説明

光学素子の成形装置及び成形方法

【課題】本発明は、成形装置の熱変形を有効に抑制し、この熱変形を抑制することによって、高精度の光学素子を歩留まり良く製造する光学素子の成形装置を提供する。
【解決手段】上型と下型の間に光学素材が置かれた成形型80を、チャンバー2内に設けた加熱、プレス成形及び冷却の各ステージ3,4,5へ順次搬送して光学素子を成形する成形装置であって、加熱、プレス成形及び冷却の各ステージにおいて成形型80を搭載し、搭載された成形型80に対して、それぞれ加熱、プレス成形及び冷却の各プロセスを行う上下一対の複数組のプレート3b,4b,5bと、加熱、プレス成形及び冷却の各プロセスを制御する制御手段と、を備え、冷却ステージ5における上側のプレート5bが、成形型80との接触面傾きに応じて傾斜可能な揺動機構5eを有する光学素子の成形装置1。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、形状精度の高い光学素子を連続的に製造可能な成形装置及び成形方法に係り、特に、プレス成形後の冷却工程において、光学素子形状の変形を抑制する光学素子の成形装置及び成形方法に関する。
【背景技術】
【0002】
近年、成形型内に収容した光学素材を、加熱軟化させてプレス成形し、光学素子を高精度に製造する方法が一般化する中、製造コストを低減するために、成形型を各処理ステージに搬送させながら複数の光学素子を連続的に成形する光学素子の製造装置が提案されている(例えば、特許文献1〜3参照)。ここで、光学素材は光学素子とする成形用の素材をいう。
【0003】
これら光学素子の製造装置において、光学素材の加熱軟化時とプレス成形時には、成形型を所定の温度にして、成形素材を加工するのに十分な加熱温度を維持し、成形後は、光学素材を冷却して固化させ、最終的には、成形型が酸化されないような200℃以下の温度にまで冷却する。上記のように、プレス成形時に成形型の形状を正確に成形素材に転写して、これを冷却、固化させることで成形形状を保持し、形状精度の高い光学素子となる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平8−259240号公報
【特許文献2】特開2008−69019号公報
【特許文献3】特開2009−96676号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、近年、僅かな形状誤差によって光学素子に求められる性能に達しない場合があり、より形状精度の高い光学素子を得るために、さらなる形状精度の向上が検討されている。
【0006】
本発明者らは、従来の光学素子の製造において、プレス成形の際には、所望の形状に正確に成形できていても、その後、成形型と冷却プレートとを接触させることで光学素材の形状にズレが生じ、これが歩留まりを低下させることを突き止めた。
【0007】
すなわち、プレス成形直後の冷却工程において、成形型と冷却プレートの接触面の傾斜角が異なっていたり、互いに異なる方向に傾斜したりしている場合、その傾斜のズレによって、冷却プレートでの押圧時に、未だ完全に固化していない光学素子の転写された形状が歪んでしまうのである。
【0008】
より高精度の光学素子が求められるようになってきた近年においては、この冷却時に生じる微妙なズレが製品の求められる性能に達しない原因となり、歩留まりを低下させていた。
【0009】
本発明は、上記の問題点に着目してなされたもので、光学素子の製造にあたって、プレス成形後の冷却操作に起因して生じる光学素子の変形を効果的に抑制し、これにより、高精度の光学素子を歩留まり良く製造できる光学素子の製造装置及び製造方法の提供を目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、鋭意検討した結果、本発明の光学素子の成形装置及び製造方法により、上記問題を解決できることを見出し、本発明を完成した。
【0011】
