説明

光処置のための虹彩の認識とトラッキング

【課題】屈折診断分析中に虹彩または目の像を得るシステムと方法の提供。
【解決手段】像は、その分析からのデータを他の屈折分析装置からのデータに合わせるため、および処置のために、レーザーのような屈折外科器具を目に合わせるために使用される。さらに、処置の前に記憶されている虹彩の像を患者の虹彩と比較し、開発した処置パターンを用いて正しい目が治療されることを確認する。角膜形態システムおよび波面収差システムのような種々の屈折装置を使用できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、眼科の屈折手術のためのシステム、より具体的には屈折診断器具と屈折レーザーシステムを目に合わせるため虹彩の認識と位置決めシステムを使用することに関する。
【背景技術】
【0002】
過去数年間の眼科の分野では目の視力を矯正するために行われる屈折の処置は、急速に発展している。これらの技術は、角膜内の隙間がこの角膜を緩めたり新しい輪郭にする初期の半径方向の角膜曲率計測技術から、光屈折角膜曲率測定法(photorefractvie keratectomy)(“PRK”),前方層板角膜曲率測定法(anterior lamellar keratectomy)(“ALK”),レーザーインサイチュ角膜曲率形成術(laser in situ keratomileusis)(“LASIK”),およびレーザー熱角膜移植術(laser thermal keratoplasty)(“LTK”)のような熱的な技術を含む現在の技術へ発展している。これらの技術は何れも視力をかなり迅速であるが永続的に矯正しようと努めている。
【0003】
これらの技術の発展と精緻化により、屈折誤差の矯正においてより大きな精度が可能になっている。初期の様式の処置では、矯正の精度は比較的粗かった。例えば、近視に対して所望の矯正のプラスまたはマイナス1ジオプトリー内で矯正を与えることは優れた所産であると見なせる。処置の様式は徐々に精緻になっているが、もっと微妙な欠陥を矯正できる。現在、近視や遠視は現技術で高精度に矯正でき、エキシマ・レーザーを用いて、非球面性や不規則な乱視のようなより高次の効果も矯正できる。
【0004】
同時に、どんな矯正が必要であるかを決める診断器具も進歩している。形態システムを使用して、視野欠陥を求めて、それらの「規則性」にもかかわらずこの欠陥を矯正できる。そのような技術は、1999年4月6日に出版された表題が「分布されたエキシマ・レーザー外科システム」(Distributed Excimer Laser Surgery System)である米国特許第5,891,132号明細書に記述されている。種々の新しい形態システム、つまり厚度計測システム、波面センサおよび全屈折誤差検出システムは、近視、遠視および乱視の度合だけでなく、目の屈折特性のより高次の収差も検出できる。
【0005】
眼球内手術、およびコンタクトレンズと眼球内レンズ作製のような目的のため、人間の目の波面収差を検出することは、例えばリーアングら(Liangら)の「ハルトマン・シャックの波面センサの使用者による人間の目の波収差の客観的な測定」“Objective measurement of wave aberrations of the human eye with the user of a Hartmann−Shack wave−front sensor,”Journal of the Optical Society of America,Vol.11,No.7,July,1994,pp.1−9に開示されている。リーアングらの技術の改良は、ジェー・リーアングとディー・アール・ウイリアムズ(J.Liang and D.R.Williams)の「正規な人間の目の収差および網膜の像質」“Aberrations and retinal image quality of the normal human eye,”Journal of the Optical Society of America,Vol.4,No.11,November,1997,pp.2873−2883およびウイリアムズら(Williamsら)に対する米国特許第5,777,719号明細書(「ウイリアムズ」)の中に教示されている。ウイリアムズは収差を検出するため、ならびにこのように検出した収差を使用して、目の手術のため、ならびに眼球内レンズおよびコンタクトレンズを作製する技術を教示している。
【0006】
国際特許公開公報WO99/27334(国際出願、PCT/US97/21688)(「フレイ」(“Frey”))は偏光光学系を用いて検出器機構内のレンズからの後方散乱を制御する更に別な態様を開示している。ウイリアムズのように、フレイは波面センサからのデータを用いて調べた目に対して光学的矯正を行うことを示唆している。より具体的には、そのように求めた光学的矯正はセンサで測定される角膜の開口、例えば、目を測定するときに目の瞳孔を広げた6ミリメートルの円に限定される。この領域の外では、フレイは、部分的な除去の先細りになっている融合領域(blend zone)を使用して角膜の湾曲の厳しい変化を最小にし、従って退化を少なくすることを示唆している。
【発明の開示】
【発明が解決しようとする課題】
【0007】
これらの診断システムおよび技術には、特にもっと洗練された屈折矯正技術と共に使用する場合、基本的な効果と高次の効果の両方を矯正できる潜在能力があり、正常視力(20/20)より良好となる視力矯正がいつの日か基準となる可能性がある。しかし、屈折手術に対して進歩した診断技術を適用するため改良され技術が要求されている。
【課題を解決するための手段】
【0008】
眼科の屈折手術技術および眼科の屈折診断技術はより精密になっているが、この精密さは精度に対する要請を増大させている。本発明によれば、手術と診断の両方の技術の精度における進歩は、診断中および手術中に調節するため虹彩(あるいは虹彩の一部もしくは識別している目の他の特徴)の像を使用して更に実現される。屈折の処置を実施する前に、診断中に記憶した虹彩の像に基づき外科システムが調整される。
【0009】
例えば、本発明によれば、角膜表面形態システムあるいは波面センサシステムは目の屈折特性データを得、さらに、目の瞳孔および虹彩の対応する像も得る。虹彩の像に対応するデータは、次いで診断システムからのデータと関連して保持される。さらなる診断器具を用いれば、これらの器具も瞳孔または虹彩を結像するカメラを使用して、全てのデータとその後の処置の基準とする「規格化の点」を与えることができる。
【0010】
エキシマ・レーザーと共にLASIKを用いるような、屈折の処置を行う時が来ると、もう一つのカメラが虹彩の像を撮影する。そして、診断情報から企画される処置はこの虹彩の像に対して規格化される。この規格化は、並進移動、回転、倍率変更あるいは他の変換技術を含み得る。次いで、角膜上の所望の点にこの処置を加えるという知識をもってこの処置が提供される。
【0011】
更に、エキシマ・レーザーの実際の狙いが動的な基礎に基づいて、虹彩の位置に対して調整され得るように、虹彩の像が眼球追従システムに提供され得る。
【0012】
好ましくは、この虹彩システムは虹彩内の明確な特徴を検出し、これらの特徴に基づき並進的な機能を決める。一般に、二つの虹彩は同じではなく、回転、並進移動、倍率変更あるいは他の変換技術は明確な特徴に基づき遂行され得る。この虹彩システムは、虹彩自体の像を含めた虹彩の種々の特徴や、それから導ける虹彩の特有な特徴、目の瞳孔や他の部分の特徴、あるいは次のデータを調整するかまたはレーザー処置の前に外科システムを調整することを助け得る他の特徴を記憶できる。
【0013】
本発明の異なった特徴によれば、虹彩の調整は複数の診断器具の間で、一つの診断器具とレーザーのような一つの屈折器具との間で、あるいはそのような器具の組み合わせの間で行われ得る。加えて、種々の調整技術を異なった器具の間で使用できる。例えば、虹彩のデータを使用して形態器具のような一つの診断器具をレーザーのような一つの屈折器具に整列させ、一方で虹彩の輪郭と回転基準を使用して形態器具と、例えば波面センサとの間のデータを調整することができる。他の代替は可能である。これらの種々の技術では、調整データが屈折解析データあるいは屈折の処置データと共に、他の屈折分析または取扱器具により次に使用するために維持される。
【0014】
要約すると、本明細書中で使用されるような、用語「診断器具」は、診断測定を行い、測定する目に関する屈折データを得るために使用される、形態計測器、厚度計、波面センサなどのような診断装置またはシステムを指す。従って、屈折データは、一般に、完全より劣る視力を与える目の特徴または特性を指し、これらの特徴としては、目の各器官の輪郭、厚さ、光伝播度と波面収差および当業者により知られている他の屈折異常が挙げられる。同様に、用語「屈折器具」は目に屈折の処置を行える、例えばPRK、LASIKおよび他の光屈折手術で光切除のために典型的に使用されるエキシマ・レーザーのような、装置またはシステムを一般的に指す。本明細書中で使用するような用語「規格化」は、以下の説明から理解され、どれでも虹彩の像の第一基準座標枠と同じ寸法であるように第一虹彩の像に対する診断測定の像または図を合わせる、等しくする、相関をとる、一致させるなどを一般に意味する。
【0015】
さらなる利益として、屈折診断分析に関連して記憶される虹彩データは次の処置のために安全な機構を提供し得る。具体的には、手術の前に虹彩データが外科システムで得られた実際の虹彩の像に合致していないなら、手術を止めるか中断させることができる。これは例えば、特別なデータをもって悪い目に手術を施すことを防止でき、または別の患者からのデータを使用することを防止できる。
【発明を実施するための最良の形態】
【0016】
(レーザー処置を調整するための虹彩データの使用)
