光源から出たレーザー光で、すりガラスを照射する。すりガラスのレーザー照射側と反対の面には、所定距離をおいて感光材料を配置し、すりガラスで透過散乱したレーザー光が作り出す複雑な干渉パターンであるスペックルパターンが感光材料に露光照射される。この際、すりガラスと感光材料は所定角度αだけ傾いて配置されているため、スペックルパターンは感光材料中で、所定角度傾いて露光されることになる。この角度が、光散乱フィルム中の屈折率の異なる部分の傾き(すなわち、入射角度依存性の最大散乱角度θ)に相当することになる。記録に使用するレーザー光源は、アルゴンイオンレーザーの514.5nm、488nm及び457.9nmの波長のうち、感光材料の感度に応じて適宜選択して使用することができる。また、アルゴンイオンレーザー以外でもコヒーレント性のよいレーザー光源であれば使用可能であり、例えばヘリウムネオンレーザーやクリプトンイオンレーザーなどが使用できる。
【0053】
(異方性光散乱フィルムの第2の態様)
本発明において、光拡散層として利用可能な異方性光散乱フィルムの第2の態様は、透光性ポリマーの1種又は2種以上と、微小領域を形成するための前記透光性ポリマーとは複屈折特性が相違する材料、例えばポリマー類や液晶類等の透明性に優れる適宜な材料、の1種又は2種以上を混合して、透光性ポリマー中に当該材料を微小領域の状態で分散含有するフィルムを形成した後、必要に応じ延伸処理等による適宜な配向処理で複屈折性が相違する領域を形成して作製されるフィルムである。第2の態様の異方性光散乱フィルムでは、透光性ポリマーとその中に分散された微小領域との屈折率差、及び配向処理によって形成する複屈折性の分布を調整することで、上記条件を満足する散乱プロファイルを示す異方性光散乱フィルムを作製することができる。
【0054】
前記の透光性ポリマーとしては、透明性であればいずれも使用することができる。例えば、ポリエステル類;ポリスチレン及びアクリロニトリル・スチレン共重合体(ASポリマー類)等のポリスチレン類;ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、シクロ系又はノルボルネン構造を有するポリオレフィン等のポリオレフィン類;ポリカーボネート類;ポリ(メタ)アクリル類;塩化ポリビニル類;セルロースアシレート類;ポリアミド類;ポリイミド類;ポリスルホン類;ポリエーテルスルホン類;ポリエーテルエーテルケトン類;ポリフェニレンスルフィド類;ポリビニルアルコール類;塩化ポリビニリデン類;ポリビニルブチラール類;ポリアリレート類;ポリオキシメチレン類;シリコーン系樹脂;ポリウレタン類;それらの2種以上のブレンド;物;及びフェノール系やメラミン系、アクリル系やウレタン系、ウレタンアクリル系やエポキシ系やシリコーン系等の熱硬化型ないし紫外線硬化型のポリマー類;等が挙げられる。
【0055】
前記透光性ポリマーは、成形歪み等による配向複屈折を生じ難い材料であってもよいし(等方性ポリマー)、生じやすい材料であってもよい(異方性ポリマー)。可視光域での透明性に優れるポリマーを用いるのが好ましい。
【0056】
(第1の光学異方性層)
本発明の偏光板は、波長450nmにおけるRe(450)と波長550nmにおけるRe(550)の比Re(450)/Re(550)が0.9〜1.1である、第1の光学異方性層を有する。前記第1の光学異方性層のRe(450)/Re(550)は、1〜1.1であるのがより好ましい。
なお、第1の光学異方性層のRe(550)は、用いられる液晶表示装置のモードに応じて、その好ましい範囲も変動するが、TNモード液晶表示装置に用いられる偏光板の態様では、第1の光学異方性層のRe(550)は、20〜55nmであるのが好ましく、22〜45nmであるのがより好ましい。
【0057】
前記第1の光学異方性層は、液晶組成物から形成された層である。前記第1の光学異方性層の形成に用いる液晶組成物は、ネマチック相及びスメクチック相を形成し得る液晶組成物であるのが好ましい。液晶化合物は、一般的に、その分子の形状に基づいて、棒状及び円盤状液晶化合物に分類されるが、本発明ではいずれの形状の液晶化合物を用いてもよい。前記第1の光学異方性層に要求される特性を満足するためには、用いる液晶化合物は、その分子の配向により複屈折性を発現した際に、複屈折性の波長分散性が低い化合物が好ましい。
【0058】
棒状液晶化合物を用いる場合は、前記第1の光学異方性層に要求される特性を満足するためには、2種以上の棒状液晶化合物を用いるのが好ましい。好ましい組み合わせとしては、下記式(I)で表される棒状液晶の少なくとも一種と、下記式(II)で表される棒状液晶の少なくとも一種との組み合わせが挙げられる。
【0059】
【化7】

【0060】
式中、A及びBはそれぞれ、芳香族もしくは脂肪族炭化水素環、又はヘテロ環の基を表し;R1〜R4はそれぞれ、置換もしくは無置換の、C1〜12(好ましくはC3〜7)のアルキレン基、又はC1〜12(好ましくはC3〜7)のアルキレン鎖を含むアルコキシ基、アシルオキシ基、アルコキシカルボニル基もしくはアルコキシカルボニルオキシ基を表し;Ra、Rb及びRcはそれぞれ置換基を表し;x、y及びzはそれぞれ、1〜4の整数を表す。
【0061】
前記式中、R1〜R4に含まれるアルキル鎖は、直鎖状及び分岐状のいずれであってもよい。直鎖状であるのがより好ましい。また、組成物を硬化させるために、R1〜R4は末端に重合性基を有しているのが好ましく、該重合性基の例には、アクリロイル基、メタクリロイル基、及びエポキシ基等が含まれる。
【0062】
前記式(I)中、x及びzは0で、且つyが1であるのが好ましく、1個のRbは、オキシカルボニル基又はアシルオキシ基に対してメタ位もしくはオルト位の置換基であるのが好ましい。RbはC1〜12のアルキル基(例えばメチル基)、ハロゲン原子(例えばフッ素原子)等が好ましい。
【0063】
前記式(II)中、A及びBはそれぞれ、フェニレン基又はシクロへキシレン基であるのが好ましく、A及びBの双方がフェニレン基でありか、又は一方がシクロへキシレン基で且つ他方がフェニレン基であるのが好ましい。
【0064】
以下に前記一般式(I)で表される化合物の具体例、及び一般式(II)で表される化合物の具体例を挙げるが、以下の具体例に限定されるものではない。
【0065】
【化8】

【0066】
【化9】

【0067】
前記一般式(I)及び(II)の化合物の割合については特に制限はない。前記特性を満足するために、等量使用しても、いずれか一方を主成分として、他方を副成分として使用してもよい。
【0068】
円盤状液晶化合物としては、前記第1の光学異方性層に要求される特性を満足するためには、下記一般式(DI)で表される化合物を用いるのが好ましい。これらは、高い複屈折性を示すので好ましい。下記一般式(DI)表される化合物の中でも、ディスコティック液晶性を示す化合物が好ましく、特に、ディスコティックネマチック相を示す化合物が好ましい。
【0069】
【化10】

【0070】
一般式(DI)中、Y11、Y12、Y13は、それぞれ独立にメチン又は窒素原子を表す。L1、L2、L3は、それぞれ独立に単結合又は2価の連結基を表す。H1、H2、H3はそれぞれ独立に、下記一般式(DI−A)又は下記一般式(DI−B)を表す。R1、R2、R3は、それぞれ独立に下記一般式(DI−R)を表す。
【0071】
一般式(DI)中、Y11、Y12及びY13はそれぞれ独立に、メチン又は窒素原子を表す。Y11、Y12及びY13がそれぞれメチンの場合、メチンが有する水素原子は置換基によって置換されていてもよい。メチンが有していてもよい置換基としては、例えば、アルキル基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、ハロゲン原子及びシアノ基を挙げることができる。これらの中では、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子及びシアノ基がより好ましく、炭素原子数(置換基が有する炭素原子数をいう、以下、ディスコティック液晶化合物が有していてもよい置換基について同じ)1〜12のアルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数2〜12アルコキシカルボニル基、炭素原子数2〜12アシルオキシ基、ハロゲン原子及びシアノ基がさらに好ましい。
【0072】
11、Y12、Y13は、すべてメチンであることが好ましく、またメチンは無置換であることが好ましい。
【0073】
一般式(DI)中、L1、L2及びL3はそれぞれ独立に、単結合又は2価の連結基である。前記2価の連結基は、−O−、−S−、−C(=O)−、−NR7−、−CH=CH−、−C≡C−、2価の環状基及びそれらの組み合わせからなる群より選ばれる2価の連結基であることが好ましい。上記R7は炭素原子数が1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることがより好ましく、メチル基、エチル基又は水素原子であることがさらに好ましく、水素原子であることが特に好ましい。
【0074】
1、L2、L3で表される2価の環状基は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがより好ましく、6員環であることがさらに好ましい。環状基に含まれる環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環の例には、ベンゼン環及びナフタレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環及びピリミジン環が含まれる。環状基は、芳香族環及び複素環を含んでいるのが好ましい。
【0075】
前記2価の環状基のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,5−ジイル基及びナフタレン−2,6−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。
【0076】
1、L2又はL3で表される前記2価の環状基は、置換基を有していてもよい。置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲン原子で置換されたアルキル基、炭素原子数が1〜16のアルコキシ基、炭素原子数が2〜16のアシル基、炭素原子数が1〜16のアルキルチオ基、炭素原子数が2〜16のアシルオキシ基、炭素原子数が2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数が2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数が2〜16のアシルアミノ基が含まれる。
【0077】
1、L2及びL3としては、単結合、*−O−CO−、*−CO−O−、*−CH=CH−、*−C≡C−、*−2価の環状基−、*−O−CO−2価の環状基−、*−CO−O−2価の環状基−、*−CH=CH−2価の環状基−、*−C≡C−2価の環状基−、*−2価の環状基−O−CO−、*−2価の環状基−CO−O−、*−2価の環状基−CH=CH−又は*−2価の環状基−C≡C−が好ましい。特に、単結合、*−CH=CH−、*−C≡C−、*−CH=CH−2価の環状基−又は*−C≡C−2価の環状基−がより好ましく、単結合がさらに好ましい。ここで、*は一般式(I)中のY11、Y12及びY13を含む6員環に結合する位置を表す。
【0078】
一般式(DI)中、H1、H2及びH3はそれぞれ独立に、下記一般式(DI−A)もしくは下記一般式(DI−B)を表す。
【0079】
【化11】

【0080】
一般式(DI−A)中、YA1及びYA2はそれぞれ独立に、メチン又は窒素原子を表す。YA1及びYA2は、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。XAは酸素原子、硫黄原子、メチレン又はイミノを表す。XAは、酸素原子であることが好ましい。*はL1〜L3と結合する位置を表し、**はR1〜R3と結合する位置を表す。
【0081】
【化12】