すなわち、本発明の光学素子の成形装置は、上型と下型の間に光学素材が置かれた成形型を、チャンバー内に設けた加熱、プレス成形及び冷却の各ステージへ順次搬送して光学素子を成形する成形装置であって、前記成形装置は、前記加熱、プレス成形及び冷却の各ステージにおいて前記成形型を搭載し、搭載された前記成形型に対して、それぞれ加熱、プレス成形及び冷却の各プロセスを行う上下一対の複数組のプレートと、前記加熱、プレス成形及び冷却の各プロセスを制御する制御手段と、を備えるとともに、前記冷却ステージにおける上側の冷却プレートが、前記成形型との接触面の傾きに応じて傾斜可能な揺動機構を有することを特徴とする。
【0012】
また、本発明の光学素子の成形方法は、上記の光学素子の成形装置を用い、前記成形型に光学素材を収容し、前記成形型を加熱して該成形型内の光学素材を軟化させる加熱工程と、軟化した光学素材を、プレス手段を用いて前記成形型により加圧して光学素子形状を付与するプレス工程と、プレス工程後、前記成形型を冷却し、光学素子形状を付与した光学素材を固化させる冷却工程と、を有する光学素子の成形方法であって、前記冷却工程において、前記冷却ステージにおける上側の冷却プレートを、前記成形型に接近させ前記成形型の接触面の傾きに応じて揺動させつつ前記成形型に密接させて前記成形型を冷却することを特徴とする。
【発明の効果】
【0013】
本発明の光学素子の成形装置及び成形方法によれば、プレス成形により高精度に成形した光学素子形状をそのままの形状で冷却、固化させることで、プレス成形後の冷却操作における変形を抑制できる。したがって、所望の形状を有する光学素子を高い歩留まりで製造できる。
【図面の簡単な説明】
【0014】
【図1】本発明の一実施形態である光学素子の成形装置の概略構成図である。
【図2】図1の成形装置に用いた揺動機構の(a)定常時の断面図及び(b)冷却時の断面図である。
【図3】本発明の他の実施形態である光学素子の成形装置の概略構成図である。
【発明を実施するための形態】
【0015】
以下、本発明を詳細に説明する。図1は、本発明の一実施形態である光学素子の成形装置の概略構成図である(チャンバー2のみ断面で示している)。
【0016】
本発明の光学素子の成形装置1は、光学素子を成形するための成形室となるチャンバー2と、該チャンバー2の内部に設けた、光学素材を収容した成形型を加熱して光学素材を軟化させる加熱ステージ3と、加熱軟化した光学素材をプレス成形するプレス成形ステージ4と、プレス成形による光学素子形状を付与された光学素材を冷却する冷却ステージ5と、を有する。
【0017】
ここで、成形室であるチャンバー2は、その内部において、光学素子を成形操作する場を提供する。このチャンバー2には、光学素子の成形型80を内部に取り入れる取入れ口と、光学素子の成形が終了した後、成形型80を取り出す取出し口が設けられ、この取入れ口及び取出し口には、それぞれ取入れシャッター6及び取出しシャッター7が設けられている。必要に応じて、これらシャッターを開閉し、成形型80をチャンバー2から出し入れでき、チャンバー2内の雰囲気が維持される。また、この取入れ口及び取出し口には、そのチャンバー2外部にそれぞれ成形型80を載置できる成形型載置台8及び9が設けられている。
【0018】
このチャンバー2の内部には、光学素子を成形するための加熱ステージ3、プレス成形ステージ4及び冷却ステージ5が設けられており、これらの各ステージにより成形操作を行う。実際には、光学素材を収容した成形型80が、取入れ口からチャンバー2内に取り入れられ、上記の各ステージにおいて所定の処理を施されながら順番に移動し、所定の処理が終了したら成形型80は、取出し口からチャンバー2の外部に取出される。
【0019】
このチャンバー2の内部は、光学素材を軟化し、変形を容易にするため、高温に加熱されるので、成形型80が酸化されないように、窒素等の不活性ガス雰囲気に維持されている。不活性ガス雰囲気とするには、チャンバー2を密閉構造として内部雰囲気を置換して達成できるが、半密閉構造として、不活性ガスを常時チャンバー2内に供給して、チャンバー内を陽圧にしながら外部の空気が流入しないようにして不活性ガス雰囲気を維持するようにしてもよい。上記した取入れシャッター6及び取出しシャッター7は、チャンバー2内部を簡便な構成で半密閉状態とするのに効果的である。なお、これらチャンバー2及びシャッター6,7は、ステンレス、合金鋼等の素材で形成し高温下におけるガス、不純物が析出しない素材が好ましい。