図1は、本発明の一実施形態により実現されるシステムを使用する方法の一般的な流れを示す。ブロック10では、診断器具を使用して屈折のデータを得ることに関連して虹彩が映像化される。この映像化と診断器具の使用は多くの形態をとり得る。例えば、レーザー処置に先立ってこの器具がよく使用され得、例えば角膜表面形態システムを使用して角膜または屈折のプロフィールを求めている。あるいは屈折手術の直前にその器具を使用できる。何れにせよ、映像化された虹彩または虹彩の何らかの表示図形は診断器具で明らかにされるデータと共に保持される。
【0017】
ブロック12に進むと、次いで、診断器具によりもたらされたデータに基づき処置が行われる。例えば、この処置はある程度の近視や不規則な乱視を処置し得る。この処置は、例えば1996年4月25日に出版された表題が「熱の作用を低減して視力を矯正するためのエキシマ・レーザーシステム」であるPCT/EP95/04028のアルゴリズムを使用して行われる処置であり得る。これは、1999年4月6日に出版された表題が「配分されたエキシマ・レーザー手術システム」である米国特許第5,891,132号明細書の配分されたシステムと関連して、角膜のプロフィールを修正するためのディザリングアルゴリズムを提供している。しかし、この処置は記憶されている虹彩の像の表示図形に対して規格化されている。そうすることにより、付加的な診断器具データに基づく処置に対する次の修正を次の虹彩の像に対して規格化できる。
【0018】
さらに、好ましくは、この処置自体は患者の虹彩に対して調整される。これはブロック14で行われ、ここではレーザーの狙いおよび処置のパターンが処置中の患者の虹彩の像に対して規格化されている。この規格化はレーザーの狙いを適当な点へ並進移動させるような、非常に一般的な形態をとり得るか、あるいは処置を回転させるまたは倍率変更や傾けることにより、レーザーシステムに対して表示されている虹彩の像に合わせるようなさらに込み入った形態をとり得る。
【0019】
ブロック16に進むと、次にレーザー処置が行われる。注目に値することは、このレーザー処置中にこのシステムが虹彩データをこの虹彩データの記憶された表示図形に周期的にあるいは連続的にさえ合わせることができ、実質的に患者の目を追跡することにある。
【0020】
図2A、2Bおよび2Cを参照すると、屈折データを求め、虹彩の像に対して規格化し、一連の処置を発生させ、次いで一連の処置を施す一般的な流れが本発明によるシステムに示されている。処置すべき目の屈折特性は角膜表面形態システム100と波面センサ102で求める。これらの装置は両方とも一般に目の屈折特性を表すデータを提供する。加えて、診断器具で得られたデータに基づきカスタマイズされた流れの処置を発生するために使用されるコンピュータ・ワークステーションもしくはコンピュータユニット104が示されている。PCT/EP97/02821に開示されているような配分されたシステム内で使用するためのような、独立したワークステーション104として示されているが、このワークステーション104および/またはその機能性は図2A,2Bおよび2Cのシステムの多くの他の部品の中に組み込むことができる。例えば、ワークステーション104で発生させた処置データと対応する虹彩データの両方を受け取るレーザーシステム106も、図2Cに示されている。このレーザーシステム106は、レーザーシステム106自体内に適当なレーザー処置を発生させて、ワークステーション104の機能性を組み入れることができる。
【0021】
図2Aで始めて、角膜形態システム100は患者の目Eから角膜形態データを集める。図示する形態システムには、プラシド(Placido)ディスクタイプのハードウェア108と瞳孔または虹彩のカメラ110がある。これらの構成要素は当該分野において公知であり、角膜形態データを形成するのに種々の技術が知られている。例えば、アイシス(EyeSys)によるシステム2000は角膜形態データを作成する。そして、ユタ州、ソルトレーク市のボシュ・アンド・ロム/オルブテック社(Bausch & Lomb/Orbtek Inc.)によるオルブスキャン(ORBSCAN)II(登録商標)形態システムは表面角膜形態だけでなく、目の種々の器官に対する全ての形態も形成する。前者のシステムはプラシドディスクに基づくシステムであり、後者は自動化されたスリット・ランプシステムである。オルブスキャンII(登録商標)システムは表面高度と光線トラッキングを使用して目の屈折誤差を測定する。この形態システム100は、種々の技術を使用して集めた、種々の点での角膜の絶対高さ、種々の点での角膜湾曲度などのような、種々の形式のデータ出力112を典型的に発生する。
【0022】
この角膜データ112のほかに、角膜形態システム100は目Eの目視可能な表面の対応する「スナップ写真」も得、虹彩(および瞳孔)の像120を表す第一虹彩(および瞳孔)像データ114を出力する。多くの角膜表面形態システムは、この像を撮影し得る一つのカメラを有する。以下で更に議論するように、このカメラ110は、標準像形式のような、あるいは種々の瞳孔または虹彩の人工物を識別する縮小した形式のような、種々の形式の虹彩の像のデータ114の出力を提供し得る。そのような人工物は、瞳孔と虹彩の界面の縁に沿って識別できるものを含み得る。虹彩データ114はまた、虹彩、瞳孔、それらの界面あるいは他の目の構造体の像と認識される人工物の何らかの組み合わせであり得る。
【0023】
このカメラ110は、虹彩の像120を得るのに適した可視光、赤外あるいは他のカメラのような、種々のタイプのカメラであり得る。好ましくは、この像は、前または後でも許容できるが、形態部品(プラシド・ディスクタイプのハードウェヤ)108が形態データ112を集めるのと同時に撮像される。
【0024】
図2Aに示すように、形態データ112と虹彩の像のデータ114は、好ましくは、重なった像116で表されているように、何らかの座標系により関連付けられる。求めた形態118と虹彩の像120の間の関係はこのデータの中に維持されている。
【0025】
以下に議論するように、虹彩の像120に対する虹彩の像のデータ114は外科器具(ここでは、レーザーシステム106)を調整するのに有益である。しかし、このデータ114は種々の他の眼科診断器具からのデータを規格化するのにも有益である。具体的には、波面センサ102も目Eの屈折不規則性あるいは収差を分析する。波面センサ102では、好ましくはカメラ122が何らかの「トロンボーン」光学系124の前の目Eに焦点を合わせる。このトロンボーン光学系124(例えば、焦点または光路を調整する同調装置または光学系)を用いて光路長を変え、レーザー126を目Eの網膜に集束させる。このトロンボーン光学系124を使用して、焦点外れのような目Eの低次の収差を求めて補償できる。一実施形態では、波面センサ102が小レンズカメラ128を介して目Eの光学収差を求めるデータを集める。上に議論したように、屈折性の眼科波面収差を測定するため、種々の他の波面センサあるいは他のタイプのシステムを採用できる。
【0026】
角膜表面形態システム100と共に、波面センサ102は好ましくは瞳孔カメラ122から収差のデータ130と虹彩(および瞳孔)の像データ132を提供する。これらのデータは、収差プロフィール134−例えば、Williamsにおけるような波面センサスポットプロフィール(これから、目の波面収差を決定する際にスポットの中心が定められる)−と虹彩(および瞳孔)の像136とを決める。虹彩の像のデータ132は虹彩の像のデータ114に類似し得る。波面センサのデータ130と虹彩の像のデータ132も、図2Aの重なっている基準枠138で示されるように、互いに規格化されている。瞳孔は収差のデータ130と像のデータを得る時には広げることができるか、あるいは広げないままにしておいてもよい。
【0027】
種々のタイプの屈折データを求め得、LASIKのような屈折手術に対する一連の処置を行うのにこれらのデータを使用し得る。これらのデータには、角膜形態のデータ、波面センサのデータ、角膜の厚さのデータあるいは目の構成要素の鑑別プロフィール(例えば、超音波を使用する)およびスリット走査技術または光学干渉形態技術からのような、種々のソースから生じる他のタイプの屈折データがある。例えば、超音波を使用して角膜の厚さだけでなく、上皮および他の目の表面、(LASIKのための)マイクロ角膜切断弁の支質成分の量、弁の下の残留支質等も測定できる。これらのデータは、変化する分解能で、目Eの上で点毎に基づいて典型的に与えられる。例えば、角膜形態システム100から角膜形態データ112は一般的に波面センサのデータ130より分解能が高い。同様に、あるタイプのデータは、目Eの表面形態をマッピングする角膜表面形態データ112のような目Eの一つの局面に向けられていて、一方、他のデータは波面センサ102からの波面センサデータ130に見られる全屈折誤差のような、目Eの他の局面を反映している。
【0028】
さらに、屈折診断器具は、固定されたベンチタイプのシステム、手で持てるシステムあるいは単一の器具にまとめられている多重システムのような種々の配置があり得る。当業者はこの発明による技術を広範な実際の物理的な実施形態で実現できることを理解する。
【0029】
この発明の一つの実施形態では、これらのデータの組は屈折処理をより正確に起こすため互いに規格化されている。従って、形態データ112とそれに対応する虹彩の像のデータ114は波面センサのデータ130とその虹彩の像のデータ132に対して規格化される。例えば、これらの二つのデータの組は虹彩の像120と(虹彩の像142で示されている)虹彩の像136の類似性に基づき、互いに規格化されている(図形140で示されている)。上に議論したように、この規格化は虹彩の像自体の重なりから、あるいは、むしろ、図5と共に以下に議論するように、虹彩(および瞳孔)の像の特徴的な要素の調節により生じ得る。
【0030】