【0082】
一般式(DI−B)中、YB1及びYB2は、それぞれ独立にメチン又は窒素原子を表す。YB1及びYB2は、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。XBは酸素原子、硫黄原子、メチレン又はイミノを表す。XBは、酸素原子であることが好ましい。*はL1〜L3と結合する位置を表し、**はR1〜R3と結合する位置を表す。
【0083】
1、R2、R3は、それぞれ独立に下記一般式(DI−R)を表す。
一般式(DI−R)
*−(−L21−F1n1−L22−L23−Q1
【0084】
一般式(DI−R)中、*は一般式(DI)中のH1、H2又はH3に結合する位置を表す。F1は少なくとも1種類の環状構造を有する2価の連結基を表す。L21は単結合又は2価の連結基を表す。L21が2価の連結基の場合、−O−、−S−、−C(=O)−、−NR7−、−CH=CH−、−C≡C−、及びそれらの組み合わせからなる群より選ばれる2価の連結基であることが好ましい。上記R7は炭素原子数が1〜7のアルキル基又は水素原子であり、炭素原子数1〜4のアルキル基又は水素原子であることがより好ましく、メチル基、エチル基又は水素原子であることがさらに好ましく、水素原子であることが特に好ましい。
【0085】
21は単結合、**−O−CO−、**−CO−O−、**−CH=CH−又は**−C≡C−(ここで、**は一般式(DI−R)中のL21の左側を表す)が好ましい。特に、単結合が好ましい。
【0086】
一般式(DI−R)中のF1は少なくとも1種類の環状構造を有する2価の環状連結基を表す。環状構造は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがより好ましく、6員環であることがさらに好ましい。環状構造は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。また、環状基に含まれる環は、芳香族環、脂肪族環、及び複素環のいずれでもよい。芳香族環の例には、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環及びピリミジン環が含まれる。
【0087】
1のうち、ベンゼン環を有するものとしては、1,4−フェニレン基、1,3−フェニレン基が好ましい。ナフタレン環を有するものとしては、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−1,6−ジイル基、ナフタレン−2,5−ジイル基、ナフタレン−2,6−ジイルナフタレン−2,7−ジイル基が好ましい。シクロヘキサン環を有するものとしては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有するものとしてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有するものとしては、ピリミジン−2,5−ジイル基が好ましい。F1は、特に、1,4−フェニレン基、1,3−フェニレンナフタレン−2,6−ジイル基及び1,4−シクロへキシレン基が好ましい。
【0088】
1は、置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数1〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲン原子で置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。該置換基は、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲン原子で置換されたアルキル基がより好ましく、特に、ハロゲン原子、炭素原子数1〜3のアルキル基、トリフルオロメチル基が好ましい。
【0089】
n1は0〜4整数を表す。n1としては、1〜3の整数が好ましく、1又は2が好ましい。なお、n1が0の場合は、式(DI−R)中のL22が直接、前記一般式(D1)中のH1〜H3と結合する。n1が2以上の場合、それぞれの−L21−F1は同一でも異なっていてもよい。
【0090】
22は、−O−、−O−CO−、−CO−O−、−O−CO−O−、−S−、−NH−、−SO2−、−CH2−、−CH=CH−又は−C≡C−を表す。好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−、−CH2−、−CH=CH−又は−C≡C−であり、より好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−又は−CH2−である。
ここで、上記のうち水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。他の置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキル基で置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が含まれる。特に、ハロゲン原子、炭素原子数1〜6のアルキル基が好ましい。
【0091】
23は、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの2個以上を連結して形成される基から選択される2価の連結基である。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、他の置換基に置き換えられていてもよい。他の置換基の例には、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキル基で置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が含まれる。特に、ハロゲン原子、炭素原子数1〜6のアルキル基が好ましい。これらの置換基に置き換えられることにより、前記一般式(DI)で表される化合物の溶媒に対する溶解性を向上させることができ、容易に、塗布液として本発明の組成物を調製することができる。
【0092】
23は、−O−、−C(=O)−、−CH2−、−CH=CH−及び−C≡C−並びにこれらの組み合わせからなる群から選ばれる連結基であることが好ましい。L23は、炭素原子を1〜20個含有することが好ましく、炭素原子を2〜14個を含有することがより好ましい。さらに、L23は−CH2−を1〜16個含有することが好ましく、−CH2−を2〜12個含有することがより好ましい。
【0093】
1は重合性基又は水素原子である。一般式(DI)で表される化合物を、光学補償フィルムのような位相差の大きさが熱により変化しないことを必要とする光学フィルム等の作製に用いる場合には、Q1は重合性基であることが好ましい。重合反応は、付加重合(開環重合を含む)又は縮合重合であることが好ましい。言い換えると、重合性基は、付加重合反応又は縮合重合反応が可能な官能基であることが好ましい。以下に重合性基の例を示す。
【0094】
【化13】

【0095】
【化14】

【0096】
さらに、重合性基は付加重合反応が可能な官能基であることが特に好ましい。そのような重合性基としては、重合性エチレン性不飽和基又は開環重合性基が好ましい。
【0097】
重合性エチレン性不飽和基の例としては、下記の式(M−1)〜(M−6)が挙げられる。
【0098】
【化15】

【0099】
式(M−3)、式(M−4)中、Rは水素原子又はアルキル基を表す。Rとしては、水素原子又はメチル基が好ましい。上記(M−1)〜(M−6)の中でも、(M−1)又は(M−2)が好ましく、(M−1)がより好ましい。
【0100】
開環重合性基として好ましいのは、環状エーテル基であり、中でもエポキシ基又はオキセタニル基がより好ましく、エポキシ基が最も好ましい。
【0101】
また、本発明では、ディスコティック液晶化合物として下記一般式(DII)で表される化合物又は下記一般式(DIII)で表される化合物を用いることも好ましい。
【0102】
【化16】

(一般式(DII)中、Y31、Y32、Y33はそれぞれ独立にメチン又は窒素原子を表す。R31、R32、R33はそれぞれ独立に下記一般式(DII−R)で表される。)
【0103】
一般式(DII)中、Y31、Y32、Y33はそれぞれ独立にメチン又は窒素原子を表す。Y31、Y32及びY33は各々、一般式(DI)中のY11、Y12及びY13の定義とそれぞれ同一であり、好ましい範囲も同義である。
【0104】
31、R32、R33はそれぞれ独立に一般式(DII−R)で表される。
【0105】
【化17】

【0106】
一般式(DII−R)中、A31、A32は、それぞれ独立にメチン又は窒素原子を表す。A31及びA32としては、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。
3は酸素原子、硫黄原子、メチレン、又はイミノを表す。X3としては、酸素原子であることが好ましい。
【0107】
一般式(DII−R)中、F2は6員環状構造を有する2価の環状連結基を表す。F2に含まれる6員環は、縮合環であってもよい。ただし、縮合環よりも単環であることがより好ましい。F2に含まれる6員環は、芳香族環、脂肪族環及び複素環のいずれでもよい。芳香族環の例には、ベンゼン環、ナフタレン環、アントラセン環及びフェナントレン環が含まれる。脂肪族環の例には、シクロヘキサン環が含まれる。複素環の例には、ピリジン環及びピリミジン環が含まれる。
【0108】
2価の環状基のうち、ベンゼン環を有する環状基としては、1,4−フェニレン基及び1,3−フェニレン基が好ましい。ナフタレン環を有する環状基としては、ナフタレン−1,4−ジイル基、ナフタレン−1,5−ジイル基、ナフタレン−1,6−ジイル基、ナフタレン−2,5−ジイル基、ナフタレン−2,6−ジイル基及びナフタレン−2,7−ジイル基が好ましい。シクロヘキサン環を有する環状基としては1,4−シクロへキシレン基であることが好ましい。ピリジン環を有する環状基としてはピリジン−2,5−ジイル基が好ましい。ピリミジン環を有する環状基としては、ピリミジン−2,5−ジイル基が好ましい。2価の環状基としては、特に、1,4−フェニレン基、1,3−フェニレン基、ナフタレン−2,6−ジイル基及び1,4−シクロへキシレン基が好ましい。
【0109】
2は、置換基を有していてもよい。置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲン原子で置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。2価の環状基の置換基としては、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基が好ましく、さらに、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲン原子で置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜3のアルキル基、トリフルオロメチル基がより好ましい。
【0110】
n3は、1〜3整数を表す。n3としては、1又は2が好ましい。n3が2以上の場合、それぞれのF2は同一でも異なっていてもよい。
【0111】
31は−O−、−O−CO−、−CO−O−、−O−CO−O−、−S−、−NH−、−SO2−、−CH2−、−CH=CH−、−C≡C−、を表し、上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。L31の好ましい範囲は、一般式(DI−R)中のL22と同一である。
【0112】
32は−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−、−C≡C−ならびにこれらの2個以上を連結して形成される基から選択される2価の連結基を表し、上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。L32の好ましい範囲は、一般式(DI−R)中のL23と同一である。
【0113】
3は重合性基又は水素原子を表し、好ましい範囲は、一般式(DI−R)中のQ1と同一である。
【0114】
次に、一般式(DIII)で表される化合物の詳細を記す。
【0115】
【化18】

【0116】
一般式(DIII)中、Y41、Y42及びY43は、それぞれ独立にメチン又は窒素原子を表し、Y41、Y42及びY43がそれぞれメチンの場合、メチンが有する水素原子は、置換基によって置換されていてもよい。メチンが有していてもよい置換基としては、アルキル基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、ハロゲン原子及びシアノ基を好ましい例として挙げることができる。これらの置換基の中では、アルキル基、アルコキシ基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子及びシアノ基がさらに好ましく、炭素原子数1〜12のアルキル基、炭素原子数1〜12のアルコキシ基、炭素原子数2〜12のアルコキシカルボニル基、炭素原子数2〜12のアシルオキシ基、ハロゲン原子及びシアノ基が特に好ましい。
41、Y42及びY43は、いずれもメチンであることがより好ましく、メチンは無置換であることがより好ましい。
【0117】
41、R42及びR43は、それぞれ独立に下記一般式(DIII−A)、又は下記一般式(DIII−B)、又は下記一般式(DIII−C)を表す。
波長分散性の小さい位相差板等を作製する場合は、R41、R42及びR43は、それぞれ、一般式(DIII−A)又は一般式(DIII−C)で表されるものが好ましく、一般式(DIII−A)で表されるものがより好ましい。
【0118】
【化19】

【0119】
一般式(DIII−A)中、A41、A42、A43、A44、A45、A46は、それぞれ独立にメチン又は窒素原子を表す。A41及びA42は、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。A43、A44、A45及びA46は、少なくとも3つがメチンであることが好ましく、全てメチンであることがより好ましい。A43、A44、A45及びA46がそれぞれメチンの場合、メチンが有する水素原子は置換基によって置換されていてもよい。メチンが有する置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲン原子で置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
41は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0120】
【化20】

【0121】
一般式(DIII−B)中、A51、A52、A53、A54、A55及びA56はそれぞれ独立に、メチン又は窒素原子を表す。A51及びA52は、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。A53、A54、A55及びA56は、少なくとも3つがメチンであることが好ましく、全てメチンであることがより好ましい。A53、A54、A55及びA56がそれぞれメチンの場合、メチンが有する水素原子は置換基によって置換されていてもよい。メチンが有していてもよい置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲン原子で置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
52は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0122】
【化21】

【0123】
一般式(DIII−C)中、A61、A62、A63、A64、A65及びA66はそれぞれ独立に、メチン又は窒素原子を表す。A61及びA62は、少なくとも一方が窒素原子であることが好ましく、双方が窒素原子であることがより好ましい。A63、A64、A65及びA66は、少なくとも3つがメチンであることが好ましく、全てメチンであることがより好ましい。A63、A64、A65及びA36がそれぞれメチンの場合、該メチンが有する水素原子は置換基によって置換されていてもよい。メチンが有していてもよい置換基の例には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、ニトロ基、炭素原子数1〜16のアルキル基、炭素原子数2〜16のアルケニル基、炭素原子数2〜16のアルキニル基、炭素原子数1〜16のハロゲンで置換されたアルキル基、炭素原子数1〜16のアルコキシ基、炭素原子数2〜16のアシル基、炭素原子数1〜16のアルキルチオ基、炭素原子数2〜16のアシルオキシ基、炭素原子数2〜16のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜16のアルキル基で置換されたカルバモイル基及び炭素原子数2〜16のアシルアミノ基が含まれる。これらの中でも、ハロゲン原子、シアノ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲンで置換されたアルキル基が好ましく、ハロゲン原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のハロゲンで置換されたアルキル基がより好ましく、ハロゲン原子、炭素原子数が1〜3のアルキル基、トリフルオロメチル基がさらに好ましい。
63は、酸素原子、硫黄原子、メチレン又はイミノを表し、酸素原子が好ましい。
【0124】
一般式(DIII−A)中のL41、一般式(DIII−B)中のL51、一般式(DIII−C)中のL61はそれぞれ独立して、−O−、−O−CO−、−CO−O−、−O−CO−O−、−S−、−NH−、−SO2−、−CH2−、−CH=CH−又は−C≡C−を表す。好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−、−CH2−、−CH=CH−、−C≡C−であり、より好ましくは、−O−、−O−CO−、−CO−O−、−O−CO−O−又は−CH2−である。上述の基が水素原子を含む基であるときは、該水素原子は置換基で置き換わってもよい。
このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0125】
一般式(DIII−A)中のL42、一般式(DIII−B)中のL52、一般式(DIII−C)中のL62はそれぞれ独立して、−O−、−S−、−C(=O)−、−SO2−、−NH−、−CH2−、−CH=CH−及び−C≡C−ならびにこれらの2個以上を連結して形成される基から選択される2価の連結基を表す。ここで、−NH−、−CH2−、−CH=CH−の水素原子は、置換基で置換されていてもよい。このような置換基として、ハロゲン原子、シアノ基、ニトロ基、炭素原子数1〜6のアルキル基、炭素原子数1〜6のハロゲン原子で置換されたアルキル基、炭素原子数1〜6のアルコキシ基、炭素原子数2〜6のアシル基、炭素原子数1〜6のアルキルチオ基、炭素原子数2〜6のアシルオキシ基、炭素原子数2〜6のアルコキシカルボニル基、カルバモイル基、炭素原子数2〜6のアルキルで置換されたカルバモイル基及び炭素原子数2〜6のアシルアミノ基が好ましい例として挙げられ、ハロゲン原子、炭素原子数1〜6のアルキル基がより好ましい。
【0126】
42、L52及びL62はそれぞれ独立して、−O−、−C(=O)−、−CH2−、−CH=CH−及び−C≡C−ならびにこれらの2個以上を連結して形成される基から選択される2価の連結基であることが好ましい。L42、L52、L62はそれぞれ独立して、炭素原子を1〜20個含有することが好ましく、炭素原子を2〜14個含有することがより好ましい。さらに、L42、L52、L62はそれぞれ独立して、−CH2−を1〜16個含有することが好ましく、−CH2−を2〜12個含有することがさらに好ましい。
【0127】
一般式(DIII−A)中のQ4、一般式(DIII−B)中のQ5及び一般式(DIII−C)中のQ6は、それぞれ独立して、重合性基又は水素原子を表す。これらの好ましい範囲は、一般式(DI−R)中のQ1と同一である。
【0128】
以下に、一般式(DI)、一般式(DII)及び一般式(DIII)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0129】
【化22】