【0020】
次に、本発明の成形操作を行う各ステージについて説明する。なお、各ステージの説明にあたって用いる成形型80は、一般に、上側の光学機能面を形成する上型と、下側の光学機能面を形成する下型とで構成される一組の成形型であり、さらに上型及び下型の位置を合わせる胴型を有する。胴型は、プレス時に、上型及び下型の光軸を同軸上に規制する中空円筒形状の内胴と、内胴の外周に設けられ上型及び下型間の距離を規制する中空円筒形状の外胴と、で構成することが好ましい。
【0021】
また、この成形型80は、超硬合金やセラミックス等の素材で構成され、上型及び下型は、成形する光学素子の面形状を転写するための成形面をそれぞれ有しているが、ここで形成される光学素子形状は、両凸、両凹、平凸、平凹、凸メニスカス、凹メニスカス形状のいずれの形状を成形する成形型であってもよい。なお、外胴を用いる場合には、これをSUS等のステンレス製とすることが好ましい。
【0022】
本発明の加熱ステージ3は、成形型80に収容された光学素材を軟化させ、その内部にヒータ3aが埋め込まれた上下一対の加熱プレート3bを有する。この加熱プレート3bは、上下一対の加熱プレート3bを成形型の上型、下型にそれぞれ接触させることで、上型及び下型を加熱でき、さらに成形型内部に収容されている光学素材も加熱できる。
【0023】
より具体的には、加熱ステージ3において、下側の加熱プレート3bはチャンバー2の底板に固定されており、上側の加熱プレート3bは、加熱プレート3b自体の熱をそのまま伝えないように断熱板3cを介してシャフト3dと接続され、このシャフト3dは図示しないシリンダーによって加熱プレート3bを上下に移動できる。このように、加熱プレート3bを上下に移動させることで、この上側の加熱プレート3bと成形型80の上型との接触・非接触を制御でき、所望のタイミングで成形型80と光学素材を加熱できる。
【0024】
また、下側の加熱プレート3bは、上側の加熱プレート3bと同様にそのまま熱が伝わることのないように、断熱板3cを介してチャンバー2に固定されている。
【0025】
本発明のプレス成形ステージ4は、上下のプレスプレート4b間の距離を狭めることにより成形型80の上型と下型との距離を狭めて、成形型80内に収容された光学素材を軟化状態のまま押圧して変形させ、上型及び下型の有する光学形成面形状を光学素材に転写し光学素子を成形するものであり、その内部にヒータ4aが埋め込まれた上下一対のプレスプレート4bから構成される。このプレスプレート4bを用いたプレスは前段階の加熱温度を維持しながら行われる。
【0026】
より具体的には、このプレス成形ステージ4において、下側のプレスプレート4bはチャンバー2の底板に固定されており、上側のプレスプレート4bは、プレスプレート4b自体の熱をそのまま伝えないように断熱板4cを介してシャフト4dと接続され、このシャフト4dは図示しないシリンダーによってプレスプレート4bを上下に移動できる。このようにプレスプレート4bを上下に移動させることにより、この上側のプレスプレート4bを下降させ、下側のプレスプレート4bに載置された成形型80を用いたプレス成形ができる。このときプレス成形は所定の圧力で行われ、光学素材に高精度に光学素子形状を付与できる。
【0027】
また、下側のプレスプレート4bは、上記加熱プレート3bと同様に、下側のプレスプレート4bの熱をチャンバー2に伝達しないように断熱板4cを介してチャンバー2上に固定されている。
【0028】
本発明の冷却ステージ5は、成形型80を冷却して光学素子形状が付与された光学素材を冷却、固化する、その内部に、ヒータ5aが埋め込まれた上下一対の冷却プレート5bから構成される。この冷却プレート5bは、上下一対の冷却プレート5bを成形型の上型、下型にそれぞれ接触させることにより、上型及び下型を冷却でき、さらに成形型内部に収容されている光学素材も冷却できる。