図2Bに示す特別な実施形態では、収差のプロフィール134を(例えば、Williamsで、および本明細書中で議論するように、ゼルニケ多項式を合わせることにより)処理して瞳孔波面収差(例えば、輪郭)のプロット160として示されている波面収差データを形成する。波面センサのデータ130および虹彩の像のデータ132(図2A)も、図2Bの重なった基準枠162で示されているように、互いに規格されている。上に議論したように、収差のデータ130と像のデータを取得する場合に、瞳孔は、好ましくは広がり、そして屈折処置をより正確に発生させるため、これらのデータの組を互いに規格化される。形態データ112とそれに対応する虹彩の像のデータ114は波面センサのデータ130とその虹彩の像のデータ132に対して規格化される。例えば、これらのデータの規格化は、上の図2Aの議論と平行して、虹彩の像120と虹彩の像136(虹彩の像142で示されている)の類似性に基づき(重ねられた)図164で図示されている。形態のデータ118は、角膜の大部分または全部にわたるように、目の大部分にわたり広がり、一方、波面収差のプロット(あるいはデータ)160は一般に瞳孔あるいは瞳孔の一部にわたってのみ広がる。瞳孔波面収差の輪郭プロット160と形態118の間の何らかの相関関係は、調整または規格化のために虹彩の像のデータが使用されなくても、当業者に理解されるように、図164内であるいはそれに似て重なった場合、明らかであり得る。形態と波面収差のデータ(例えば、形態データ118と瞳孔波面収差プロット160)を規格化するか、または重ねるためには、当業者に分かるように、それらのデータの相関をとるため、目の(例えば、波面収差のデータからの)光路長あるいは(例えば、屈折率を平均することによる)屈折率における変化を適切に計算に入れることができる。
【0031】
図2Cに示すように、図2Aまたは図2Bで説明した手順に従いデータが発生しようとしなかろうと、その時、コンピュータプログラムは処置プロフィール144が生じる。これは、例えば、デスクトップコンピュータ104において、インターネットもしくは他のネットワークに接続するコンピュータにおいて、あるいはレーザーシステム106,形態システム100,波面センサ102または他のシステムの一部である計算システムの中で行える。生じる処置には種々の処置があり得る。例えば、先に述べた米国特許第5,891,132号に示されているように、不規則な処置パターンを実施できる。あるいは、可変スポットサイズ、走査されたスリット、または固定された走査スポットサイズレーザー処置を含むが、それらに限定されない種々の他のタイプの処置を実施できる。実施される処置に関係なく、種々の診断器具からのデータ140または164に関して処置は生じ、そしてそれを記憶された虹彩の像142に対して規格化して保持できる。
【0032】
種々の診断器具からのデータを色々なやり方で使用して種々の処置を発生させることができる。例えば、波面センサ102からのデータ130を単独で使用して一つの処置を発生させることができる。あるいは、代わりに、角膜表面形態システム100からのデータ112を使用できる。他の代替のタイプの屈折診断器具データを同じように単独で使用して種々の処置を発生させることができる。種々の器具からのデータの有利な特徴を組み合わせてより良い全体の屈折処置を発生させることができる。例えば、角膜表面形態システム100は瞳孔の広がりの大きさに関係なく表面形態のデータを戻してくれるが、波面センサ102は瞳孔の広がりの大きさによって制限され得る(すなわち、波面センサ102は典型的に光路中にある光学要素の屈折効果を測定するだけである)。従って、図2B内の図面164で示されているように、角膜表面形態システム100からのデータ112は広がった瞳孔より広い表面領域にわたり使用され、一方、波面センサ120からのデータ130は瞳孔の領域内の中心部分に対して使用される。両方の場合、データ130とデータ112は、それらの各虹彩の像120と136を使用して、最初の空間的な規格化により調和させることができる。
【0033】
そのような技術は、波面データおよび表面形態データに基づく切除のプロフィールを組み合わせられた図3に示されている。図3には、先ず、表面形態データから発展させた表面形態に基づく切除のプロフィール162が示されている。このデータは瞳孔の直径160として示される、瞳孔の外側でも正しい。比較すると、波面データから出る波面に基づく切除のプロフィール164は一般に瞳孔の直径160の領域内でのみ有効である。つまり、これらの二つは、瞳孔の直径160内の波面に基づく切除のプロフィール164を使用し、また瞳孔の直径160の外側の表面形態に基づく切除のプロフィール162を使用して、組み合わせた切除のプロフィール166として示されている。この例では、切除のプロフィールはそれぞれ最初に対応するデータから計算され、その後にそれらのプロフィールを組み合わせる。代わりに、他の技術は切除プロフィール自体が計算される前に捕捉されたデータを組み合わせることができる。Bausch & Lomb/Orbtek,Inc.から入手可能なORBSCAN II(登録商標)形態システムのような立面図に基づく(elevation−based)形態システムは、波面センサと共に使用する場合に特に有利である。しかし、曲率に基づく(curvature based)システムのような他の形態システムもこの発明の実施には有益である。有益な他のタイプのシステムは、米国特許第5,159,361号および第4,995,716号に記載されているような双カメラ・システムを含む。
【0034】
ORBSCAN II(登録商標)形態システムは、角膜の両方の表面ならびに水晶体および虹彩の前部と瞳孔を同時に計測するスリット走査立面図に基づく形態システムである。測定された表面の各々は立面図、傾き、曲率あるいは力の地図として表示され得る。厚さ計測の全角膜地図も角膜の測定された表面から導かれる。光線トレースされた光学計算を使用して目の前方部分内の種々の光の成分の視力的な効果を知ることができる。ORBSCAN II(登録商標)形態測定は鏡のような反射よりはむしろ拡散反射に基づき、表面の曲率よりも表面の高さを正確に検出する。表面の傾きを計測するためのプラシドもしくは他の反射ターゲットから鏡のように反射した像の使用は、当業者には明らかなように、拡散反射と組み合わせて利用できる。立面図に基づくORBSCAN II(登録商標)形態システムの図式的な説明のために、Richard K.Snookによる米国特許第5,512,965号および同第5,512,966号を参照のこと。ORBSCAN II(登録商標)システムからのデータを正確にまた継ぎ目なしに波面センサからの全屈折データに移せる。
【0035】
形態システムのデータを「較正」するため波面センサからのデータを使用することも可能である。波面センサは目の全屈折誤差を記述するので、このセンサにより形態システムのソフトウェアが任意の特定な点の表面形態をそれらの点に関連する(波面センサによって決められた)全屈折誤差と相関させることができる。従って、このように較正して、形態システムのデータは全屈折誤差プロフィールの波形を形成するために使用できる。
【0036】
別の例としては、種々の診断器具からのデータを組み合わせて目の光学要素の全体のモデルを提供できる。例えば、角膜表面形態システムは表面のデータをもたらし得、超音波システムは角膜の厚さのデータをもたらし得、そして波面センサは全屈折誤差のデータをもたらし得る。表面のデータおよび厚さのデータの効果を「除去」することにより、種々の組のデータを使用してこのように角膜より後部の光学要素をモデル化できる。
【0037】
図4を参照すると、角膜450,水晶体456および網膜458を含む目Eの横断面図が示されている。この角膜450には、上皮452と支質454のような多数の層がある。これらの種々の構成要素、特に角膜450と水晶体456を組み合わて目Eに対する全屈折(光)力と屈折特性が形成される。角膜450あるいは水晶体456の不規則性、および角膜450や水晶体456から網膜458までの(例えば、焦点ずれ誤差の意味での)距離を含むが、これらに限定されない、多くの因子が屈折(例えば波面収差)誤差に寄与し得る。
【0038】
図4には、目Eの特別な部分の屈折および他の特性を分析するのに特に適した種々のタイプの診断器具を示す記号も示してある。これらの器具は目Eの異なった部分または構成要素に対して種々のタイプのデータを提供し得る。例えば、超音波技術460は典型的に上皮452と支質454の厚さを計測し、これらは角膜450の全体の厚さを与える。厚度計および1994年5月15日に公開された表題が「角膜層の厚さと形状を超音波計測するシステム(System for Ultrasonically Determining Corneal Layer Thickness and Shape)」である米国特許第5,293,871号に記載されている技術を含む、使用可能な多数の超音波技術がある。
【0039】
角膜表面形態システム462は角膜表面形態を典型的に提供し、そして分析する。OrbtekによるORBSHOTTMおよびEyeSysによるSystem 2000のような形態システムは典型的に非常に高い分解能を示すが、角膜450の上皮452の表面に制限されている。
【0040】
OrbtekによるORBSCAN II(登録商標)形態システムのような組み合わせた屈折診断器具464は、典型的に目の中の種々の厚さや表面を計測して分析する。これは、角膜450の厚さ、角膜450の表面形態、水晶体456の表面、水晶体456から角膜450までの距離、および目のこれらの前方の光学器官から網膜458までの距離を含む。
【0041】
最後に、図4では、先に記載した波面センサ102あるいはWilliamsの波面センサのような、466で示されている波面センサは、歪んだ波面プロフィール(データ)468として示されている目の全屈折収差に関するデータを与える。波面センサ技術は、目Eの任意の特別な光学構成要素の物理的特性に関するよりはむしろ、網膜458から反射した目の外にある光の波面を特徴付けることに関して、本質的に経験的なものである。