【0130】
【化23】

【0131】
【化24】

【0132】
【化25】

【0133】
以下一般式(DIII)で表される化合物を示す。
【0134】
【化26】

【0135】
上記一般式(DI)、一般式(DII)及び一般式(DIII)で表される化合物の合成は、既知の方法を適用して合成することができる。
【0136】
本発明では、円盤状液晶化合物として、上記一般式(DI)、一般式(DII)及び一般式(DIII)で表される化合物の1種のみを使用してよいし、2種以上を使用してもよい。
【0137】
また、前記円盤状液晶化合物の好ましい例には、特開2005−301206号公報に記載の化合物も含まれる。
【0138】
第1の光学異方性層が、0.9≦Re(450)/Re(550)≦1.1を満足するためには、第1の光学異方性層中に、異常光の屈折率に主に寄与する吸収の遷移よりも、常光の屈折率に主に寄与する吸収の遷移の方が長波長であり、且つ常光に主に寄与する吸収の遷移方向が分子の長軸方向(光軸方向)に対して、70〜90°傾いている分子を存在させるのが好ましい。常光に主に寄与する吸収の遷移方向が分子の長軸方向(光軸方向)に対して、70〜90°傾けるためには、6員環と奇数員環(3員環、5員環、7員環、9員環等)が縮環した部分構造を有することが好ましい。具体的には、下記一般式(I)又は後述する一般式(II)で表される液晶化合物が挙げられる。これらの液晶性化合物は、添加剤として光学異方性層中に単分子構造のまま含有されていてもよいし、これらの液晶性化合物が重合性基を有する場合は、これらの液晶性化合物から誘導される繰り返し単位を有する高分子の状態で、前記光学異方性層中に含有されていてもよい。
【0139】
【化27】

【0140】
式中、L1及びL2は各々独立に単結合又は二価の連結基を表す。A1及びA2は各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す。)、−S−及び−CO−からなる群から選ばれる基を表す。R1、R2、及びR3は各々独立に置換基を表す。Xは第14
〜16族の非金属原子を表す(ただし、Xには水素原子又は置換基が結合してもよい)。nは0〜2の整数を表す。
【0141】
特に下記一般式(I')で表される液晶化合物が好ましい。
【0142】
【化28】

【0143】
一般式(I')中、L1及びL2は各々独立に単結合又は二価の連結基を表す。A1及びA2は各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す。)、−S−及び−CO−からなる群から選ばれる基を表す。R1、R2、R3、R4及びR5は各々独立に置換基を表す。nは0〜2の整数を表す。
【0144】
一般式(I)又は(I')において、L1及びL2が表す二価の連結基としては、好ましくは下記の例が挙げられる。
【化29】

【0145】
さらに好ましくは−O−、−COO−、−OCO−である。
【0146】
一般式(I)又は(I')において、R1は置換基であり、複数存在する場合は同じでも異なっていてもよく、環を形成してもよい。置換基の例としては下記のものが適用できる。
【0147】
ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1〜30のアルキル基、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、2−エチルヘキシル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換又は無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換又は無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル基、ビシクロ[2,2,2]オクタン−3−イル基)、
【0148】
アルケニル基(好ましくは炭素数2〜30の置換又は無置換のアルケニル基、例えば、ビニル基、アリル基)、シクロアルケニル基(好ましくは、炭素数3〜30の置換又は無置換のシクロアルケニル基、つまり、炭素数3〜30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル基)、ビシクロアルケニル基(置換又は無置換のビシクロアルケニル基、好ましくは、炭素数5〜30の置換又は無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル基、ビシクロ[2,2,2]オクト−2−エン−4−イル基)、アルキニル基(好ましくは、炭素数2〜30の置換又は無置換のアルキニル基、例えば、エチニル基、プロパルギル基)、
【0149】
アリール基(好ましくは炭素数6〜30の置換又は無置換のアリール基、例えばフェニル基、p−トリル基、ナフチル基)、ヘテロ環基(好ましくは5又は6員の置換又は無置換の、芳香族又は非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、さらに好ましくは、炭素数3〜30の5又は6員の芳香族のヘテロ環基である。例えば、2−フリル基、2−チエニル基、2−ピリミジニル基、2−ベンゾチアゾリル基)、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換又は無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換又は無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、
【0150】
シリルオキシ基(好ましくは、炭素数3〜20のシリルオキシ基、例えば、トリメチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基)、ヘテロ環オキシ基(好ましくは、炭素数2〜30の置換又は無置換のヘテロ環オキシ基、1−フェニルテトラゾール−5−オキシ基、2−テトラヒドロピラニルオキシ基)、アシルオキシ基(好ましくはホルミルオキシ基、炭素数2〜30の置換又は無置換のアルキルカルボニルオキシ基、炭素数6〜30の置換又は無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基)、カルバモイルオキシ基(好ましくは、炭素数1〜30の置換又は無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ基、N,N−ジエチルカルバモイルオキシ基、モルホリノカルボニルオキシ基、N,N−ジ−n−オクチルアミノカルボニルオキシ基、N−n−オクチルカルバモイルオキシ基)、アルコキシカルボニルオキシ基(好ましくは、炭素数2〜30の置換又は無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ基、エトキシカルボニルオキシ基、tert−ブトキシカルボニルオキシ基、n−オクチルカルボニルオキシ基)、アリールオキシカルボニルオキシ基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ基、p−メトキシフェノキシカルボニルオキシ基、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ基)、
【0151】
アミノ基(好ましくは、アミノ基、炭素数1〜30の置換又は無置換のアルキルアミノ基、炭素数6〜30の置換又は無置換のアニリノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基)、アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1〜30の置換又は無置換のアルキルカルボニルアミノ基、炭素数6〜30の置換又は無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基)、アミノカルボニルアミノ基(好ましくは、炭素数1〜30の置換又は無置換のアミノカルボニルアミノ基、例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜30の置換又は無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、tert−ブトキシカルボニルアミノ基、n−オクタデシルオキシカルボニルアミノ基、N−メチルーメトキシカルボニルアミノ基)、アリールオキシカルボニルアミノ基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ基、p−クロロフェノキシカルボニルアミノ基、m−n−オクチルオキシフェノキシカルボニルアミノ基)、
【0152】
スルファモイルアミノ基(好ましくは、炭素数0〜30の置換又は無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ基、N,N−ジメチルアミノスルホニルアミノ基、N−n−オクチルアミノスルホニルアミノ基)、アルキル及びアリールスルホニルアミノ基(好ましくは炭素数1〜30の置換又は無置換のアルキルスルホニルアミノ基、炭素数6〜30の置換又は無置換のアリールスルホニルアミノ基、例えば、メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5−トリクロロフェニルスルホニルアミノ基、p−メチルフェニルスルホニルアミノ基)、メルカプト基、アルキルチオ基(好ましくは、炭素数1〜30の置換又は無置換のアルキルチオ基、例えばメチルチオ基、エチルチオ基、n−ヘキサデシルチオ基)、アリールチオ基(好ましくは炭素数6〜30の置換又は無置換のアリールチオ基、例えば、フェニルチオ基、p−クロロフェニルチオ基、m−メトキシフェニルチオ基)、ヘテロ環チオ基(好ましくは炭素数2〜30の置換又は無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ基、1−フェニルテトラゾール−5−イルチオ基)、
【0153】
スルファモイル基(好ましくは炭素数0〜30の置換又は無置換のスルファモイル基、例えば、N−エチルスルファモイル基、N−(3−ドデシルオキシプロピル)スルファモイル基、N,N−ジメチルスルファモイル基、N−アセチルスルファモイル基、N−ベンゾイルスルファモイル基、N−(N'−フェニルカルバモイル)スルファモイル基)、スルホ基、アルキル及びアリールスルフィニル基(好ましくは、炭素数1〜30の置換又は無置換のアルキルスルフィニル基、炭素数6〜30の置換又は無置換のアリールスルフィニル基、例えば、メチルスルフィニル基、エチルスルフィニル基、フェニルスルフィニル基、p−メチルフェニルスルフィニル基)、アルキル及びアリールスルホニル基(好ましくは、炭素数1〜30の置換又は無置換のアルキルスルホニル基、炭素数6〜30の置換又は無置換のアリールスルホニル基、例えば、メチルスルホニル基、エチルスルホニル基、フェニルスルホニル基、p−メチルフェニルスルホニル基)、
【0154】
アシル基(好ましくはホルミル基、炭素数2〜30の置換又は無置換のアルキルカルボニル基、炭素数7〜30の置換又は無置換のアリールカルボニル基、例えば、アセチル基、ピバロイルベンゾイル基)、アリールオキシカルボニル基(好ましくは、炭素数7〜30の置換又は無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル基、o−クロロフェノキシカルボニル基、m−ニトロフェノキシカルボニル基、p−tert−ブチルフェノキシカルボニル基)、アルコキシカルボニル基(好ましくは、炭素数2〜30の置換又は無置換アルコキシカルボニル基、例えば、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基、n−オクタデシルオキシカルボニル基)、カルバモイル基(好ましくは、炭素数1〜30の置換又は無置換のカルバモイル基、例えば、カルバモイル基、N−メチルカルバモイル基、N,N−ジメチルカルバモイル基、N,N−ジ−n−オクチルカルバモイル基、N−(メチルスルホニル)カルバモイル基)、
【0155】
アリール及びヘテロ環アゾ基(好ましくは炭素数6〜30の置換又は無置換のアリールアゾ基、炭素数3〜30の置換又は無置換のヘテロ環アゾ基、例えば、フェニルアゾ基、p−クロロフェニルアゾ基、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ基)、イミド基(好ましくは、N−スクシンイミド基、N−フタルイミド基)、ホスフィノ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィノ基、例えば、ジメチルホスフィノ基、ジフェニルホスフィノ基、メチルフェノキシホスフィノ基)、ホスフィニル基(好ましくは、炭素数2〜30の置換又は無置換のホスフィニル基、例えば、ホスフィニル基、ジオクチルオキシホスフィニル基、ジエトキシホスフィニル基)、ホスフィニルオキシ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ基、ジオクチルオキシホスフィニルオキシ基)、ホスフィニルアミノ基(好ましくは、炭素数2〜30の置換又は無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ基、ジメチルアミノホスフィニルアミノ基)、シリル基(好ましくは、炭素数3〜30の置換又は無置換のシリル基、例えば、トリメチルシリル基、tert−ブチルジメチルシリル基、フェニルジメチルシリル基)を表わす。
【0156】
上記の置換基の中で、水素原子を有するものは、これを取り去りさらに上記の基で置換されていてもよい。そのような官能基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。その例としては、メチルスルホニルアミノカルボニル基、p−メチルフェニルスルホニルアミノカルボニル基、アセチルアミノスルホニル基、ベンゾイルアミノスルホニル基が挙げられる。
【0157】
1は好ましくは、ハロゲン原子、アルキル基、アルケニル基、アリール基、ヘテロ環基、ヒドロキシル基、カルボキシル基、アルコキシ基、アリールオキシ基、アシルオキシ基、シアノ基、アミノ基であり、さらに好ましくは、ハロゲン原子、アルキル基、シアノ基、アルコキシ基である。
【0158】
2、R3は各々独立に置換基を表す。例としては上記R1の例があげられる。好ましくは置換もしくは無置換のベンゼン環、置換もしくは無置換のシクロヘキサン環である。より好ましくは置換基を有するベンゼン環、置換基を有するシクロヘキサン環であり、さらに好ましくは4位に置換基を有するベンゼン環、4位に置換基を有するシクロヘキサン環である。
【0159】
4、R5は各々独立に置換基を表す。例としては上記R1の例が挙げられる。好ましくは、ハメットの置換基定数σp値が0より大きい電子吸引性の置換基であることが好ましく、σp値が0〜1.5の電子吸引性の置換基を有していることがさらに好ましい。このような置換基としてはトリフルオロメチル基、シアノ基、カルボニル基、ニトロ基等が挙げられる。また、R4とR5とが結合して環を形成してもよい。
なお、ハメットの置換基定数のσp、σmに関しては、例えば、稲本直樹著「ハメット則−構造と反応性−」(丸善)、日本化学会編「新実験化学講座14 有機化合物の合成と反応V」2605頁(丸善)、仲谷忠雄著「理論有機化学解説」217頁(東京化学同人)、ケミカル レビュー,91巻,165〜195頁(1991年)等の成書に詳しく解説されている。
【0160】
1及びA2は各々独立に、−O−、−NR−(Rは水素原子又は置換基)、−S−及び−CO−からなる群から選ばれる基を表す。好ましくは−O−、−NR−(Rは置換基を表し、例としては上記R1の例が挙げられる。)又は−S−である。
5及びR6の好ましい例には、シアノ基(CN)、アシル基(−COR:Rは置換もしくは無置換のアルキル基またはアリール基を表す)、置換もしくは無置換のアルコキシキカルボニル基又はアリールオキシカルボニル基(C(=O)OR:Rは置換もしくは無置換のアルキル基またはアリール基を表す)、又は置換もしくは無置換のカルバモイル基(C(=O)NR1112:R11及びR12はそれぞれ、水素原子、又は置換もしくは無置換のアルキル基又はアリール基を表し、互いに結合して環を形成していてもよい)が含まれる。R、R11及びR12が表す置換もしくは無置換のアルキル基は、C1〜C10の置換もしくは無置換のアルキル基であるのが好ましく、C2〜C8の置換もしくは無置換のアルキル基であるのがより好ましく、C2〜C6の置換もしくは無置換のアルキル基であるのがさらに好ましい。また、アルキル基中の隣接しない炭素原子の一方が酸素原子もしくは硫黄原子に置換されていてもよい。R、R11及びR12が表す置換もしくは無置換のアリール基の例には、R1の例として挙げたアリール基の具体例が含まれる。前記アルキル基及びアリール基の置換基の例は、R1が表す置換基の例と同様である。後述する重合性基を置換基として有しているのも好ましい。また、R11及びR12が互いに結合して形成される環の例には、ピペラジン環が含まれる。
中でも、R5及びR6のうち、一方がシアノ基であり、及び他方が置換もしくは無置換のアルコキシキカルボニル基であるのが好ましい。
nは0〜2の整数を表し、好ましくは0、1である。
【0161】
前記一般式(I)又は(I')で表される化合物が、重合性基を有していると、光学異方性層の光学特性が熱等によって変動しないので、好ましい。重合性基としては、後述する一般式(III)で表される化合物が有する置換基Qの例示と同様である。なお、前記一般式(I)又は(I')で表される化合物は、例えば、R2及び/又はR3の置換基として重合性基を有していてもよい。
【0162】
以下に、一般式(I)又は(I')で表される化合物の具体例を示すが、本発明は以下の具体例によって何ら限定されることはない。下記化合物に関しては、指定のない限り括弧( )内の数字にて例示化合物(X)と示す。
【0163】
【化30】