【0029】
より具体的には、この冷却ステージ5において、下側の冷却プレート5bはチャンバー2の底板に固定されており、上側の冷却プレート5bは、冷却プレート5b自体の熱をそのまま伝えないように断熱板5cを介してシャフト5dと接続され、このシャフト5dは図示しないシリンダーによって冷却プレート5bを上下に移動できる。このように、冷却プレート5bを上下に移動させることにより、この上側の冷却プレート5bと成形型80の上型との接触・非接触を制御でき、所望のタイミングで成形型80と光学素材を冷却できる。
【0030】
また、下側の冷却プレート5bは、上記加熱プレート3bと同様に、下側の冷却プレート5bの熱をチャンバー2に伝達しないように、断熱板5cを介してチャンバー2上に固定されている。
【0031】
そして、本発明の光学素子の成形装置1の特徴部分は、この冷却ステージにおいて、シャフト5dと冷却プレート5bの間に揺動機構5eが設けられている点にある。以下、この揺動機構5eについて、図2を参照しながら説明する。
【0032】
この揺動機構5eは、シャフト5dの先端に固定された球面座51と、シャフト5dに取り付けられ上下動及び揺動可能に設けられた座受部材52と、球面座51と座受部材52との間に弾性力を生じさせるコイルスプリング53と、で構成されている。
【0033】
球面座51は、上下動するシャフト5dの下端部に固定され、その下面51aが滑らかな曲面に形成されている。この曲面は、後述する座受部材52を揺動できればよく、その曲率半径が10〜50cmで形成されていることが好ましい。
【0034】
この曲面は、座受部材52の座受面52aにおいて、プレス成形時にその座受面52aに圧痕を形成しないように、上述のように十分に曲率半径の大きい曲面形状とする。これは圧痕により自由な揺動が妨げられるおそれがあるためである。
【0035】
また、球面座51には、そのシャフト5dとの接続部付近において、水平面に伸びたフランジ状の突起部51bを有する。この突起部51bは、後述する座受部材52を引っ掛けて、下方に落ちないように保持する。なお、この突起部51bは、シャフト5dに直接設けてもよい。
【0036】
座受部材52は、シャフト5dに取り付けられ、定常時においては、そのシャフト5dの下端部に設けた球面座51と所定の距離を保持するように(図2(a))、また、冷却時には、シャフト5dを降下させて冷却プレートを成形型に接触させ、さらに冷却プレートにより成形型に圧力をかけるため、座受部材52は、球面座51と接触するように上下動が可能に設けられている(図2(b))。このとき、座受部材52は、座受面52aが平板状に設けられているため、球面座51の曲面によりどの方向にも揺動可能となっている。
【0037】
このとき、座受部材52は、シャフト5dに固定されておらず、球面座51の突起部51bに係止部52bが引っ掛かって保持されているだけである。この座受部材52は、中空の柱状に形成され、その上部にシャフト5dを通すための円形の開口が形成されている。この開口は、シャフト5dの形状に沿って円形に形成されており、シャフト5dとは所定のクリアランスを有する大きさに形成されている。なお、この座受部材52は中空の柱状のものであれば、その外形は特に制限されず、典型的な形状として円柱状、多角形状等の形状であればよい。
【0038】
なお、座受部材52のシャフト5dのための開口はそのまま係止部52bを形成し、この係止部52bの側面と、シャフト5dとを所定のクリアランスを有することが好ましい。このとき、所定のクリアランスを確保するために、シャフト5dの側面に固定できる環状部材54を別部材として設けることで、開口側面とシャフト5dとのクリアランスをより適正にできるため好ましい。このクリアランスは、座受部材52の揺動する際の最大傾斜角度を決定する。座受部材52の最大傾斜角度は、シャフト5dの軸に対して径方向360度において0.5度以下が好ましく、0.1〜0.3度程度がより好ましい。
【0039】