【0042】
図Cを再び参照すると、行った処置144に基づき、典型的に、一連の照射、種々の開口寸法での一連の走査されたスリット、あるいは種々の他のタイプの処置のような、一連の処置が特別なタイプのレーザーシステム106に対して提供される。プロフィール146で示されている処置の経過はそれ自体虹彩の像を表すデータ148に空間的に参照される。このデータ148は再び、虹彩自体の像、虹彩の白黒の高コントラストの表示図形、虹彩または角膜の種々の天然または人工的に形成された特徴の場所表示図形、あるいは虹彩の種々の他の表示図形であり得る。一般に、虹彩を表すデータ148は、目Eをレーザーシステム106で処置する場合、処置146の経過を目Eの実際の虹彩に合わせることができるのに適しているべきである。
【0043】
次いで、処置146の経過および虹彩のデータ148を含めて、レーザーシステム106に処置のプロフィールを入れる。図2Cを参照すると、レーザーシステム106は、193ナノメータのエキシマ・レーザーのような種々のタイプのものであり得、そして典型的にはレーザー150、指向システム152(例えば、光をレーザー150から目Eに向けるために使用される一連の光学構成要素)、カメラ154および制御システム156を含む。より低い出力の指向ビームもしくは基準ビーム(図示せず)は典型的にレーザー150と関連して使用される。指向ビーム(例えばレーザービーム)は、主に赤外線カメラであるカメラ154でモニターされ得、そして1997年4月15日に公開された表題が「目の点を正確に位置決めする方法と装置(Method and Apparatus for Prioviding Precise Location of Points on the Eye)」である米国特許第5,620,436号[PCT/EP95/01287,1995年10月19日に公開]に記載されているように、レーザー150を指向させるために使用できる。
【0044】
動作中には、カメラ154は、指向システム152を制御する制御システム156に目Eの虹彩I(図2Cを参照)の像を提供する。エキシマ・レーザー106に実際に送られる虹彩Iの像は一連の処置146に関連する虹彩のデータ148と比較される。次いで、レーザーヘッド150の標的は、虹彩のデータ148がカメラ154により提供された虹彩Iの像と基本的に整列するように調整される。これは、並進移動、回転、倍率変更、歪みあるいは種々の他の変換機能を含み得る。虹彩Iに合わせるのに必要な虹彩の像のデータ148に適用される並進移動は、処置の最終的な経過が、適用される場合に、処置発生部144で予測されるような光学効果を低下させるのに必要な処置の経過に一致するように、処置146の経過に対して同じように行われる。
【0045】
処置146自体の経過のデータは変更できる。あるいは、レーザーシステム106の標的もしくは患者の回転調整はその代わりに変更できる。方法論に係わらず、処置146を適用する前に虹彩Iを調整するために虹彩のデータ148を使用する。
【0046】
種々のタイプの目の手術は開示された技術によって利益を得ている。PRKは目の外側表面に適用できる。あるいはLASIKの手順は、最初角膜の一部を切除し、次いで下部にレーザー処置を適用して実施される。さらに、これらの技術は、それら自体を、エキシマ角膜曲率測定のような角膜曲率測定ではない他のタイプの処置、あるいは屈折矯正に対する種々のタイプの熱的取組に向け得る。処置のこれらの経過は計算された処置パターンが理論的に最適な位置に対してより正確に与えられるように、目の虹彩に正確に合わせることができる。
【0047】
他の利益は診断データおよび処置データの両方に関連する虹彩のデータを用いることから生じる。例えば、診断を受けるため直立した姿勢にある場合、目の位置は患者が横たわっている場合と比べて、眼窩内で時々回転し得る。同様に、患者の頭を調整すると身体が同じ位置にあってさえも目の回転に影響を与え得る。患者の脳はそのような回転の幾分かの値を補償するけれども、より高次の欠陥に対する高度に正確な矯正処置のパターンでは、回転調整の変化は、文字通りに、この処置に関する位置の外に目を本当に回転させ得、目に誤った処置を加えることになる。そのような誤調整の効果は、典型的には、近視や遠視のような処置の全く基本的な経過にたいして、また乱視の僅かな処置に対しても顕著ではないが、不規則な乱視、眩しさ、光の輪(halo)等のようなより高次の欠陥では、高度に正確な処置の利益は、最適な空間処置位置に正確に調整するこが得られて維持されない限り、失われる。この発明による技術はそのような調整の損失を低減する。
【0048】
虹彩の合わせや調整自体に関しては、虹彩の実際の像もしくは虹彩の種々の特徴のデジタル表示のいずれかを使用する種々の技術を採用できる。これらの技術は表題が「非侵入式の自動虹彩認識システムと方法(Automated,Non−Invasive Iris Recognition System and Method)」であり、ニュージャージー州、プリンストのデイビット・サルノフ(David Sarnoff)Research Center,Inc.に譲渡されていて、1996年11月5日に公開されたWildesらに対する米国特許第5,572,596号、および、表題が「虹彩認識システム(Iris Recognition System)」である1987年2月3日に公開されたFlomらに対する米国特許第4,641,349号のような、虹彩の特異な特徴に基づく認識システムに採用されている。これらは両方とも本明細中でその全体が参考として援用される。これらの特許のうち前者は倍率変更、回転および並進移動を議論し、これらの特許のうち後者は虹彩を一義的に合わせて識別するために使用できる種々の特徴を議論し、また制御機構を使用してカメラに対して虹彩の位置を調整できることも議論している。この発明の一実施形態では、類似の技術が付加的にレーザーシステム106を指向させるために使用されている。同様に、ニュージャージー州、マウント・ローレルのIri Scan,Inc.に譲渡されている、表題が「虹彩分析に基づく生物学的な個人識別システム(Biometric Personal Identification System Based on Iris Analysis)」であり、本明細書中でその全体が参考として援用される1994年3月1日に公開されたDaugmanに対する米国特許第5,291,560号は、さらに虹彩によって与えられる「光指紋」を議論している。これらの特許および他の当業者に公知のパターン合致および特徴の合致技術は厳密に識別する目的よりむしろ調整のために使用されている。
【0049】
その代わりに、あるいは、それに加えて、レーザーシステム106のカメラ154は虹彩Iの像を受け取って、次いでこれをスクリーン上に表示する。次いで、この虹彩の像のデータ148を重ねて、医者、技術者あるいは他の健康介護作業者がレーザーシステム106を手動で指向させたり調整することができ、あるいはこのシステム106の標的を手動で確認できる。
【0050】
図5を参照すると、目Eの虹彩Iは、より詳細に示され、処置のため患者の目Eを前に記憶しておいたその人の虹彩Iの像と合わせるため、特別な特徴をどのように使用され得るかを示している。例えば、カラーレットのように一般的に円形の特徴を決める一組の点200を記述子として、同心状のうねり202として、あるいは半径方向のうねり204として使用され得る。使用され得る他の特徴はフロムに対する上に参照された米国特許第4,641,349号に一般的に記述され、色素の点、小窩、萎縮性の領域、腫れ、および生まれつきの筋を含む。同様に、虹彩を合わせるのに、中心基準点として瞳孔も使用し得る。この点からの虹彩特徴は目の回転位置を決める。例えば、適用されるべき処置の複雑さに依存して、より少ないまたはより多い特徴は、採用され得る。純粋な近視または遠視に対する処置のように、処置が回転対称である場合、回転変位は問題ではない。つまり、中心点が、瞳孔に対して位置決定され得る。しかし、処置がもっと複雑になると、もっと詳細な特徴は、処置の前に目Eをより正確に登録するため使用され得る。この代わりに、人工的な特徴を、虹彩領域を含めて位置決定のために目Eに課され得る。例えば、レーザーマークが治癒する前に処置が生じる場合、三つのレーザーマークは、作製され得る。例えばホルミウム・レーザーで作製される熱マークの形をしたマーカーは、手術の前およびその間に目の回転と並進移動に関する情報を提供する。種々の形のマーカーもまた、想像される。例えば、図5−2に示すように、半径方向に広がるマーカー201は、目の動きと調整のデータを提供し得た。示されるように、基準203は、例えば強膜境界、あるいはSensomotoric Instruments、Teltow(ドイツ)により提供されるような虹彩認識プログラムから決定されるグレースケールの輪郭を表す。マーカー201は、目Eのほぼ中央の周りで始まる近位部分201’と、この部分201’と同一線となっているところから外れている遠位部分201’’を有する。半径方向のマーカー201は境界203を横切っていることが見られ得る。マーカーは屈折手順の間に、即ち、例えばLASIK手順で組織弁を上げた後、目視し得るのに十分な範囲を有するべきことがまた正しく認識される。あるいは、このマーカーは適切な色素、特に、可視または赤外線カメラで見える赤外線光で検出可能な色素からなり得た。この色素はさらに、例えば適用後にこの色素を凝固する、または色素を凝固し、そしてそれを収縮したコラーゲンに適用することによって、刺青として使用され得た。さらにまた、色素と特別な膠を組み合わせて使用され得る。そのような色素もしくは色素をベースにしたマーカーは、屈折手順の期間中に、可視/検出可能を維持するべきである。瞳孔が広がっている場合、マーカーはその適用後少なくとも15分間、好ましくは1時間まで可視/検出可能維持するべきである。これは瞳孔の広がりが眼球の異常を誘導し、そして広がり誘導異常を沈静するために十分な時間を経過するべきであるという見識による。次いで、診断のステップが行われ得、そして直ぐその後に処置が続き得る。さらに、目の可視表面の他の識別部分は、虹彩Iを別にして、使用され得る。これらの技術の全てにおいて、目Eの可視部分の特徴は診断システム、行った処置および目Eに適用されるような実際の処置の間で登録するために使用される。