【0164】
【化31】

【0165】
【化32】

【0166】
【化33】

【0167】
【化34】

【0168】
一般式(I)又は(I')で表される化合物の合成は、既知の方法を参照して行うことができる。例えば、例示化合物(1)は、下記スキームに従って合成することができる。
【0169】
【化35】

【0170】
前記スキーム中、化合物(1−A)から化合物(1−D)までの合成は、"Journal of Chemical Crystallography"(1997);27(9);p.515−526.に記載の方法を参照して行うことができる。
さらに、前記スキームに示したように、化合物(1−E)のテトラヒドロフラン溶液に、メタンスルホン酸クロライドを加え、N,N−ジイソプロピルエチルアミンを滴下し攪拌した後、N,N−ジイソプロピルエチルアミンを加え、化合物(1−D)のテトラヒドロフラン溶液を滴下し、その後、N,N−ジメチルアミノピリジン(DMAP)のテトラヒドロフラン溶液を滴下することで、例示化合物(1)を得ることができる。
【0171】
また、前記光学異方性層の形成には、下記一般式(II)で表される化合物を用いるのも好ましい。
【0172】
【化36】

式中、MG1及びMG2はそれぞれ独立に、2〜8個の環状基から構成される液晶相の発現を誘起する液晶コア部であり、液晶コア部を構成する環状基としては、芳香族環、脂肪族環、及び複素環のいずれでもよく;MG1及びMG2を構成する環状基の1つは、L11及びL12で置換され;R11、R12、R13、及びR14はそれぞれ液晶コア部の分子長軸方向に置換している液晶相の発現を誘起する柔軟性のある置換基、双極子作用基及び水素結合性基であり;L11及びL12はそれぞれ独立に、液晶コア部MG1及びMG2に置換する連結基であり、下記式(II)−LA又は式(II)−LBで表され;
【0173】
【化37】