次に、コイルスプリング53は、球面座51と座受部材52との間に弾性力を生じさせ、これら部材を所定間隔に保持して、この弾性力により揺動を制限し、所定の力が外部から加わったときのみ、揺動させる。例えば、図2(a)の定常時では、座受部材52がシャフト5dに対して傾斜しない初期状態に保持するような弾性力がかかっていればよく、図2(b)の冷却時には、冷却プレートにより成形型に所定の圧力をかけた状態であるため、揺動機構5eも加圧状態となってコイルスプリングが縮んで、球面座51の下面51aと座受部材52の座受面52aとが接触する。このとき、成形型(上型)の傾斜に応じて座受部材52が傾斜できるような弾性力がかかっていればよく、接触した後は、座受部材52の下方に固定されている冷却プレートと成形型80の接触状態によって、座受部材52は冷却プレートと一体になって揺動し、成形型80の上面(上型の上面)の傾きにならって傾斜する。
【0040】
この弾性力は、突起部51bに引っ掛かっているヘッド(座受部材52、断熱板5c、冷却プレート5b等)の質量によっても変わるため、適宜調節することが好ましい。例えば、ヘッドの質量が6kgである場合には、定常時の弾性力が4〜30Nで、冷却時の弾性力が63〜90Nとなるような条件が挙げられる。冷却時の弾性力が強すぎると外部の力に抗して、座受部材52が揺動せずに成形型(上型)の傾斜度を変えてしまうため、成形型(上型)の傾斜度にならってヘッドの傾斜角度が変化する条件となるように調節しなければならない。
【0041】
コイルスプリング53は、その複数個を球面座51の下面51aの周囲に均等に配置して、球面座51と座受部材52の間で生じる弾性力を均等にして、偏った(傾斜しやすい)方向を作らないようにする。このとき用いるコイルスプリング53の個数は、3個以上であり、4個以上が好ましく、6個以上がより好ましい。
【0042】
このように揺動機構5eにより、成形型に冷却プレート5bを接触させることによる光学素材の固化は、その素材のガラス転移点以下、より好ましくは歪点以下に冷却すればよく、十分に冷却されると光学素材の光学素子形状は安定し、変形が抑制される。ここで冷却とは、光学素子形状を安定して付与できるように光学素材を固化させる温度をいい、その温度は、プレスプレートよりも50〜150℃程度低いだけで、依然として高温であるため、この冷却プレート5bにもその内部にヒータ5aが埋め込まれている。
【0043】
また、これら各ステージの上側の加熱プレート3b、プレスプレート4b及び冷却プレート5bは、上記したように断熱板を介してシャフトに固定されており、このシャフトがシリンダーに接続されている。ここでシリンダーは、各プレートを上下動できればよく、例えば、電動サーボシリンダー、油圧シリンダー、電動油圧シリンダー等のシリンダーを使用できる。
【0044】
上記した、加熱プレート3b、プレスプレート4b、冷却プレート5bは、基本的にその成形型との接触面が水平面と平行となっており、特に、プレスプレート4bにおいては、プレスプレート4bの成形型との接触面が傾いていた場合、成形型80の上型及び下型の中心軸が一致しなくなり、このとき製造される光学素子が、その光軸が一致せず不良品となってしまうことがある。したがって、これら各ステージにおけるプレートの管理は厳密に行われる。それでも、なお、各プレート間の傾斜角の相違等により完全に水平面に対する角度を合わせることが困難であり、本発明はこのような問題点を解消するのに効果的である。
【0045】
これらの各ステージにおいて、プレートはステンレス、超硬、合金鋼等の素材の内部にカートリッジヒータを挿入し、固定したものであり、カートリッジヒータを加熱してプレートの温度を上昇させ、所望の温度に維持できる。
【0046】
また、各ステージの断熱板3c,4c,5cは、セラミックス、ステンレス、ダイス鋼、ハイス鋼等の公知の断熱板を用いればよく、硬度が高くプレス成形時の圧力等によっても変形しにくく、ズレを生じることが少ないセラミックスが好ましい。ダイス鋼、ハイス鋼を用いる場合は、表面にCrN、TiN、TiAlNのコーティング処理を施すことが好ましい。
【0047】