【0051】
図6に戻ると、レーザーシステム106によって撮影された実際の虹彩Iの像に基づく所望される処置に対して作製され得る種々の調整が図示されている。図2Cを再び参照すると、発生させた処置144はレーザーシステム106を制御するため望む処置パターン146として使用される。診断器具からの付属する基準虹彩の像のデータ148を使用して処置パターン146を患者の目Eに合わせる。この虹彩の像206はレーザーシステム106の瞳孔カメラ154で撮影され、制御システム156に提供される。この制御システム156は像148,あるいはその像から導かれる記述子を虹彩の像206と比較する。この比較に基づき、種々の倍率関数が所望の処置146に適用される。例えば、実際の虹彩の像206の全寸法に基づき、診断器具100または102およびレーザーシステム106の異なった焦点距離のため、処置の寸法を小さくすることが決定し得る。こうして、倍率208が計算されて使用され、寸法を変えた処置210が生じる。次いで、現在倍率を変更した所望の処置210を、並進移動と回転の関数212で示されているように、並進移動および回転を共にされなければならないことが決定され得る。これは、結局、倍率を変更した所望の処置210に適用され、実際の処置214を与える。次いで、これらのデータはレーザーシステム106によって実際の処置を行うために使用される。
【0052】
あるいは、制御システム156が十分大きい計算能力を持っていれば、各照射(即ち、レーザーパルス)を適切に回転させて並進移動させ得る。これは、目Eが、例えば処置の間に大きな動的な回転と動きを示せば、望ましくあり得る。ついで、虹彩の像206は、追跡され得、図6に示す倍率変更関数208と212が望む処置パターン146で各特別な照射あるいは照射の配列に対して動的に適用される。この様式において、目Eの動きを照射毎に適用し得る。この技術は、虹彩の像206に対する各照射あるいは一連の照射の正確な位置が、照射が適用される前に、定まるようにPCT/EP95/01287の指向レーザー技術と組み合わせられ得る。
【0053】
従って、本発明の実施形態において、任意の種々の診断装置は、瞳孔、虹彩の像、あるいは目の外部の他の明確な特性を取得し、その像に対応するデータを出力するカメラまたは他の撮像器に合わせられ得る。ついで、LASIKで使用するエキシマーレーザー処置のような屈折処置が行われる場合、記憶されている像(またはその明確な要素)を瞳孔、虹彩あるいは目の実際の像と比較し、その処置が正確に計算されたようになるようにレーザーを調整する。
【0054】
本発明の例示的な実施形態において、目の調整および特徴付けの方法は以下のように記載される。
【0055】
患者の目の選択された領域にマーカーを提供する。種々のマーカータイプおよび輪郭は本明細書のどこかに記載されて、そして熱的に誘導されるマーク、半径方向にマーク付けしたものおよび色素のマーカーを含むが、それらに限定するものではない。患者の目の最初の像は広がっていない瞳孔で撮影するので、この像には虹彩とマーカーの像がある。好ましくは、この像は赤外線カメラで撮影された赤外線の像であるが、可視光の像も適する。従って、マーカーは赤外線で可視および/または検出可能である。ついで光強度を変えてあるいは化学的に瞳孔を広げて、広がった瞳孔とマーカーを含む目の二番目の像を撮影する。広がった状態の目の診断測定が得られ、この診断測定は好ましくは波面収差測定であるか、あるいは代わりに形態的もしくは他の屈折診断測定である。次いで、コンピューターシステムを用いて患者の目の屈折矯正のためにこの診断測定から光屈折処置を行う。マーカーとして色素を用いる場合、この色素が適用後少なくとも15分、好ましくは1時間まで、あるいは拡張による収差を除去するのに十分な時間の間、可視および/または検出可能を保持することが好ましい。
【0056】
本発明に従って、この方法には、二番目の像を最初に撮影した像と合わせることにより、好ましくはそれぞれの像内のマーカーを比較して、あるいはその代わりにそれぞれの像内の他の対応する特有な特徴を比較してさらに有用性が見られる。本明細書中に記載する本発明の他の局面と同じように、光屈折処置は患者の目のマーカーを用いた診断測定を調整して行われる。本発明の一つの局面において、調整手順がコンピューターシステムにより提供される虹彩パターン認識を組み込み得る。種々の虹彩パターン認識ソフトウェアは、当該分野で公知のであり、そして市販される。
【0057】
開業医は設定されている光屈折処置をリアルタイムのシーケンスで行い、直ぐこれに続き二番目の像を撮影する選択権を持っている。この場合、目の像は広がった瞳孔を含み、従って二番目の像からの虹彩パターンを最初に撮影した像の虹彩の像と比較することができず、それに合わせることができない。それ故、これらのマーカーはそれらの像とこれらの像に関連する屈折または診断器具との相関、規格化あるいはその他では調整するためにそれぞれの像で使用される。この代わりに、目の光屈折処置を数時間、一日等の間、遅らせて選択的に行う。この場合、虹彩の像を含め患者の目の他の画像は、好ましくは、例えば画像を撮影するため瞳孔または虹彩カメラ、好ましくは赤外線カメラを含む光切除レーザーシステムのような屈折器具により撮影される。処置の前には、診断測定に基づき、行う処置に関連してこの画像を最初に撮影した虹彩の像に合わせる。もちろん、画像の記憶、デジタル化等により、行うべき診断処置、診断器具、屈折器具あるいはそれらの組み合わせの調整が実証され得、そのような調整は好都合なことに表示システムを介して開業医に表示し得る。
【0058】
上に議論した調整と光屈折処置を実施するシステムには、最も基本的に目の虹彩の像を含む第一の像を撮影するために使用する第一カメラと、当業者が承知しているように波面、形態、厚さ計測あるいは他の屈折診断素測定を行うための屈折診断器具と、目の別の画像を撮影するために使用される好ましくは第二カメラを含む展開される光屈折処置を提供し得るレーザーシステムと、このレーザーシステム、第一カメラおよび診断器具に関連して光屈折処置を展開して調整するために使用されるコンピューターシステムと、システムの他の構成要素に適切に連結する光屈折処置を実行する制御システムとがある。本発明の局面において、虹彩の像を含む目のさらなる画像を撮影するために使用されるカメラをさらに有する第二屈折診断器具もシステム全体の一部を構成する。表示システムもシステム全体に連結していると有利であり得る。
【0059】
図7および8A〜8Bを見ると、計算された処置プロファイルにレーザー処置を適切に合わせることを保証するため虹彩Iの先に撮影された画像を使用する代わりの技術が示されている。一般に、図8Aは図2Cのレーザーシステム106のカメラ154で得られる表示252を示す。左には、目Eの屈折特性を計測するために屈折診断器具を使用した場合に取得された虹彩Iの画像のデータ250が示してある。このデータからおよびこの虹彩Iの画像のデータ250と合わせて、処置プロファイルを展開させている。表示252の右側には、レーザーシステム106のカメラ154から戻されるリアルタイムの虹彩Iの画像254が示してある。見られ得るように、リアルタイムの像254は、撮影された画像のデータ250と比較して、少し回転してずれている。これは医者に患者の目Eを再調整する機会を与え、図8Bで適切に調整されたリアルタイムの虹彩Iの画像256を発生させる。好ましくは、この表示は、医者が回転のずれを簡単に決めることのできる基準軸を含む。このシステムはまた、例えば医者が判別する特徴の上に置きその軸に対する回転位置を正確に決め得るカーソルを提供し得た。
【0060】
図7は虹彩調整の際に図8Aおよび8Bのシステムを使用するステップを示す。先ず、取得した虹彩Iの画像のデータ250をステップ260で表示する。同時に、この虹彩Iのリアルタイムの像254をステップ262で表示する。エキシマーレーザーシステム106が眼球追跡装置を使用するKeracor217である場合には、医者はこの眼球追跡装置をリアルタイムの像254の中心合わせを行うステップ264で作動させる。Keracor217の眼球追跡システムは虹彩Iの中心合わせを提供するが、虹彩回転調整を提供しない。
【0061】
ステップ266に進むと、一つの軸が取得したデータ250およびリアルタイムの像254の両方の上に表示される。ついで医者はスクリーン上の画像を比較し、虹彩Iの二つの画像を調整するために必要な回転量を決める。次いで、医者はリアルタイム虹彩Iの画像256が取得した虹彩の像のデータ250に回転で一致するように目Eを回転させる。医者は、吸引リングを使用するか、あるいは患者の頭の位置を変えることによる等で手動によりこれを行い得る。さらに、このシステムは処置プロファイルを医者が指定した値だけ回転で変位させて患者の目Eを「仮想」的回転を提供し得る。何れの場合でも、眼球追跡システムは先ずリアルタイムの虹彩Iの画像254の中心合わせを提供し、次いで医者が取得した画像データ250と比較して、虹彩Iの画像256の回転調整をもたらす。
【0062】
図9Aおよび9Bを参照すると、図8Aおよび8Bに示すような軸を決める技術が示されている。具体的には、図8Aのように、虹彩の像270がレーザーシステム内の軸に合わせて示される。この場合、軸272は目視し得る目標ビームを有する指向システムをX軸上で左から右に急速に走査して形成される。従って、医者が図8Aの画像を眺める場合、リアルタイムの虹彩Iの画像254上の軸がレーザー自体の指向システムにより形成され、このシステムはビームを指向させるのに使用される同じ指向システムである。従って、レーザーの真のX軸が分かる。何故なら、この指向システムで走査された指向ビームがこのX軸を形成しているからである。