【0174】
【化38】

式中、*はMG1を構成する環状基に置換する位置を表し;#はP1と連結する位置を表し;A11、A13及びA14はそれぞれ独立に、―O−、−NH−、−S−、−CH2−、−CO−、−SO−、又は−SO2−を表し;A12は−CH=又は−N=を表し;L11及びL12の双方が式(II)−LAで表される基の場合、置換基P1は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びそれらの組み合わせからなる群より選ばれる二価の連結基を表し;L11及びL12の一方が、式(II)−LBで表される基で、他方が式(II)−LAで表される基の場合、置換基P1は、*=CH−P11−#、又は*=N−P11−#で表され(*は式(II)−LBで表される基との連結位置を表し、#は式(II)−LAで表される基との連結位置を表す);P11は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びこの組み合わせから選ばれる二価の連結基を表し;L11及びL12の双方が式(II)−LBで表される基の場合、置換基P1は、二重結合、=CH−P11−CH=、=N−P11−CH=、=N−P11−N=を表し;P11は上記P11と同義である。
【0175】
前記一般式(I)で表される化合物については、特開2005−289980号公報の[0026]〜[0083]詳細な説明があり、またその例示化合物も同公報の[0085]〜[0098]に例示があり、それらを使用することができる。
【0176】
前記第1の光学異方性層は、液晶化合物(好ましくは式(DI)の円盤状液晶化合物)、及び所望により上記式(I)又は(II)で表される添加剤の少なくとも一種、を含有する組成物を、第2の光学異方性層として用いられるポリマーフィルムの表面(例えば、配向膜表面)に配置し、液晶化合物の分子を所望の配向状態とし、重合により硬化させ、その配向状態を固定して形成するのが好ましい。液晶化合物の分子(棒状及び円盤状分子の双方を含む)をハイブリッド配向状態に固定するのが好ましい。
なお、ハイブリッド配向とは、層の厚み方向で液晶分子のダイレクタの方向が連続的に変化する配向状態をいう。棒状分子の場合は、ダイレクタは長軸方向、円盤状分子の場合はダイレクタは円盤面の法線方向となる。
【0177】
また、液晶性化合物の分子を所望の配向状態とするため、及び組成物の塗布性もしくは硬化性の良化のために、前記組成物は一種以上の添加剤を含んでいてもよい。
液晶化合物(特に棒状液晶化合物)の分子をハイブリッド配向させるために、層の空気界面側の配向を制御し得る添加剤(以下、「空気界面配向制御剤」という)を添加してもよい。該添加剤として、フッ化アルキル基及びスルホニル基等の親水性基を有する低分子量もしくは高分子量の化合物が挙げられる。使用可能な空気界面配向制御剤の具体例には、特開2006−267171号公報等に記載の化合物が含まれる。
【0178】
また、前記組成物を塗布液として調製し、塗布により前記第1の光学異方性層を形成する場合は、塗布性の良化のために界面活性剤を添加してもよい。界面活性剤としては、フッ素系化合物が好ましく、具体的には、例えば特開2001−330725号公報明細書中の段落番号[0028]〜[0056]記載の化合物が挙げられる。また市販の「メガファックF780」(大日本インキ製)などを用いてもよい。
【0179】
また、前記組成物は、重合開始剤を含有しているのが好ましい。前記重合開始剤は、熱重合開始剤であっても光重合開始剤であってもよいが、制御が容易である等の観点から、光重合開始剤が好ましい。光の作用によりラジカルを発生させる光重合開始剤の例としては、α−カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジン及びフェナジン化合物(特開昭60−105667号公報、米国特許第4239850号明細書記載)及びオキサジアゾール化合物(米国特許第4212970号明細書記載)、アセトフェノン系化合物、ベンゾインエーテル系化合物、ベンジル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物等が好ましい。アセトフェノン系化合物としては、例えば、2,2−ジエトキシアセトフェノン、2−ヒドロキシメチル−1−フェニルプロパン−1−オン、4'−イソプロピル−2−ヒドロキシ−2−メチル−プロピオフェノン、2−ヒドロキシ−2−メチル−プロピオフェノン、p−ジメチルアミノアセトン、p−tert−ブチルジクロロアセトフェノン、p−tert−ブチルトリクロロアセトフェノン、p−アジドベンザルアセトフェノン等が挙げられる。ベンジル系化合物としては、例えば、ベンジル、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。ベンゾインエーテル系化合物としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン−n−プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル等が挙げられる。ベンゾフェノン系化合物としては、例えば、ベンゾフェノン、o−ベンゾイル安息香酸メチル、ミヒラーズケトン、4,4'−ビスジエチルアミノベンゾフェノン、4,4'−ジクロロベンゾフェノン等が挙げられる。チオキサントン系化合物としては、例えば、チオキサントン、2−メチルチオキサントン、2−エチルチオキサントン、2−イソプロピルチオキサントン、4−イソプロピルチオキサントン、2−クロロチオキサントン、2,4−ジエチルチオキサントン等が挙げられる。このような芳香族ケトン類からなる感光性ラジカル重合開始剤の中でも、アセトフェノン系化合物及びベンジル系化合物が、硬化特性、保存安定性、臭気等の面で特に好ましい。これらの芳香族ケトン類からなる感光性ラジカル重合開始剤は、1種又は2種以上のものを所望の性能に応じて配合して使用することができる。
また、感度を高める目的で重合開始剤に加えて、増感剤を用いてもよい。増感剤の例には、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン、及びチオキサントン等が含まれる。
【0180】
光重合開始剤は複数種を組み合わせてもよく、使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがより好ましい。液晶化合物の重合のための光照射は紫外線を用いることが好ましい。
【0181】
前記組成物は、重合性液晶化合物とは別に、非液晶性の重合性モノマーを含有していてもよい。重合性モノマーとしては、ビニル基、ビニルオキシ基、アクリロイル基又はメタクリロイル基を有する化合物が好ましい。なお、重合性の反応性官能基数が2以上の多官能モノマー、例えば、エチレンオキサイド変性トリメチロールプロパンアクリレートを用いると、耐久性が改善されるので好ましい。
前記非液晶性の重合性モノマーは、非液晶性成分であるので、その添加量が、液晶化合物に対して15質量%を超えることはなく、0〜10質量%程度であるのが好ましい。
【0182】
前記第1の光学異方性層は、前記組成物を塗布液として調製し、該塗布液を、例えば、支持体上に形成された配向膜の表面に塗布し、乾燥して溶媒を除去するとともに、液晶化合物の分子を配向させ、その後、重合により硬化させて、形成することができる。
塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーテティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。
塗膜を乾燥する際には、加熱してもよい。塗膜を乾燥して溶媒を除去すると同時に、塗膜中の液晶化合物の分子を配向させて、所望の配向状態を得る。
【0183】
次に、紫外線照射等によって重合を進行させて、配向状態を固定化し、第1の光学異方性層を形成する。重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm2〜50J/cm2であることが好ましく、100mJ/cm2〜800mJ/cm2であることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。
【0184】
第1の光学異方性層の厚さについては特に制限されないが、0.1〜10μmであるのが好ましく、0.5〜5μmであるのがより好ましい。
【0185】
前記第1の光学異方性層は、配向膜を利用して形成するのが好ましい。利用可能な配向膜の例としては、ポリビニルアルコール膜やポリイミド膜等が挙げられる。
【0186】
(第2の光学異方性層)
本発明の偏光板は、Re(550)が40〜110nmであり、且つ波長550nmにおける厚さ方向のレターデーションRth(550)が40〜100nmである第2の光学異方性層を有する。即ち、前記第2の光学異方性層は、光学的に二軸性である。Re(550)は50〜100nmであるのが好ましく、Rth(550)は50〜80nmであるのが好ましい。
【0187】
前記第2の光学異方性層は、光透過性、具体的には可視光域の光に対して透過率80%以上、のポリマーフィルムであるのが好ましい。第2の光学異方性層がポリマーフィルムであると、偏光子の表面に貼り合わせることができる。前記ポリマーフィルムの材料としては、光学性能、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるポリマーが好ましいが、上述の条件を満たす範囲であればどのような材料を用いてもよい。例えば、変性ポリカーボネートや変性シクロオレフィンポリマーや、側鎖にアセチル基を有するセルロース系ポリマー(以下、セルロースアシレートという)等が、延伸等により上記Reを発現するものとして好ましく用いられる。
【0188】
第2の光学異方性層用のセルロースアシレートフィルムの材料として用いられるセルロースアシレートのアシル置換基は、例えばアセチル基単独からなるセルロースアシレートであっても、複数のアシル置換基を有するセルロースアシレートを含む組成物を用いてもよい。セルロースアシレートの好ましい例は、全アシル化度が2.3〜3.0であり、2.4〜2.95がより好ましい。
また、アセチル基とともに、他の脂肪酸エステル残基を有する混合脂肪酸エステルも好ましい。脂肪酸エステル残基の脂肪族アシル基の炭素原子数は2〜20であることが好ましく、具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等が挙げられる。中でも、アセチル基とともに、プロピオニル基、ブチリル基、ペンタノイル基、及びヘキサノイル基から選ばれるアシル基を有するセルロースアシレートを用いるのが好ましく、その置換度が、下記式(1)〜(3)を満足するセルロースアシレートを用いるのがより好ましい。
(1) 2.0 ≦X+Y ≦3.0
(2) 0 ≦X ≦2.0
(3) 1.2 ≦Y ≦2.9
式(1)〜(3)中、Xはセルロースアシレート中のアセチル基の置換度を示し、Yは、セルロースアシレート中のプロピオニル基、ブチリル基、ペンタノイル基、及びヘキサノイル基から選ばれるアシル基の置換度の総和を示す。
【0189】
前記セルロースアシレートは、350〜800の質量平均重合度を有することが好ましく、370〜600の質量平均重合度を有することがさらに好ましい。また本発明で用いられるセルロースアシレートは、70000〜230000の数平均分子量を有することが好ましく、75000〜230000の数平均分子量を有することがさらに好ましく、78000〜120000の数平均分子量を有することがよりさらに好ましい。
【0190】
前記セルロースアシレートフィルムは、溶液流延法、または溶融流延法により製造されるのが好ましい。溶液流延法を利用したセルロースアシレートフィルムの製造例については、 米国特許第2,336,310号、同2,367,603号、同2,492,078号、同2,492,977号、同2,492,978号、同2,607,704号、同2,739,069号及び同2,739,070号の各明細書、英国特許第640731号及び同736892号の各明細書、並びに特公昭45−4554号、同49−5614号、特開昭60−176834号、同60−203430号及び同62−115035号等の記載を参考にすることができる。また、前記セルロースアシレートフィルムは、延伸処理を施すことによって、Re、Re逆波長分散性を発現する。延伸処理の方法及び条件については、例えば、特開昭62−115035号、特開平4−152125号、同4−284211号、同4−298310号、同11−48271号 等に記載の例を参考にすることができる。
【0191】
前記第2の光学異方性層は、可視光域において、Reが逆分散波長依存性を示していてもよい。かかる性質のポリマーフィルムを作製するためには、セルロースアセテートプロピオネートとセルロースアセテートとを含む組成物を溶融製膜法で製膜した後、延伸処理を施すのが好ましい。
また、セルロースアシレート(好ましくはセルロースアセテート)と、Re発現剤とを含有する組成物を、溶液製膜法にて製膜し、所望により延伸処理して作製するのが好ましい。ここで、「Re発現剤」とはフィルム面内の複屈折を発現する性質を有する化合物である。Re発現剤としては、第1の光学異方性層の作製に利用可能な例として挙げた、上記式(I)で表される化合物が好ましい。
【0192】
また、前記第2の光学異方性層の作製には、前記式(I)で表される化合物に代えて、又はそれとともに、下記式(V)で表される化合物をRe発現剤として用いてもよい。
(V) Ar1−L1−Ar2
式(V)において、Ar1及びAr2は、それぞれ独立に、芳香族基である。
本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。
アリール基および置換アリール基の方が、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。芳香族性へテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、および1,3,5−トリアジン環が含まれる。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。
【0193】
置換アリール基および置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基(例、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基(例、N−メチルカルバモイル、N−エチルカルバモイル、N,N−ジメチルカルバモイル)、スルファモイル、アルキルスルファモイル基(例、N−メチルスルファモイル、N−エチルスルファモイル、N,N−ジメチルスルファモイル)、ウレイド、アルキルウレイド基(例、N−メチルウレイド、N,N−ジメチルウレイド、N,N,N’−トリメチルウレイド)、アルキル基(例、メチル、エチル、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、s−ブチル、t−アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例、ビニル、アリル、ヘキセニル)、アルキニル基(例、エチニル、ブチニル)、アシル基(例、ホルミル、アセチル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例、アセトキシ、ブチリルオキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリールオキシ基(例、フェノキシ)、アルコキシカルボニル基(例、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例、フェノキシカルボニル)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ、ヘキシルオキシカルボニルアミノ)、アルキルチオ基(例、メチルチオ、エチルチオ、プロピルチオ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例、フェニルチオ)、アルキルスルホニル基(例、メチルスルホニル、エチルスルホニル、プロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オクチルスルホニル)、アミド基(例、アセトアミド、ブチルアミド基、ヘキシルアミド、ラウリルアミド)および非芳香族性複素環基(例、モルホリル、ピラジニル)が含まれる。
【0194】
置換アリール基および置換芳香族性ヘテロ環基の置換基としては、ハロゲン原子、シアノ、カルボキシル、ヒドロキシル、アミノ、アルキル置換アミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基およびアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。
【0195】
式(V)において、L1 は、アルキレン基、アルケニレン基、アルキニレン基、二価の飽和ヘテロ環基、−O−、−CO−およびそれらの組み合わせからなる群より選ばれる二価の連結基である。
アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。
アルキレン基の炭素原子数は、1〜20であることが好ましく、1〜15であることがより好ましく、1〜10であることがさらに好ましく、1〜8であることがさらにまた好ましく、1〜6であることが最も好ましい。
【0196】
アルケニレン基およびアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。
アルケニレン基およびアルキニレン基の炭素原子数は、2〜10であることが好ましく、2〜8であることがより好ましく、2〜6であることがさらに好ましく、2〜4であることがさらにまた好ましく、2(ビニレンまたはエチニレン)であることが最も好ましい。
二価の飽和ヘテロ環基は、3員〜9員のヘテロ環を有することが好ましい。ヘテロ環のヘテロ原子は、酸素原子、窒素原子、ホウ素原子、硫黄原子、ケイ素原子、リン原子またはゲルマニウム原子が好ましい。飽和ヘテロ環の例には、ピペリジン環、ピペラジン環、モルホリン環、ピロリジン環、イミダゾリジン環、テトラヒドロフラン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、テトラヒドロチオフェン環、1,3−チアゾリジン環、1,3−オキサゾリジン環、1,3−ジオキソラン環、1,3−ジチオラン環および1,3,2−ジオキサボロランが含まれる。特に好ましい二価の飽和ヘテロ環基は、ピペラジン−1,4−ジイレン、1,3−ジオキサン−2,5−ジイレンおよび1,3,2−ジオキサボロラン−2,5−ジイレンである。
【0197】
組み合わせからなる二価の連結基の例を示す。
L−1:−O−CO−アルキレン基−CO−O−
L−2:−CO−O−アルキレン基−O−CO−
L−3:−O−CO−アルケニレン基−CO−O−
L−4:−CO−O−アルケニレン基−O−CO−
L−5:−O−CO−アルキニレン基−CO−O−
L−6:−CO−O−アルキニレン基−O−CO−
L−7:−O−CO−二価の飽和ヘテロ環基−CO−O−
L−8:−CO−O−二価の飽和ヘテロ環基−O−CO−
【0198】
式(V)の分子構造において、L1 を挟んで、Ar1 とAr2 とが形成する角度は、140度以上であることが好ましい。
棒状化合物としては、下記式(VI)で表される化合物がさらに好ましい。
(VI) Ar1 −L2 −X−L3 −Ar2
式(V)において、Ar1 およびAr2 は、それぞれ独立に、芳香族基である。芳香族基の定義および例は、式(V)のAr1 およびAr2 と同様である。
【0199】
式(VI)において、L2 およびL3 は、それぞれ独立に、アルキレン基、−O−、−CO−およびそれらの組み合わせからなる群より選ばれる二価の連結基である。
アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。
アルキレン基の炭素原子数は、1〜10であることが好ましく、1〜8であることがより好ましく、1〜6であることがさらに好ましく、1〜4であることがさらにまた好ましく、1または2(メチレンまたはエチレン)であることが最も好ましい。
2 およびL3 は、−O−CO−または−CO−O−であることが特に好ましい。
【0200】
式(VI)において、Xは、1,4−シクロへキシレン、ビニレンまたはエチニレンである。
以下に、式(V)で表される化合物の具体例を示す。
【0201】
【化39】

【0202】
【化40】

【0203】
【化41】

【0204】
【化42】

【0205】
【化43】

【0206】
【化44】

【0207】
【化45】

【0208】
【化46】

【0209】
【化47】

【0210】
【化48】

【0211】
具体例(1)〜(34)、(41)、(42)、(46)、(47)、(52)、(53)は、シクロヘキサン環の1位と4位とに二つの不斉炭素原子を有する。ただし、具体例(1)、(4)〜(34)、(41)、(42)、(46)、(47)、(52)、(53)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1-trans)とシス型(1-cis)とを、以下に示す。
【0212】
【化49】