揺動機構5eに用いる素材としては、耐熱性のある材料、例えば、ステンレス、超硬、合金鋼等が挙げられる。なお、スプリングコイル53としては、使用により弾性力の減衰が少ないことが求められ、ステンレス、チタン製耐熱合金、Niベースの耐熱合金(例、登録商標:インコネル、登録商標:ハステロイなど)の材料から構成されることが好ましい。
【0048】
以上、説明した加熱ステージ3、プレス成形ステージ4、冷却ステージ5は、それぞれ所定の処理が行われる場(ステージ)を形成し、各ステージによる処理が順次円滑になされるように、成形型80は、搬送手段(図示せず)により所定のタイミングで各ステージに搭載されるように移動させる制御手段によって制御されている。
【0049】
より具体的には、加熱プレート3b、プレスプレート4b、冷却プレート5bによる処理は、成形型80を順次上記の順序で各プレート上へと搬送移動させながら所定の処理を行い、成形型80が次のステージに移動すると、処理の終わったステージは空くため、さらに、そこに別の光学素材を収容した成形型80を搬送し、連続的に複数個の光学素子の成形操作が同時に行える。
【0050】
この処理を行うための上記搬送手段は、図示していないが、例えば、ロボットアーム等により、成形型載置台8から加熱プレート3bへ、加熱プレート3bからプレスプレート4bへ、プレスプレート4bから冷却プレート5bへ、冷却プレート5bから成形型載置台9へ、と移動できればよい。
【0051】
なお、この制御手段は、成形型の移動、加熱・プレス成形・冷却の各ステージにおける上下一対のプレートの温度や、上下移動のタイミング等をも制御し、一連の成形操作を円滑に、かつ、連続的に行えるように制御している。このとき、取入れシャッター及び取出しシャッターの開閉も制御する。また、チャンバー2内の雰囲気が不活性ガスで満たされるように窒素の供給量やタイミング等を制御することが好ましい。
【0052】
すなわち、この光学素子の成形装置1は、1以上のポジションで温度の上げ下げを行いながら所定の処理を行う、成形型の搬送による光学素子の成形装置である。
【0053】
次に、この光学素子の成形装置1を用いた光学素子の成形方法について説明する。
【0054】
まず、取入れ口側の成形型載置台8に成形型80を載置し、この成形型80の内部に光学素材を収容する。取入れシャッター6を開けて取入れ口を開口させ、この成形型80を搬送手段により加熱プレート3b上に搬送する。搬送されると、成形型80の下型は下側の加熱プレート3bに接触するため加熱プレート3bと同じ温度まで昇温される。これと同時に、上型には上方向から上側の加熱プレート3bを接触させて同様に加熱する。
【0055】
このように上型及び下型が加熱されると、その内部に収容されている光学素材も加熱され、この光学素材は屈伏点以上に加熱されると変形が容易となる。一般に、加熱温度は、軟化点まで温度を上げるとレンズ表面が白濁するので屈伏点(At)から軟化点の間の温度に設定する。このとき、昇温速度は5〜150℃/分程度が好ましい。
【0056】
このようにして加熱ステージ3で十分に加熱された成形型80及び光学素材は、搬送手段により、下側のプレスプレート4b上に搬送され載置される。
【0057】
プレスプレート4bも加熱プレート3bと同程度の温度に加熱されており、光学素材が軟化状態を維持している。さらに、上側のプレスプレート4bを下降させてプレスプレート4b間の距離を狭めることにより、上型と下型との距離を狭めて、成形型80の内部に収容された光学素材に圧力をかけて変形できる。
【0058】
このプレス工程では、上記したように成形型80の上下から圧力をかけることで光学素材のプレス成形を行い、これにより光学素材には上型及び下型の光学形成面が転写され、光学素子形状が付与される。
【0059】
また、このプレス工程におけるプレスは、加熱温度が前段の加熱ステージで加熱した温度と同程度の温度であり、プレス時の光学素材にかかる圧力は1〜37.5N/mmが好ましく、例えば、5〜20N/mmが特に好ましい。
【0060】
そして、このようなプレス工程で、押切りが完了した成形型80は、搬送手段によりプレスプレート4bから冷却プレート5bへと搬送される。この搬送手段は、上記した搬送手段と同様のものである。