【0063】
図9Bを見ると、レーザーの指向システムを表示もしくは光システムに合わせるためのさらなる技術が示されている。図9Bで、再び瞳孔274がレーザーの光学システムまたはレーザーの眼球追跡装置のカメラに示されているが、指向ビームがこの光学システムまたは眼球追跡装置のX軸に正確に合っていない線分276にわたって走査するとする。技術者は走査される指向ビーム276を光学システムおよび眼球追跡カメラの真のX軸278に対して回転させて、走査される指向ビーム276を光学システムおよび眼球追跡システムのX軸に合わせ得る。次いで、線分を眼球追跡システム上に重ね得るか、あるいは線分をレーザー指向システムの真のX軸に対応する光学システム内に形成し得る。さらに、この調整は、指向ビームをX軸上で走査し、走査される指向ビームが光学システム内もしくは眼球追跡システムのビデオディスプレイ上の調整軸に合っていることを確実にして周期的に確認し得る。並進移動のX−Y調整は同じように調整できて確認し得る。
【0064】
(多重診断と処置のシステムを調整するため多種タイプのデータの使)
図10を見ると、虹彩Iの画像のデータだけでなく、種々のシステムの間で取得した屈折データまたは処置プロファイルを合わせるため他のタイプのデータも取得される、別の技術が示されている。具体的に図10において、示されるものは、形態システム500、波面システム502およびレーザーシステム503で取得した調整データである。波面システム502が、虹彩Iの画像のデータを取得するのに困難性を有する、または波面データを取得する前に目を完全に広げることが望まれる場合、開示された技術は、そのようなデータ無しに調節が可能であり得る。この場合において、1つの実施形態において、医者は先ず目に基準マーク506を付ける。ついで、この基準マーク506は虹彩508の輪郭に対する回転調整マークとして働く。波面システムは、瞳孔輪郭データ508および基準マーク506と共に波面収差のデータを検出する。
【0065】
次いで、形態システム500が使用される。しかし、この形態システム500は、虹彩の像のデータ510で示されているような虹彩の像のデータを取得し得る。このシステムも、虹彩512の輪郭と、基準マーク506に対応する先に作製した基準マーク514とを取得する。これら二つは、画像516で示されるように同時に取得され、従って、形態システム500は虹彩の像510,虹彩輪郭512,付属する基準マーク514と取得された形態データ自体との間の並進および回転基準を維持する。さらに、形態システム500は、虹彩の像510ではなく、その代わりに虹彩輪郭512と回転基準マーク514に基づき、データを波面システム502と組み合わせられ得る。つまり、形態システム500および波面システム502は、それらのデータを組み合わせて一連の屈折矯正を進展させる場合、取得した虹彩輪郭512および508ならびに回転基準マーク514および506に基づきそれらのデータを合わせる。
【0066】
処置の経過が計算されている時、虹彩の像510に対して基準とされるように、この虹彩の像510も記憶されると好ましい。その時、レーザーシステム504で取得したリアルタイムの虹彩像518に対して合わせるために、この虹彩の像510はレーザーシステム504で使用される。
【0067】
こうして、レーザーシステム504は虹彩の像518自体を使用し、波面システム502は基準マーク506を伴う虹彩像508の輪郭を使用する。そして、形態システム500は両方を使用するので、形態システム500と波面センサ502の間の最初の診断データを合わせることができ、切除がレーザーシステム504で行われる場合にはそのデータに基づき処置の輪郭も合わせることができる。
【0068】
これは、形態システム500と波面システム502を最初に使用して診断データを取得し、後にレーザーシステム504のみを使用する場合、特に有益である。基準マーク514と506として検出される一時的な基準マークを、医療ペン等で目に付けることができる。このマークはレーザーシステム504を後で使用する時に消えてしまうけれども、虹彩の像510は形態システム500により基準マーク514と共に取得されるので、レーザーシステム504は取得した自分自身の虹彩像518を使用して処置を調整することができる。
【0069】
さらに、基準マーク自体が不要となることが可能である。波面システム502と形態システム500を同時に使用するか、あるいは患者の目または頭を動かさないで使用する下のいずれかである場合、適当な回転調整が維持されると仮定され得る。次いで、波面システム502は虹彩の輪郭508だけを取得する必要があり、それを形態システム500で取得した虹彩の輪郭512に関連付ける。これは、患者の目を止める、または患者の頭を固定して、二つの診断システムを患者の頭の動かない位置に移動させて達成できる。この技術を使用するなら、波面システム502と形態システム500を使用する時に目の間の回転調整をさらに確実にするため、後で図13に示す帆船で示されているような、回転基準像を使用することはさらに望ましくあり得る。
【0070】
この配置の種々の組み合わせが可能である。図11Aを参照すると、形態システム520は虹彩のデータ552を取得するが、その解析の一部として乱視の軸524も検出する。次いで、波面システム526も波面のデータを取得するが、虹彩の像は取得しない。しかし、円528で示す虹彩の輪郭を検出する。波面システムも乱視の軸530を検出する。次いで、乱視のこれらの軸を使用して形態システム520と波面システム526で捕捉したデータを同時調整する。この技術の代替として、図11Bに示すように、照明ダイオードのリング532が波面システム502に装着されている。像534で示すこれらのダイオードの反射は波面システム502の瞳孔カメラで検出される。像534で検出されているように、照明ダイオードリング532の照明位置の歪みに基づき、乱視の軸536が再び捕捉されて形態システム520で捕捉された乱視の軸524に関連付けられる。これは、形態システム520と波面システム526からのデータに同時に合わせる付加的な基礎を与える。さらに、この場合、この乱視の軸は波面システム526で捕捉されたような波面切除プロフィールによる目の全屈折誤差よりも、目の表面で生じる乱視に基づき得る。
【0071】
他の代替としては、二つの像を重ねるシステムが挙げられる。さらに、種々の利用者のインターフェース器具は、上の述べたカーソルの位置決めおよび処置のプロフィールのソフトウェア回転を含めて、医者を助ける。
【0072】
さらに、虹彩のデータあるいは他の調整データの利用は常時である必要はない。虹彩のデータを初期の調整器具として使用でき、次いで、虹彩単独の位置のような、診断分析または屈折処置の経過の全体を通して他のより単純な調整技術を使用できる。つまり、虹彩のデータを用いて回転調整を確立することができ、次いで虹彩の輪郭を用いて処置中に並進移動調整を維持できる。さらに、回転調整は、並進移動調整が虹彩自体の輪郭に基づき維持されている間でも、処理能力に応じて、屈折分析または処置の全体にわたり周期的に「スポットで検査」することができる。
【0073】
(患者および目の妥当性の確認)
付加的な副次的な利点として、患者が横たわり、虹彩Iの像(図2Cと5)を検出する時に、虹彩を合致させるアルゴリズムは実際の虹彩の像206を合致させるため並進移動、倍率変更、回転および傾きを決定し得るだけでなく、処置されている目Eの妥当性も立証できる。従って、虹彩合致アルゴリズムは特別なレーザー処置が実際に別の患者よりむしろこの患者に適当な処置であることを保証するフェイル−セーフ機構として働く。同様に、このアルゴリズムは一人の患者の二つの虹彩が異なった特徴を持っていても、適当な目Eに処置を施すことを保証するフェイル−セーフ機構として働く。これらのフェイル−セーフ機構は、診断情報を第一の位置で取得し、処置を第二の位置で展開し、この処置を次に第三の位置で加える、分配されたシステムで特に有益である。このシステムは虹彩の特徴を合わせることができないなら、警報を出す。
【0074】
レーザーシステム106の狙いと同じように、カメラ154からの虹彩の像の上に重なった虹彩の像のデータ148を伴うディスプレイを用いて、妥当性の確認を自動的または手動的に行える。
【0075】
(波面センサ)
図12を参照すると、好ましい波面センサ300のブロック図が示してある。この波面センサ300は、考え方ではウイリアムズの波面センサと類似するが、虹彩のデータを受容するため、および目の波面収差を求めるのに使用するセンサへの光スポットの焦点を先鋭化するために特に有益となる特定の特徴を含む。一般に、波面センサ300は目の網膜上に光(典型的にはレーザー)を集束させる、あるいは走査し、次いで目の水晶体および角膜光学系により戻る(つまり網膜から後方散乱した)光を分析し、小レンズ(lenslet)アレイにより結像させる。目の光学系の光収差に基づき、このシステムは、戻る光から全波面収差の分析を進める。一般に、この分析を実施するため、戻った光は小レンズカメラのセンサ上でこの小レンズカメラで形成される実体のない像となる。これらの像から、波面センサは正視あるいはほぼ正視の視力を生む目の光学系にどんな矯正が必要であるかの波面収差マップを開発する。
【0076】
患者の目Eに正しく向けるため、図12に示す660ナノメータの二つのレーザーダイオード302を目Eに対して角度を付けて調整する。これらのレーザーダイオード302からの患者の目Eの上の点が、波面センサ300(あるいは102)、レーザーダイオード302(あるいはビームを指向させる光学系)の出力ビーム、患者等を適当に調整して一つの点になると、目Eは波面センサ300(あるいは102)から正確な焦点距離、あるいはほぼ正確な焦点距離に位置決めされる。あるいは、目Eの虹彩の像を視力的に眺めて波面センサ300からの正しい焦点距離を見付けて医者、技術者あるいは他の健康管理作業者が患者の目Eを正しい向きにして目E上の全体露光を減らすことができる。この場合、レーザーダイオード302は必要ない。光源、つまり目の照明部304は、以下に議論する瞳孔カメラ328に光を与える。