【0213】
前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、トランス型の方がシス型よりも好ましい。
具体例(2)および(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、Lあるいはラセミ体のいずれでもよい。具体例(43)〜(45)では、中心のビニレン結合にトランス型とシス型とがある。上記と同様の理由で、トランス型の方がシス型よりも好ましい。
【0214】
また、特開2004−50516号公報の11〜14頁に記載の棒状芳香族化合物を、前記Re発現剤として用いてもよい。
また、Re発現剤として、一種の化合物を単独で、又は二種類以上の化合物を混合して用いることができる。Re発現剤として互いに異なる二種類以上の化合物を用いると、レターデーションの調整範囲が広がり、容易に所望の範囲に調整できるので好ましい。
前記Re発現剤の添加量はセルロースアシレート100質量部に対して、0.1〜20質量%が好ましく、0.5〜10質量%がさらに好ましい。前記セルロースアシレートフィルムをソルベントキャスト法で作製する場合は、前記Re発現剤を、ドープ中に添加してもよい。添加はいずれのタイミングで行ってもよく、例えば、アルコール、メチレンクロライド、ジオキソラン等の有機溶媒にRe発現剤を溶解してから、セルロースアシレート溶液(ドープ)に添加してもよいし、又は直接ドープ組成中に添加してもよい。
【0215】
また、第2の光学異方性層としての条件を満足するセルロースアシレートフィルムを作製するために、セルロースアシレートフィルム中に、Rth発現剤を添加するのが好ましい。ここで、「Rth発現剤」とはフィルムの厚み方向に複屈折を発現する性質を有する化合物である。
【0216】
前記Rth発現剤としては、250nm〜380nmの波長範囲に吸収極大を有する分極率異方性の大きい化合物が好ましい。前記Rth発現剤としては、下記一般式(VII)で表される化合物を特に好ましく使用できる。
【0217】
【化50】

【0218】
式中、X1は、単結合、−NR4−、−O−又はS−であり;X2は、単結合、−NR5−、−O−又はS−であり;X3は、単結合、−NR6−、−O−又はS−である。また、R1、R2、及びR3は、それぞれ独立に、アルキル基、アルケニル基、芳香族環基又は複素環基であり;R4、R5及びR6は、それぞれ独立に、水素原子、アルキル基、アルケニル基、アリール基又は複素環基である。
【0219】
以下に前記一般式(VII)で表される化合物の好ましい例を下記に示すが、本発明はこれらの具体例に限定されるものではない。
【0220】
【化51】

【0221】
【化52】

【0222】
【化53】

【0223】
【化54】

【0224】
【化55】

【0225】
【化56】

【0226】
【化57】

【0227】
【化58】

【0228】
【化59】

【0229】
【化60】

【0230】
【化61】

【0231】
【化62】

【0232】
【化63】

【0233】
前記第2の光学異方性層として使用されるセルロースアシレートフィルムは、紫外線吸収剤を含有していてもよい。特に、前記式(1)〜(3)を満足するセルロースアシレート(より好ましくは、セルロース・アセテート・プロピオネート(CAP))と紫外線吸収剤とを含有する組成物から形成されたセルロースアシレートフィルムは、フィルム長手方向に対して直交する方向に延伸処理することで、第2の光学特性を満足するフィルムを作製しやすくなるため好ましい。紫外線吸収剤は、Rth発現剤としても機能し得る。前記紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等を挙げることができるが、着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平10−182621号公報、特開平8−337574号公報に記載の紫外線吸収剤、特開平6−148430号公報記載の高分子紫外線吸収剤も好ましく用いられる。前記第2の光学異方性層として用いるセルロースアシレートフィルムには、紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ、液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
【0234】
種々のポリマーフィルムに対して、延伸処理を施すことで、前記第2の光学異方性層に要求される光学特性を満足するポリマーフィルムを作製してもよい。
また、特に、前記式(1)〜(3)を満足するセルロースアシレート(より好ましくは、セルロース・アセテート・プロピオネート(CAP))を溶融押出し法で作製したCAPフィルムを、温度100〜120℃でフィルム長手方向に、延伸倍率50〜70%で延伸処理を施すことによって、上記光学特性を満足するCAPフィルムを作製することができる。
また、上記式(I)で表されるRe発現剤と、全アシル化度が2.3〜3.0であるTACとを含有する組成物を溶液流延法により製膜し、その後、長手方向に対して直交する方向に、温度140〜190℃で、延伸倍率15〜35%で延伸処理を施すことにより、上記光学特性を満足するTACフィルムを作製することができる。
【0235】
前記第2の光学異方性層として用いるポリマーフィルムの厚みについては特に制限されないが、一般的には、30〜120μmであるのが好ましく、30〜100μmであるのがより好ましい。
【0236】
(偏光層)
本発明の偏光板は、偏光層を有する。偏光層は、直線偏光膜からなる。直線偏光膜には、ヨウ素系偏光膜、二色性染料を用いる染料系偏光膜やポリエン系偏光膜があり、本発明にはいずれを使用してもよい。ヨウ素系偏光膜及び染料系偏光膜は、一般にポリビニルアルコール系フィルムを用いて製造する。
【0237】
(保護層)
前記偏光層の表面であって、前記第1及び第2の光学異方性層が配置される側と反対側の表面に貼合される保護層としては、光透過性、具体的には可視光に対する光透過率が80%以上の、ポリマーフィルムが用いることが好ましい。保護フィルムとしては、セルロースアシレートフィルム、及びポリオレフィンを含むポリオレフィンフィルムが好ましい。セルロースアシレートフィルムの中でも、セルローストリアセテートフィルムが好ましい。また、ポリオレフィンフィルムの中でも、環状ポリオレフィンを含むポリノルボルネンフィルムが好ましい。
保護層として用いられるポリマーフィルムの厚さは、20〜500μmであることが好ましく、50〜200μmであることがさらに好ましい。
【0238】
(偏光板の作製)
本発明の偏光板は、ロール・トゥ・ロール方式で作製することができる。例えば、以下の方法で作製することができる。
まず、長尺状のセルロースアシレートフィルム等のポリマーフィルム(第2の光学異方性層に要求される光学特性を満足するポリマーフィルム)の表面に配向膜形成用塗布液を連続的に塗布し、長手方向に対して所定の交差角、好ましくは0.2〜4.0°、より好ましくは0.3〜2.0°、の方向にラビング処理を実施して、配向膜を連続的に形成する。該ラビング処理面に、重合性円盤状液晶を含有する硬化性液晶組成物の塗布液を連続的に塗布し、乾燥して、円盤状液晶を所望の配向状態とし、その状態で重合を進行させて、光学異方性層(第1の光学異方性層に要求される光学特性を満足する光学異方性層)を連続的に形成して、光学補償フィルム(第1及び第2の光学異方性層の積層体)を連続的に作製する。作製された長尺状の前記光学補償フィルムを一旦ロール形態に巻き取る。長尺状のポリマーフィルム(保護層)の表面に連続的に、光拡散層形成用塗布液を塗布し、乾燥・硬化させて光拡散層(上記所定の特性を満足する光拡散層)を形成し、長尺状の光拡散フィルムを作製する。それを、一旦ロール形態に巻き取る。長尺状の光学補償フィルムのロール、長尺状の直線偏光膜(偏光層)のロール、及び長尺状の光拡散フィルム(保護層)のロールを、ロール・トゥ・ロール方式で貼り合せて、本発明の偏光板を作製することができる。なお、光拡散層が自己支持性を有する光拡散フィルムである場合は、一旦、光学補償フィルム、直線偏光膜及び保護層用ポリマーフィルムをロール・トゥ・ロールで積層して積層体を作製した後、さらに光拡散フィルムロール・トゥ・ロールで形成してもよい。また、一旦、光学補償フィルム、直線偏光膜及び保護層用ポリマーフィルムをロール・トゥ・ロールで積層して積層体を作製した後、さらに光拡散層用塗布液を連続的に塗布して、光拡散層を形成してもよい。
長尺状に作製された偏光板は、ロール形態に巻かれた状態で、搬送・保管等され、実際に液晶表示装置に用いる際に、所定の大きさに切断される。勿論、前記偏光板は、それぞれの部材をあらかじめ所定の大きさに切断し、貼り合せて作製されたものであってもよい。
【0239】
[液晶表示装置]
本発明のTNモード液晶表示装置は、正面コントラストを低下させることなく、広視野角特性を満足するので、特に、TVやTV機能付きPC用の表示モニターに利用することができる。
本発明のTNモード液晶表示装置は、正面コントラストが800以上である。好ましくは1000以上、より好ましくは1500以上である。上限値については制限されないが、TNモード液晶表示装置の正面コントラストの上限値は、一般的には、800程度といわれている。また、TV等用の液晶表示装置には、白黒表示のコントラスト比が10以上の視野角が320度を越えること、カラー表示用のTV等では、さらに、画面法線方向を0°とし、極角0〜60°の視野角において、ΔCu’v’(u’v’(CIELAB空間における色座標)空間上の軌跡から、正面のu’v’値と最も距離の離れた地点でのu’v’との距離を意味する)が0.06以下であること、が要求される。また、下方向で階調反転の起こらない領域が極角50°以上であることが要求される。本発明の液晶表示装置は、いずれの特性も満足し得る優れた視野角特性を示す。
【0240】
図2に、本発明の液晶表示装置の一態様の模式図を示す。図1に示す液晶表示装置は、バックライト(BL)側から順に、保護フィルム(16a)、偏光層(10a)、第2の光学異方性層(12a)、第1の光学異方性層(14a)、液晶セルの下基板(22a)、ネマチック液晶層(20)、液晶セルの上基板(22b)、第1の光学異方性層(14b)、第2の光学異方性層(12b)、偏光層(10b)、保護フィルム(16b)、さらにその外側に光拡散層(18)を有する。本発明の偏光板Pは、表示面側偏光板として配置され、及び光拡散層18が除かれている以外は、本発明の偏光板Pと同一の構成の偏光板P’が、バックライト側偏光板として配置されている。一対の偏光層(10a及び10b)は、それぞれの透過軸を直交にして配置され、光学異方性層(14a及び14b)はそれぞれ、液晶性組成物から形成され、Re(450)/Re(550)が0.9〜1.1であり、第2の光学異方性層(12a及び12b)はそれぞれ、Re(550)が40〜120nmであり、且つRth(550)が40〜100nmであり、偏光層(10a及び10b)を保護するとともに、第1の光学異方性層(14a及び14b)を支持する機能を有する。第1及び第2の光学異方性層は、黒表示時、電圧印加時にネマチック液晶層(20)に残留する複屈折性を補償する作用を有する。
【0241】
TNモード液晶層20は、ネマチック液晶材料からなり、黒表示時に、ネマチック液晶の分子が基板22a及び22bの表面に対して略垂直に配向する。液晶層20の厚さd(ミクロン)と屈折率異方性Δnとの積Δn・dについては特に制限はないが、一般的には、0.1〜1.5μm程度である。
【0242】
表示面側偏光板Pの光拡散層18は、偏光層10bを通過した光を散乱させる。光拡散層18からの散乱光は、そのプロファイルが、出射角0°(フィルム法線方向)の光強度Iに対して、散乱強度が最大となる方位角において極角30°方向の散乱光強度I30、即ち、I30/I、が0.01〜0.2%である。図1の液晶表示装置では、表示面側偏光板Pにおいて、第1及び第2の光学異方性層(12b及び14b)と、所定の特性を満足する光拡散層18とを組み合わせることにより、光拡散によって正面コントラストを損なうことなく、視野角を拡大するとともに、黒表示時のみならず、白〜中間調表示時の視野角表示特性を改善している。図2の液晶表示装置では、バックライト側偏光板P’も、第1及び第2の光学異方性層(14a及び12a)を有するので、さらに表示特性が改善されている。
【0243】
図2では、TNモード液晶表示装置の態様について説明したが、TNモードに限定されず、ネマチック液晶が黒表示時に垂直配向するモード、例えば、OCBモード、ECBモードのいずれであっても、本発明の効果が得られる。
【実施例】
【0244】
以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。以下では、便宜上、「質量部」を単に「部」と、「リットル」を単に「L」と記すことがある。
【0245】
[第2の光学異方性層]
(第2の光学異方性層用のフィルム1の作製)
下表に記載の各成分を混合して、セルロースアシレート溶液を調製した。このセルロースアシレート溶液を、金属支持体上に流延し、得られたウェブを支持体から剥離し、その後、TD方向に185℃で20%延伸し、フィルム1を作製した。なお、TD方向とは、フィルムの搬送方向と直交する方向を意味する。延伸後のフィルムの厚さは80μmであった。
【0246】
【表1】