【0061】
次に、冷却プレート5bにより成形型80を冷却するが、これは、上記加熱工程と同様に、下型は下側の冷却プレート5bで、上型は上側の冷却プレート5bを下降させて接近、接触させることで冷却する。
【0062】
このとき、冷却プレート5bと成形型80の接触面(上型の上面)との傾きの角度、方向が異なっている場合には、コイルスプリング53の弾性力によって安定状態となっている座受部材52に対し、その安定状態を壊すだけの力が外部から加わる。冷却プレート5bのプレス面は、揺動機構5eの作用により成形型80の上面の傾きにならって揺動し、冷却プレート5bの成形型(上型)へ密接させて接触面積を十分に確保し、効率良く冷却できる。
【0063】
さらに、この冷却中に、光学素材の温度がガラス転移点以下になったところで、光学素材に加圧する圧力を変化させることもでき、例えば、光学素材の温度が、ガラス転移点以上のときにはプレス時の圧力と同じ圧力としておき、ガラス転移点よりも低い温度になってからは圧力を高くして、段階的に加圧してもよい。冷却時の光学素材にかかる圧力は1〜37.5N/mmが好ましく、例えば、5〜20N/mmが特に好ましい。
【0064】
ガラス転移点以上の温度において低圧にするのは、肉厚バラツキを抑えるためであり、それ以下の温度域では押込み量がほとんど無いので増圧しても問題ない。すなわち、光学素材が硬化状態に近づくガラス転移点(Tg)付近までは低い圧力で保圧し、ガラス転移点(Tg)付近からそれ以下の温度となり光学素材が固化するまで、より高い圧力をかける。このように冷却工程において圧力を継続してかけることにより光学素子の面形状が安定する。
【0065】
なお、ここで、低い圧力とは2.5N/mm以下、高い圧力とは2.5N/mm超である。また、光学素材が歪点以下となり、固化した後は、さらに20N/mm超となるような高い圧力をかけてもよい。このように段階的に圧力を高めることで光学素子の面ワレが生じる等の不具合が生じることを抑制し、形状精度が向上する。また、固化した後の圧力としては、光学素材にワレが生じる等の不具合が生じない限りはどのような圧力でもよいが、通常、30N/mm程度が上限である。上記では2段階に圧力を増加させていく例を説明したが、それ以上の多段階として増圧してもよい。
【0066】
これにより光学素材を冷却して、固化させる。この冷却は、光学素材のガラス転移点(Tg)以下に冷却させることが好ましく、光学素材の歪点以下の温度にまで冷却させることがより好ましい。このとき、降温速度は5〜150℃/分程度が好ましい。
【0067】
なお、上記した加熱工程及び冷却工程は、それぞれ段階的に温度を変化させることが好ましく、加熱工程において1以上の加熱ステージを設けることにより、段階的に光学素材の温度を上昇させて、プレス成形ステージの直前の加熱ステージで、成形温度にまで加熱する。また、冷却工程においても1以上の冷却ステージを設けることにより、段階的に光学素材の温度を下降させて、200℃以下の温度とする。このように、加熱及び冷却を段階的に行うことで、光学素材の急激な温度変化を抑制し、歪が生じたり、面ワレ等が生じたりする等の光学素子の特性を悪化させないようにできる。ここで面ワレとは、光学素子が成形型から離型する際に、一部だけが先に離型し、その後に残りが離型した場合に、曲率が不連続な光学面が形成されて非球面形状精度が悪化する不良を生じる離型異常のことをいう。
【0068】
このような、加熱工程及び冷却工程を実施するために、それぞれ複数の加熱ステージ及び冷却ステージを用いた光学素子の成形装置の一例を図3に示した。この図3に示した光学素子の成形装置11は、チャンバー12、第1の加熱ステージ13、第2の加熱ステージ14、第3の加熱ステージ15、プレス成形ステージ16、第1の冷却ステージ17、第2の冷却ステージ18、第3の冷却ステージ19を有する装置構成となっており、チャンバー12には光学素子の成形装置1と同様に、成形型80の取入れ口とそれを開閉可能とする取入れシャッター20、取出し口とそれを開閉可能とする取出しシャッター21、それら取入れ口及び取出し口の外側には成形型載置台22及び23が設けられている。