【0077】
目Eが正しい向きにされると、眼は光源306(例えば 780 ナノメートルの出力レーザーダイオードのようなレーザーダイオード)から目Eに向かう光路に沿って光を受光する。好ましくは、レーザーダイオード306は一つの出力より多い出力構成(即ち、二出力モードまたは多出力モード)を有する。つまり、少なくとも一つの低出力のものが、調整と初期集束のためにあり、少なくとも一つの高出力のものが、以下に議論するセンサ(例えば、小レンズカメラ)312内で多スポット像を発生するためにある。例えば、典型的な低出力と高出力はそれぞれ0.5μWと30μWである。これらの出力は、レーザーダイオード306が高出力にどれだけ長く維持されているかのような多くの要因に依存する。
【0078】
レーザーダイオード306からのビームの一部は、先ずビームスプリッタ308(例えば、透過率80%、反射率20%)から反射する。反射したビームは偏光ビームスプリッタ310を通過する。このビームスプリッタは、以下で議論するように、最終的に小レンズカメラ312で検出される目の網膜から後方反射した光のSN比(あるいは信号強度)を究極的に改善する。ビームスプリッタ310はレーザーダイオード306から受け取った光を偏光し、一般に一方向に直線偏光した光を通し、この方向に偏光していない光を反射する。次いで、偏光した光はトロンボーン式のプリズム314を通過する。このプリズムはレーザーダイオード306から目Eの網膜上への光の集束を調整するために使用される。その点で網膜に入射した光から小レンズのアレイ上に後方散乱した光も正確にもしくはほぼ正確に集束される。トロンボーンプリズム314からの光は鏡316で反射し、ビームスプリッタ318(例えば、反射率 20 %,透過率 80 %)を通過し、次いでλ/4波長板320を通過する。このλ/4波長板320は直線偏光している光からほぼ円偏光している光を発生するような向きにされている。この重要性は、目Eから偏光ビームスプリッタ310へ戻る後方散乱光(「戻り光」)の以下の議論で理解される。
【0079】
λ/4波長板320を通過した後、光は次に目Eの網膜の上に集束する。この光は網膜から後方散乱または反射する。そして、網膜上の後方散乱した光のスポットは次に、水晶体や角膜のような目Eの光学器官を経由して戻る。戻りの経路では、円偏光した像の光が再び波長板320により遅延され、上で議論したように、波長板320への第一通路上に形成された入来直線偏光の光に垂直に直線偏光した光が生じる。垂直に偏光した光の一部は次にビームスプリッタ318を通過し、鏡316で反射し、プリズム314を逆に通過し、偏光ビームスプリッタ310に戻る。この点で、全ての光または大部分の光が垂直に偏光し、従って偏光ビームスプリッタ310によりほぼ反射され、次に鏡322で反射して小レンズの結像カメラ312に入射する。戻る光を一部調節カメラ323に入れるため、以下でさらに議論するように、波長板320を最適な向きから傾けるおよび/または回転させる(例えば、約5度だけ回転させる)ことができる。この態様では、調節カメラ323で受光された光は戻りの光に対してほぼ垂直に偏光する。波長板320をその最適位置から傾けてまたは回転させて戻りの光を調節カメラ323に入れる以外の他の方式は、波面センサ300(あるいは102)の光路や光学部品に対する変化を含めて、考えられるもので、この発明の範囲内に含まれる。例えば、鏡322の代わりに、液晶装置のような、透過率と反射率を制御できる装置もあり得る。また、制御可能なデバイスで透過させた戻りの光の一部を受光するため、調節カメラや何らかの集束光学系を設置してもよい。そのような態様では、ビームスプリッタ308は不要で、制御可能なデバイスで受光した光は戻りの光の偏光とほぼ同じかまたは平行な偏光を有している。
【0080】
小レンズカメラ312は、小レンズのアレイ324を含む、Pulnixで製造されているTM−9701のような電荷結合素子(CCD)カメラであると好ましい。もっとも、他のタイプのカメラおよび小レンズのアレイ324に似た他のサンプリング光学系(カメラから分離した光学系を含む)を使用することもできる。例えば、Sony CorporationによるICX039DLAカメラは、小レンズカメラ312と瞳孔カメラ328の両方に対して使用できる。小レンズアレイ324は鏡322で反射した戻りの光から小レンズカメラ312の受光素子(例えば、CCDアレイ)の上に実体のない像を形成する。波長板320は望ましくない後方散乱光または迷光の量を減らし、信号強度または実体のない像のコントラストを改善することを補助し得る。小レンズアレイ324は目Eの光学器官を最初に通過した光の個々の部分を集束するので、目Eの屈折性波面収差の効果を、ウイリアムズに開示されているのと同じように求めることができる。これに関して、目Eの波面収差、従ってフェーズエラー(phase error)を一度求めれば、それらを角膜組織の除去に要求される切除の輪郭に変換でき、目Eのパラメータ(例えば、目Eの器官の屈折率および/または他のパラメータ)を適当に考慮して視力を矯正または改善できる。適当な輪郭を決める1つの技術は、尺度を変えたデータが患者の角膜から除去するのに必要な組織の量に大体一致するように波面データの倍率を単に変えることである。次いで、レーザーシステムは患者の角膜からその輪郭の組織を除去できる。波面センサのデータを取り込んでいる間に目Eの向きの調整を助けるため目E上のマークを使用することができる。
【0081】
好ましくは、小レンズアレイ324は、Adaptive Optics Associates,Incorporatedにより製造されている0600−40−Sのような、それぞれ600平方ミクロンの約25×25の小レンズのアレイである。この小レンズの寸法は前記の第5,777,719号特許に記載されている小レンズの寸法および他のシステム内のものより小さく、以下に議論されるべき波面センサ300の部品により与えられる小レンズカメラ312に対する光強度が増加するので可能になる。図12に示す波面センサ300の光路にも、照明、結像および集束光学系に典型的であり、明確にするため省いた他の可能な光学部品も表し得るレンズ326(例えば4つのレンズ)と(ビームの大きさを変える)仕切板または開口327を含み得る。例えば、本発明の1つの実施形態では、トロンボーン集束プリズム314の周りのレンズ326の一つまたは両方の焦点距離を可変して、恐らく短くして、小レンズアレイ324に入るより小さいビーム幅を受入れできる。別の実施形態では、波面センサ300(または102)を用いて行い得る可能な光屈折測定の範囲を、例えばレーザー306の前のレンズ326を適当に選択して変化させて、一般な集団または患者の選択された集団における弱視の自然分布を調整できる。これを行う一つの方法は、レーザービームがもはや平行にならないようにレーザーダイオード306の前にレンズ326(例えば、−5ジオプトリーのレンズ)を置くことである。これは波面センサ300(あるいは102)で患者の目を調べるのに使用できるジオプターにおけるオフセットを与える。制限のない例では、当業者に理解されるように、光屈折の範囲は対称設計では対称の−8〜+8のジオプトリーから非対称設計では非対称の−13〜+3ジオプトリーに修正できる。これは、トロンボーン集束レンズ314(あるいは他の同調デバイス)の寸法および/または光学系のパラメータを変更することなく行い得る。
【0082】
レンズ326の位置に対する代わりに、レンズ338を小レンズカメラ312への経路に移動させることができる。小レンズカメラ312への経路内の多数の個所を使用して捕捉する波面センサ300の全範囲を調節できる。位置の中へあるいは位置の外へ移動できるどちらかのレンズ326または338を使用して、トロンボーンに必要な「投入」の長さが短くなることが分かる。さらに、レーザーダイオード306は典型的にそれ自体に何らかの固有な「非点収差」を持っている。これは患者の目Eに典型的に見られる乱視で調整でき、再び波面センサ300の全範囲を増加させる。具体的には、そのような非点収差は患者の乱視が見られるので「規則で持って」調整され、小レンズカメラ312および対応する波面センサ300ソフトウェアはもっと広い範囲の決定できる非点収差を与えるようなこの固有な乱視を計算に入れることができる。
【0083】
瞳孔カメラ328が、ビームスプリッタ318から反射した光(の例えば20%)を受光するように示してある。この瞳孔カメラ328は調整技術の議論で以下に議論する制御システム156に似たまたは同じ制御システム(図示せず)を経由して虹彩の像136に対する虹彩像のデータ132を主に提供する。比較のため、小カメラ312からのデータを処理して、最終的に収差のデータとして提供する。
【0084】
瞳孔カメラ328は目Eとトロンボーン集束プリズム314の間の光路内に置かれている。このプリズムにより、網膜の上に集束させるシステムの残りの物の焦点距離に変化があっても、瞳孔カメラ328は目Eの瞳孔と虹彩上に焦点を合わせる。従って、瞳孔カメラ328は目Eの深さおよび網膜から虹彩までの対応する距離に無関係に目Eの表面の鮮明な像を撮影できる。
【0085】
(固定ターゲット)