【0247】
【化64】

【0248】
【化65】

【0249】
上記フィルム1の作製において、レターデーション制御剤(1)、レターデーション制御剤(2)の添加量、及び得られるウェブの延伸倍率を適宜変更することで、フィルム2〜15をそれぞれ作製した。各レターデーション制御剤の添加量、ウェブ延伸倍率、及び得られた各フィルムの光学特性を、以下の表にまとめた。
【0250】
【表2】

【0251】
[第1の光学異方性層]
(配向膜の形成)
上記で作製したフィルム1の上に、下記の組成の配向膜塗布液を#14のワイヤーバーコーターで24mL/m2塗布した。100℃の温風で120秒乾燥した。次に、光学異方性層2の長手方向(搬送方向)を0°とし、0°方向に、形成した膜にラビング処理を実施した。
【0252】
───────────────────────────────────
配向膜塗布液の組成
───────────────────────────────────
下記の変性ポリビニルアルコール 40質量部
水 728質量部
メタノール 228質量部
グルタルアルデヒド(架橋剤) 2質量部
クエン酸エステル(AS3、三共化学(株)) 0.69質量部
───────────────────────────────────
【0253】
(光学異方性層1(第1の光学異方性層)の形成)
配向膜上に、下記の組成の光学異方性層用塗布液を、#3.4のワイヤーバーを781回転/分でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されている上記ロールフィルムの配向膜面に連続的に塗布した。室温から100℃に連続的に加温する工程で、溶媒を蒸発させて乾燥させ、その後、135℃の乾燥ゾーンで、約120秒間加熱し、ディスコティック液晶化合物を配向させた。次に、100℃の乾燥ゾーンに搬送し、紫外線照射装置(紫外線ランプ:出力160W/cm、発光長1.6m)により、照度600mWの紫外線を4秒間照射し、架橋反応を進行させ、ディスコティック液晶化合物をその配向に固定した。その後、室温まで放冷して光学異方性層1を得た。円筒状に巻き取ってロール状の光学フィルム1を得た。
【0254】
───────────────────────────────────
光学異方性層塗布液組成
───────────────────────────────────
ディスコティック液晶化合物(1) 38質量部
下記の波長分散制御剤(2) 3質量部
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製) 4質量部
セルロースアセテートブチレート
(CAB551−0.2、イーストマンケミカル社製) 0.14質量部
セルロースアセテートブチレート
(CAB531−1、イーストマンケミカル社製) 0.22質量部
フルオロ脂肪族基含有ポリマー
(メガファックF780、大日本インキ製) 0.45質量部
光重合開始剤(イルガキュアー907、チバガイギー社製) 1.35質量部
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.45質量部
メチルエチルケトン 200質量部
───────────────────────────────────
【0255】
【化66】

【0256】
(光学異方性層2〜15の形成)
光学異方性層1の作製方法において、波長分散制御剤(2)、セルロースアセテートブチレート(CAB551−0.2)、セルロースアセテートブチレート(CAB531−1)の添加量を適宜変更することで、光学異方性層2〜15をそれぞれ、フィルム2〜15の上に形成し、光学フィルム1〜15をそれぞれ作製した。なお、光学異方性層10の形成には、ディスコティック液晶化合物(1)の代わりに下記のディスコティック液晶化合物(3)を使用した。各添加剤の添加量、及び得られた光学異方性層の光学特性を、以下の表にまとめた。
【0257】
【化67】

【0258】
【表3】

【0259】
<光学フィルム16の作製>
(開環重合環状ポリオレフィンドープの調製)
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解した後、平均孔径34μmのろ紙及び平均孔径10μmの焼結金属フィルターでろ過した。
【0260】
―――――――――――――――――――――――――――――――――
環状ポリオレフィン溶液A
―――――――――――――――――――――――――――――――――
アートンG(JSR株式会社製) 150質量部
メチレンクロライド 550質量部
エタノール 50質量部
―――――――――――――――――――――――――――――――――
【0261】
次に上記方法で調製した開環重合環状ポリオレフィン溶液を含む下記組成物を、分散機に投入し、マット剤分散液を調製した。
【0262】
――――――――――――――――――――――――――――――――――
マット剤分散液
――――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製) 2質量部
メチレンクロライド 75質量部
エタノール 5質量部
環状ポリオレフィン溶液A 10質量部
――――――――――――――――――――――――――――――――――
【0263】
上記環状ポリオレフィン溶液を100質量部と、マット剤分散液を1.1質量とを混合し、製膜用ドープを調製した。
【0264】
上述のドープをバンド流延機を用いて流延した。残留溶剤量が約22質量%でバンドから剥ぎ取ったフィルムを、テンターを用いて50%の延伸率で幅方向に延伸した。その後テンター搬送からロール搬送に移行し、更に120℃から140℃で乾燥し巻き取った。作製してできた環状ポリオレフィンフィルム16の厚さは80μm、また25℃、60%RH環境下でのRe(550)が70nm、Rth(550)は80nmであった。即ち、このフィルム16は、第2の光学異方性層としての条件を満足していた。このフィルム16を真鍮製の上下電極間(アルゴンガス雰囲気)で、グロー放電処理(周波数3000Hz、4200Vの高周波数電圧を上下電極間に引加、20秒処理)した。
この処理面に、光学異方性層1と同様にして、光学異方性層16を形成し、光学フィルム16を作製した。
【0265】
(光学特性の測定)
作製した光学フィルム16から、光学異方性層16を剥離・ガラス板上に粘着剤を介して転写した。なおガラス板・粘着剤は光学的等方性のものを使用した。
光学異方性層16を、KOBRA 21ADHを用いて、波長550nmの面内レターデーションンRe(550)を測定したところ、Re(550)は34nmであった。また、光学異方性層16中、ディスコティック化合物の分子は、ハイブリッド配向状態に固定されていて、Re(550)が0nmになる方向が存在せず、且つRe(550)の絶対値が最小となる方向が、層の法線方向にも面内にもないことを、フィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADH又はWRから確認した。
同様にして波長450nmのRe(450)を測定したところ、Re(450)/Re(550)は1.09であった。
【0266】
[光拡散フィルム(高内部散乱フィルム)]
(光拡散層用塗布液1の調製)
下記塗布液1を孔径30μmのポリプロピレン製フィルターでろ過して光拡散層用塗布液を調製した。
【0267】
光拡散層用塗布液1
――――――――――――――――――――――――――――――――――
DPHA 15g
PETA 73g
イルガキュア184 1g
イルガキュア127 1g
平均粒径5.0μmスチレン粒子 8g
平均粒径1.5μmベンゾグアナミン粒子 2g
MEK 50g
MIBK 50g
――――――――――――――――――――――――――――――――――
【0268】
それぞれ使用した化合物を以下に示す。
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[日本化薬(株)製]
・PET−30:ペンタエリスリトールトリアクリレート[日本化薬(株)製]
・イルガキュア127:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
【0269】
[光拡散フィルム(高内部散乱フィルム)]
(光拡散層用塗布液2の調製)
下記塗布液2を孔径30μmのポリプロピレン製フィルターでろ過して光
拡散層用塗布液を調製した。
光拡散層用塗布液2
――――――――――――――――――――――――――――――――――
DPHA 80g
イルガキュア184 1g
イルガキュア127 1g
平均粒径1.5μmメラミン粒子 18g
MEK 30g
MIBK 70g
──────────────────────────────────
それぞれ使用した化合物を以下に示す。
・DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリ
トールヘキサアクリレートの混合物[日本化薬(株)製]
・イルガキュア127:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・イルガキュア184:重合開始剤[チバ・スペシャルティ・ケミカルズ(株)製]
・粒径1.5μmメラミン粒子:オプトビーズ[日産化学(株)製]
【0270】
(低屈折率層用塗布液の調製)
・ゾル液の調製
攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM−5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液を得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
【0271】
・分散液の調製
中空シリカ微粒子ゾル(イソプロピルアルコールシリカゾル、平均粒子径60nm、シェル厚み10nm、シリカ濃度20質量%、シリカ粒子の屈折率1.31、特開2002−79616号公報の調製例4に準じサイズを変更して作成)500gに、アクリロイルオキシプロピルトリメトキシシラン(信越化学工業(株)製)30g、及びジイソプロポキシアルミニウムエチルアセテート1.5g加え混合した後に、イオン交換水の9gを加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8gを添加した。この分散液500gにほぼシリカの含量一定となるようにシクロヘキサノンを添加しながら、減圧蒸留による溶媒置換を行った。分散液に異物の発生はなく、固形分濃度をシクロヘキサノンで調整し20質量%にしたときの粘度は25℃で5mPa・sであった。得られた分散液Aのイソプロピルアルコールの残存量をガスクロマトグラフィーで分析したところ、1.5%であった。
【0272】
・低屈折率層用塗布液の調製
エチレン性不飽和基含有含フッ素ポリマー(特開2005−89536号公報製造例3に記載のフッ素ポリマー(A−1))固形分として41.0gをメチルイソブチルケトン500gに溶解し、更に、分散液Aを260質量部(シリカ+表面処理剤固形分として52.0質量部)、DPHA 5.0質量部、イルガキュア127(光重合開始剤、チバスペシャルティーケミカルス製)2.0質量部を添加した。塗布液全体の固形分濃度が6質量%になるようにメチルエチルケトンで希釈して低屈折率層用塗布液を調製した。この塗布液により形成される層の屈折率は、1.36であった。
【0273】
(光拡散層の形成)
トリアセチルセルロースフィルム(TAC−TD80UL、富士フイルム(株)製)をロール形態で巻き出して、スロットルダイを有するコーターを用いて、光拡散層用塗布液を直接押し出して塗布した。搬送速度30m/分の条件で塗布し、30℃で15秒間、90℃で20秒間乾燥の後、さらに窒素パージ下酸素濃度0.2%で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量90mJ/cm2の紫外線を照射して塗布層を硬化させて、光拡散層を形成し、その後、巻き取った。ここで、光拡散層用塗布液および塗布層の厚さを適宜変更することで、光拡散層11〜13及び21〜23をそれぞれ作製した。
使用した塗布液、及び得られた光拡散層の厚さと光学特性を、以下の表にまとめた。
――――――――――――――――――――――――――――――――――
光拡散層11 塗布液1 厚さ 8.0μm I30/I 0.10%
光拡散層12 塗布液1 厚さ 5.0μm I30/I 0.05%
光拡散層13 塗布液1 厚さ20.0μm I30/I 0.27%
光拡散層21 塗布液2 厚さ 7.0μm I30/I 0.05%
光拡散層22 塗布液2 厚さ 1.5μm I30/I 0.007%
光拡散層23 塗布液2 厚さ20.0μm I30/I 0.22%
――――――――――――――――――――――――――――――――――
【0274】
(低屈折率層の形成)
上記の様にして形成した光拡散層の上に、スロットルダイを有するコーターを用いて、低屈折率層用塗布液をバックアップロール上のハードコート層を塗布してある面上に直接押し出して塗布し、厚さ100nmの低屈折率層を形成し、その後巻き取った。この様にして、光拡散フィルム11〜13及び21〜23を作製した。乾燥・硬化条件を以下に示す。
乾燥:90℃で60秒間乾燥した。
硬化:窒素パージにより酸素濃度0.1%の雰囲気下で空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照射量400mJ/cm2の紫外線を照射した。
【0275】
[実施例1〜10及び比較例1〜6]
(偏光板の作製)
厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、50℃で4分間乾燥させて、厚さ20μmの偏光膜を得た。
作製した各光学フィルムの裏面(支持体であるフィルム1〜16の光学異方性層1〜16が形成されていない側の表面)を1.5モル/Lで55℃の水酸化ナトリウム水溶液中に浸漬した後、水で十分に水酸化ナトリウムを洗い流した。その後、0.005モル/Lで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。最後に試料を120℃で十分に乾燥させた。
前記のように鹸化処理を行った各光学フィルムを、同じく鹸化処理を行った光拡散フィルム11と組合せて前記の偏光膜を挟むようにポリビニルアルコール系接着剤を用いて鹸化処理面を貼り合せ、観察者側の偏光板を得た。
また、液晶表示装置のバックライト側の偏光板として、光拡散フィルムの代わりに市販のセルロースアセテートフィルムとしてフジタックTF80UL(富士フイルム(株)製)を用いて、同様に偏光板を得た。このとき、偏光膜及び偏光膜両側の保護膜はロール形態で作製されているため各ロールフィルムの長手方向が平行となっており連続的に貼り合わされる。従って各光学フィルムロール長手方向(フィルムの流延方向)と偏光子吸収軸とは平行な方向となった。
【0276】
(TN型液晶表示装置の作製及び評価)
図1と同様の構成のTNモード液晶表示装置を作製した。具体的には、TN型液晶セルを使用した液晶表示装置(AL2216W、日本エイサー(株)製)に設けられている一対の偏光板を剥がし、代わりに上記の作製した観察者側及びバックライト側の偏光板を、各光学フィルムが液晶セル側となるように粘着剤を介して、観察者側及びバックライト側に一枚ずつ貼り付けた。このとき、観察者側の偏光板の透過軸と、バックライト側の偏光板の透過軸とが直交するように配置した。この様にして、TN型液晶表示装置を作製した。また、光拡散層を使用しない液晶表示装置として、バックライト側用途で作製した偏光板を、観察者側及びバックライト側の両方に配置し、TN型液晶表示装置を作製した。
【0277】
(視野角測定方法)
実施例1〜10、ならびに比較例1〜6で作製した液晶表示装置について、測定機“EZ−Contrast160D”(ELDIM社製)を用いて、黒表示(L0)から白表示(L7)までで視野角を測定した。上下横及び正面方位で、極角80度におけるコントラスト比(白透過率/黒透過率)を求めた。
【0278】
【表4】