波面センサ300(および102)はまた、図10に示すように、固定ターゲット334として使用する像を用いる。固定ターゲット334は光源336で照明され、患者を固定させて焦点を合わせ、調節カメラ323はプリズム314により網膜に焦点合わせされる。固定ターゲット334は小レンズアレイ324からの実体のない像がトロンボーン光学系314を調節して小レンズカメラ312のセンサ上に焦点合わせされる時に有用である。このシステムは固定ターゲット334に対する像を与えるのに有利であり、この限定しない例は図10に示す水面上の帆船であり、単なる固定点ではない。固定ターゲット334は目Eおよび患者の脳に、焦点合わせする絵のようなあるいは実際の絵の像またはシーン−目Eで実際に眺める何らかの物体またはシーン−を与える。絵のような像で目を慣らすことは典型的に一点に焦点を合わせることよりも達成することが容易である。固定ターゲットの像により目Eは、あたかも像が遠くになったかのように、無限遠に焦点を合わせる。これは実体のない像に焦点を合わせるまたは波面センサのデータを取得する間に目Eの順応もしくは回転の効果をなくするまたは減らすのに助けになり得る。換言すれば、固定ターゲットの像は目Eが無限遠より近くに焦点を合わせることを防止する、または或る程度防止することを助ける。
【0086】
固定ターゲットの像は目Eを「正規」の回転位置へ回転させるので、診断分析での回転誤差を最小にする。こうして、固定ターゲット334を用いて、基準の回転枠を目Eに対して決めることができる。目Eの焦点を無限に合わせて眺める図10の帆船のような非対称な像は、頭が僅かに動いても、目Eが固定ターゲット334に対して正規のまたは所定の回転位置を保つことを助けるのに好ましい。固定ターゲット334を使用して、上に説明したような目Eの虹彩の認識、配置、調整に関連して目Eの回転位置を調節することもできる。類似の像をこの発明による他の構成要素、診断と処置の両方に使用して、順応または回転の問題を無くすまたは減らすことができる。
【0087】
波面センサ300(または102)に装備される構成要素に替えるため種々のタイプの構成要素を使用でき、本発明の他の実施形態を形成するのに種々の光学配置が可能であることは、この開示内容の利益を保持する当業者によって理解される。例えば、強い強度の平行光源、例えば低出力と高出力の多重光源をレーザーダイオード306と置き換えることができる。調節カメラ323を代わりに鏡322の経路に置いてもよく、小レンズカメラ312の小レンズアレイ324には、要求により、あるいは設計に従い、より多くのあるいはより少ない小レンズがあってもよい。さらに、これらの要素の全てを一般にマイクロコンピュータのような制御システムで制御されることが当業者に理解される。本発明の範囲と趣旨内で広範な種々の他の配置が可能である。
【0088】
(結論)
本発明の今までの開示と説明は、図解的であり、説明のためのものである。また、図示した装置や配置および操作方法の詳細の種々の変更は、本発明の趣旨から逸脱することなく行える。
【図面の簡単な説明】
【0089】
【図1】図1は、虹彩の像データの取得および次のレーザー処置のためのこれらのデータの使用を説明する流れ図である。
【図2A】図2A、2Bおよび2Cは、屈折特性データに関連する虹彩データの取得、そのデータに基づく処置の発生、およびレーザー手術を行うための虹彩の像と関連してのこの処置データの使用を示すブロック流れ図である。
【図2B】図2A、2Bおよび2Cは、屈折特性データに関連する虹彩データの取得、そのデータに基づく処置の発生、およびレーザー手術を行うための虹彩の像と関連してのこの処置データの使用を示すブロック流れ図である。
【図2C】図2A、2Bおよび2Cは、屈折特性データに関連する虹彩データの取得、そのデータに基づく処置の発生、およびレーザー手術を行うための虹彩の像と関連してのこの処置データの使用を示すブロック流れ図である。
【図3】図3は、波面データからおよび表面形態データから行う組み合わせ切除プロフィールを示す図である。
【図4】図4は、一つの目およびこの目の特有な屈折特性を求めるために使用される付属診断器具の切取図である。
【図5−1】図5−1は、本発明によるシステムおよび方法で特有な虹彩データとして使用できる目の種々の特徴を示す図面である。
【図5−2】図5−2は、本発明の一実施形態によるマーカーを示す、図5−1に似た目の図面である。
【図6】図6は、本発明によって所望の処置を実際の処置に移すための、記憶されている虹彩データおよび結像されている虹彩データの使用を示す流れ図である。
【図7】図7は、処置を整えるために記憶されている虹彩データを使用する、代替の技術を示す流れ図である。
【図8】図8Aと8Bは、図7の技術を示す表示像である。
【図9】図9Aと9Bは、本発明によるレーザー調整ビーム/結像システム調整技術を示す図面である。
【図10】図10は、本発明による代わりの調整技術を示す図である。
【図11A】図11Aは、本発明による調整技術を更に洗練化したものである。
【図11B】図11Bは、本発明による調整技術を更に洗練化したものである。
【図12】図12は、本発明によるシステムで使用するための波面センサのブロック図である。
【図13】図13は、図12の波面センサで使用するための例示的な固定像の図面である。

【特許請求の範囲】
【請求項1】
目の調整と特徴付けを行うシステムであって、以下:
該目の選択した領域内にマーカーを設けるための手段;
該マーカーが第一の像の一部を形成する虹彩の像を含む、広がっていない瞳孔の該目の第一の像を得るための手段;
該目の瞳孔を広げるための手段;
該広がった瞳孔を含む該目の第二の像を得るための手段;
該広がった瞳孔を有する該目の診断屈折測定を行うための手段;および
該目の屈折矯正のために該診断測定から光屈折処置を行うための手段、
を備える、システム。
【請求項2】
前記診断測定は前記目からの波面測定である、請求項1に記載のシステム。
【請求項3】
前記マーカーは染料または染料に基づくマークである、請求項1に記載のシステム。
【請求項4】
前記染料は赤外光で可視である、請求項3に記載のシステム。
【請求項5】
前記染料は前記マーカーを適用した後に少なくとも約15分から1時間の間、可視である、請求項4に記載のシステム。
【請求項6】
前記マーカーは前記目の中心領域から半径方向に延びる近位部分を有する、請求項1に記載のシステム。
【請求項7】
前記マーカーの遠位部分は、前記目のカラーレット領域を横断する、請求項6に記載のシステム。
【請求項8】
前記マーカーの遠位部分は前記マーカーの近位部分と共通線上にない、請求項7に記載のシステム。
【請求項9】
前記マーカーはレーザーマークである、請求項1に記載のシステム。
【請求項10】
前記レーザーマークはホルミウム・レーザーの手段により形成される、請求項9に記載のシステム。
【請求項11】
前記処置手段はLASIKを含み、そしてさらに前記マーカーは角膜フラップが角膜から離れた後に検出可能である、請求項1に記載のシステム。
【請求項12】
さらに、それぞれの像の中の少なくともマーカーを比較して、前記第二の像を前記第一の像に合わせる溜めの手段を備える、請求項1に記載のシステム。
【請求項13】
前記光屈折処置を行うための手段は前記診断処置を前記マーカーに対して調整するための手段を含む、請求項12に記載のシステム。
【請求項14】
前記の調整手段は前記第一の像から虹彩のパターンを認識することを含む、請求項13に記載のシステム。
【請求項15】
前記虹彩パターンの認識は虹彩のグレースケールプロフィールを発生するための虹彩のグレースケール分析を含む、請求項14に記載のシステム。
【請求項16】
前記マーカーは前記グレースケールプロフィールを横断する、請求項15に記載のシステム。
【請求項17】
さらに、前記第一の像を得る時に診断屈折測定を行うための手段を備える、請求項1に記載のシステム。
【請求項18】
さらに、前記波面測定と前記処置の実施後に企画した時間遅れなしに前記光屈折処置を行うための手段を備える、請求項1に記載のシステム。
【請求項19】
前記第一と前記第二の像からマーカーを合わせて前記光屈折処置を調整するための手段を備える、請求項18に記載のシステム。
【請求項20】
さらに、前記波面測定と前記処置を実施の続く企画した時間遅れの後に前記光屈折処置を行うための手段を備える、請求項1に記載のシステム。
【請求項21】
処置時間に虹彩の像を得て、該虹彩の像を前記第一の像の中の虹彩の像に合わせるための手段を備える、請求項20に記載のシステム。
【請求項22】
さらに、前記行った処置を実施する前に該行った処置を前記第一の像に合わせることを確認するための手段を備える、請求項1に記載のシステム。
【請求項23】
さらに、前記行った処置を実施する前に該行った処置を前記目に合わせることを表示するための手段を備える、請求項1に記載のシステム。
【請求項24】
さらに、前記行った処置が最終的に前記目に合うように調整が確認されない場合、該目の位置を調節する工程および該行った処置を調節するための手段の少なくとも一方を備える、請求項22に記載のシステム。
【請求項25】
さらに、前記光屈折処置の間に選択した時に前記調整を確認するための手段を備える、請求項22に記載のシステム。
【請求項26】
さらに、前記光屈折処置の間にリアルタイムで前記調整を確認するための手段を備える、請求項22に記載のシステム。
【請求項27】
前記屈折診断測定のための手段は角膜形態測定と厚度計測の少なくとも一方を含む、請求項17に記載のシステム。
【請求項28】
前記マーカーは前記目の並進移動と回転に関する情報を提供する、請求項1に記載のシステム。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5−1】
image rotate

【図5−2】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−18251(P2008−18251A)
【公開日】平成20年1月31日(2008.1.31)
【国際特許分類】
【出願番号】特願2007−202908(P2007−202908)
【出願日】平成19年8月3日(2007.8.3)
【分割の表示】特願2001−531073(P2001−531073)の分割
【原出願日】平成12年10月20日(2000.10.20)
【出願人】(506121788)テクノラス ゲーエムベーハー オフタルモロギッシェ システム (6)