【0279】
上記表に示す結果から、実施例1〜10では、光拡散層11を利用した液晶表示装置の正面コントラストが、光拡散層を使用しない形態の正面コントラストに対して90%以上で、高コントラストを維持することが分かった。一方、比較例1〜6の液晶表示装置では正面コントラスが90%未満となり、低コントラストとなることが分かった。
即ち、本発明の実施例1〜10の液晶表示装置では、正面コントラストを過度に低下させることなく、光拡散層による広視野角化を達成できることを理解できる。
【0280】
[実施例12及び21ならびに比較例13、22及び23]
観察者側の偏光板として、光拡散フィルム11のかわりに光拡散フィルム12〜13及び21〜23をそれぞれ用いた以外は、実施例1と同様にして、実施例12及び21ならびに比較例13、22及び23を得た。
【0281】
(TN型液晶表示装置の作製及び評価)
図1と同様の構成のTNモード液晶表示装置を作製した。評価は実施例1〜10、比較例1〜6と同様にして行った。
――――――――――――――――――――――――――――――――――――――
上CR 下CR 横CR 正面未使用 正面使用
実施例1 光拡散フィルム11 53 104 142 1004 954
実施例12 光拡散フィルム12 47 93 132 1004 979
比較例13 光拡散フィルム13 68 129 175 1004 833
実施例21 光拡散フィルム21 56 107 149 1004 946
比較例22 光拡散フィルム22 39 70 103 1004 991
比較例23 光拡散フィルム23 62 121 171 1004 784
――――――――――――――――――――――――――――――――――――――
【0282】
上記表に示す結果から、実施例1、12及び21では、光拡散層を利用した液晶表示装置の正面コントラストが、光拡散層を使用しない形態の正面コントラストに対して90%以上で、高コントラストを維持することが分かった。一方、比較例22の液晶表示装置では正面コントラストは90%以上であるものの、上下方向および横方向のコントラストが低く、広視野角化を達成できない。また、比較例13及び23の液晶表示装置は正面コントラストが光拡散層を使用しない形態の正面コントラストに対して90%未満となり、低コントラストとなることが分かった。
即ち、I30/Iが0.01〜0.2%である光拡散フィルムを用いた本発明の実施例12及び2111〜23の液晶表示装置では、正面コントラストを過度に低下させることなく、光拡散層による広視野角化を達成できることを理解できる。
【0283】
(実施例1−a〜1−g)
実施例1の第1の光学異方性層の形成に用いる塗布液の調製において、ディスコティック液晶化合物(1) 38質量部の代わりに、下記表に示すディスコティック液晶化合物A 34質量部及びディスコティック液晶化合物B 4質量部を用いた以外は、同様に調製した各塗布液を用いて、第1の光学異方性層をそれぞれ形成した。表5において、例えば「D-112(特開2006-76992号公報)」という記載は、特開2006-76992号公報に記載の例示化合物D-112を表す。
【0284】
【表5】

【0285】
形成したいずれの第1の光学異方性層も、Re(450)/Re(550)が0.9〜1.1の範囲内であり、及びRe(550)が20〜55nmの範囲であった。
それ以外は、実施例1と同様にして各偏光板を作製し、さらに、当該偏光板を用いて、実施例1と同様にして、各液晶表示装置を作製し、評価した。
実施例1−a〜1−gの液晶表示装置も、実施例1の液晶表示装置と同様、正面コントラストが、光拡散層を使用しない形態の正面コントラストに対して90%以上で、高コントラストを維持することが分かった。より具体的には、本発明の実施例1−a〜1−gの液晶表示装置では、正面コントラストを過度に低下させることなく、光拡散層による広視野角化を達成できることがわかった。
【符号の説明】
【0286】
10、10a、10b 偏光層
12、12a、12b 第2の光学異方性層
14、14a、14b 第1の光学異方性層
16、16a、16b 保護フィルム
18 光拡散層
P、P’ 偏光板

【特許請求の範囲】
【請求項1】
偏光層、第1及び第2の光学異方性層、及び光拡散層を有する偏光板であって、前記第1の光学異方性層が液晶組成物から形成された層であり、波長450nmにおけるRe(450)と波長550nmにおけるRe(550)の比Re(450)/Re(550)が0.9〜1.1であり、前記第2の光学異方性層のRe(550)が40〜120nmであり、且つ波長550nmにおける厚さ方向のレターデーションRth(550)が40〜100nmであり、及び前記光拡散層のゴニオフォトメータの散乱光プロファイルが、出射角0°(層面に対して法線方向)の光強度に対して、散乱強度が最大となる方位角において極角30°方向の散乱光強度が0.01〜0.2%であることを特徴とする偏光板。
【請求項2】
前記第1の光学異方性層が、少なくとも一種のディスコティック液晶化合物を含有する液晶組成物から形成された層であることを特徴とする請求項1に記載の偏光板。
【請求項3】
前記少なくとも一種のディスコティック液晶化合物が、下記一般式(DI)で表される液晶化合物であることを特徴とする請求項1に記載の偏光板:
【化1】

[式中、
11、Y12及びY13は、それぞれ独立に置換されていてもよいメチン又は窒素原子を表し;
1、L2及びL3は、それぞれ独立に単結合又は二価の連結基を表し;
1、H2及びH3は、それぞれ独立に一般式(DI−A):
【化2】

(一般式(DI−A)中、
YA1及びYA2は、それぞれ独立にメチン又は窒素原子を表し;
XAは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。)
又は一般式(DI−B):
【化3】

(一般式(DI−B)中、
YB1及びYB2は、それぞれ独立にメチン又は窒素原子を表し;
XBは、酸素原子、硫黄原子、メチレン又はイミノを表し;
*は上記一般式(DI)におけるL1〜L3側と結合する位置を表し;
**は上記一般式(DI)におけるR1〜R3側と結合する位置を表す。)を表し;
1、R2及びR3は、それぞれ独立に下記一般式(DI−R):
一般式(DI−R)
−(−L21−Q2n1−L22−L23−Q1
(一般式(DI−R)中、
は一般式(DI)におけるH1〜H3側と結合する位置を表し;
21は単結合又は二価の連結基を表し;
2は少なくとも1種類の環状構造を有する二価の基を表し;
1は、0〜4の整数を表し、L22は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、*−N(R)−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、ここで、**はQ2側と結合する位置を表し;
22は、**−O−、**−O−CO−、**−CO−O−、**−O−CO−O−、**−S−、*−N(R101)−、**−CH2−、**−CH=CH−又は**−C≡C−を表し、R101は、炭素数1〜5のアルキル基を表し、**はQ2側と結合する位置を表し;
23は、−O−、−S−、−C(=O)−、−NH−、−CH2−、−CH=CH−及びC≡C−ならびにこれらの組み合わせからなる群より選ばれる二価の連結基を表し;
1は重合性基又は水素原子を表す)
を表す。]
【請求項4】
前記第1の光学異方性層が、下記一般式(I)又は一般式(II)で表される化合物を含有する、又は下記一般式(I)又は(II)で表される化合物から誘導される繰り返し単位を含むポリマーを含有することを特徴とする請求項1又は2に記載の偏光板:
【化4】

式中、L1及びL2は各々独立に単結合又は二価の連結基を表し;A1及びA2は各々独立に、−O−、−NR−(Rは水素原子又は置換基を表す)、−S−及び−CO−からなる群から選ばれる基を表し;R1、R2、及びR3は各々独立に置換基を表し;Xは第14〜16族の非金属原子を表し、ただし、Xには水素原子又は置換基が結合してもよく;nは0〜2の整数を表し;
【化5】

式中、MG1及びMG2はそれぞれ独立に、2〜8個の環状基から構成される液晶相の発現を誘起する液晶コア部であり、液晶コア部を構成する環状基としては、芳香族環、脂肪族環、及び複素環のいずれでもよく;MG1及びMG2を構成する環状基の1つは、L11及びL12で置換され;R11、R12、R13、及びR14はそれぞれ液晶コア部の分子長軸方向に置換している液晶相の発現を誘起する柔軟性のある置換基、双極子作用基及び水素結合性基であり;L11及びL12はそれぞれ独立に、液晶コア部MG1及びMG2に置換する連結基であり、下記式(II)−LA又は式(II)−LBで表され;
【化6】

式中、*はMG1を構成する環状基に置換する位置を表し;#はP1と連結する位置を表し;A11、A13及びA14はそれぞれ独立に、―O−、−NH−、−S−、−CH2−、−CO−、−SO−、又は−SO2−を表し;A12は−CH=又は−N=を表し;L11及びL12の双方が式(II)−LAで表される基の場合、置換基P1は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びそれらの組み合わせからなる群より選ばれる二価の連結基を表し;L11及びL12の一方が、式(II)−LBで表される基で、他方が式(II)−LAで表される基の場合、置換基P1は、*=CH−P11−#、又は*=N−P11−#で表され(*は式(II)−LBで表される基との連結位置を表し、#は式(II)−LAで表される基との連結位置を表す);P11は単結合、又は−CH=CH−、−C≡C−、1,4−フェニレン及びこの組み合わせから選ばれる二価の連結基を表し;L11及びL12の双方が式(II)−LBで表される基の場合、置換基P1は、二重結合、=CH−P11−CH=、=N−P11−CH=、=N−P11−N=を表し;P11は上記P11と同義である。
【請求項5】
前記第2の光学異方性層が、セルロースアシレートフィルムであることを特徴とする請求項1〜4のいずれか1項に記載の偏光板。
【請求項6】
前記第2の光学異方性層が、シクロオレフィン系ポリマーフィルム又はポリカーボネートフィルムであることを特徴とする請求項1〜4のいずれか1項に記載の偏光板。
【請求項7】
前記第2の光学異方性層の面内の遅相軸と前記偏光層の面内の透過軸との交差角が0度であることを特徴とする請求項1〜6のいずれか1項に記載の偏光板。
【請求項8】
少なくとも一方に電極を有する対向配置された一対の基板と、該一対の基板間に挟持され、ネマチック液晶材料を含み、黒表示時に該ネマチック液晶材料の液晶分子が前記一対の基板の表面に対して略垂直に配向し、厚さd(ミクロン)と屈折率異方性Δnとの積Δn・dが0.1〜1.5μmである液晶層とを有する液晶セル、及び請求項1〜7のいずれか1項に記載の偏光板を有することを特徴とする液晶表示装置。
【請求項9】
前記偏光板が、前記液晶セルに対して表示面側に配置される偏光板であることを特徴とする請求項8に記載の液晶表示装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−199070(P2009−199070A)
【公開日】平成21年9月3日(2009.9.3)
【国際特許分類】
【出願番号】特願2009−10674(P2009−10674)
【出願日】平成21年1月21日(2009.1.21)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】