【0069】
この光学素子の成形装置11は、加熱ステージを3つ、冷却ステージを3つ設けて、段階的に加熱及び冷却する以外は、図1の光学素子の成形装置1の構成と同様である。
【0070】
第1の加熱ステージ13では、光学素材をガラス転移点以下、100〜200℃程度低い温度に一旦加熱する予備加熱を行い、第2の加熱ステージ14では ガラス転移点と屈伏点の間の温度にまで、第3の加熱ステージ15ではガラスの屈伏点以上、5〜50℃程度高い温度にまで加熱する。また、プレス成形ステージ16では成形温度を維持しながら、成形型による成形操作を行い光学素子形状を付与し、第1の冷却ステージ17では成形素材のガラス転移点以下、好ましくは歪点以下まで冷却し、第2の冷却ステージ18では、さらに200℃以下の成形型が酸化されない温度にまで冷却し、第3の冷却ステージ19では、室温にまで冷却する。
【0071】
ここで、第3の冷却ステージは、用いるプレートを、他のステージにおけるヒータの代わりに冷却水が循環するように配管を設けた水冷プレートとすることで、効率的に冷却できる。
【0072】
その後、冷却して得られた光学素子は、光学素子形状とするために、余肉部を切削して光学素子形状とし、アニール工程に付して歪み等を除去する等の後処理を施して最終的な製品とされる。
【0073】
図3では、第1〜第3の冷却ステージにおいて揺動機構17e〜19eを設けているが、この揺動機構は、加熱ステージ、プレス成形ステージ、冷却ステージ全てに設けなくてもよく、一部のステージに設けるようにしてもよい。ただし、プレス成形直後の冷却ステージにおいて、光学素材の変形が一番影響するところであるため、第1の冷却ステージには揺動機構を必須の構成とする。
【実施例】
【0074】
以下、本発明を実施例によりさらに詳細に説明する。
【0075】
(実施例1)
図3の光学素子の成形装置11を用いて、光学素子の成形を以下の通り行った。
【0076】
ここで用いた光学素子の成形装置11は、加熱プレート、プレスプレート及び冷却プレートとして、タングステンカーバイド製の100×78×34mmの直方体で内部に1.5kWのカートリッジヒータを3本有するプレートを用い、断熱板として、SUS304製の140×78×10の板状体を2枚重ね合わせたものを用いた。
【0077】
また、上側のプレートを上下移動させるシリンダーは、エアシリンダーを用い、シャフト径40mmのシャフトが上側のプレートと接続、固定されている。チャンバーはSS400製の440×592×240mmの箱状で、このチャンバーの下板としては440×592×20mmのものを用いた。
【0078】
ここで、上側の冷却プレート17b〜19b(断熱板17c〜19cを含む)とシャフト17d〜19dは、それぞれ揺動手段17e〜19eを介して接続されている。揺動手段17e〜19eは、図2の揺動手段5eと同一の構成を有し、シャフト17d〜19dに直接固定されているφ40mm、曲率半径120mmの球面を有し、フランジ状の突起部をφ56.8mmの大きさで設けた、焼き入れを行ったマルテンサイト系ステンレスの球面座と、φ74mm、高さ22mmの中空円柱状で、その上面にはシャフト17d〜19dが通る開口がφ47mmで設けられた焼き入れを行ったマルテンサイト系ステンレスの座受部材と、SUS304のコイルスプリングと、シャフト17d〜19dと上記座受部材の開口とのクリアランスを調整するためにシャフトに設けられた外径がφ46.2mmの環状部材と、で構成されている。
【0079】
座受部材の開口部は、シャフト17d〜19dの各軸に対して径方向360度において最大傾斜角度が0.2度となるようにクリアランスが設けられており、コイルスプリングは、シャフト17d〜19dの外周に沿って、均等に6本設けられている。ここで、コイルスプリングにより球面座と座受部材との間に定常時に生じている弾性力は17.4Nであり、押圧時に生じる弾性力は87Nである。このコイルスプリングが支えているヘッド部分の質量は6kgである。ここで、ヘッド部分は、座受部材とそれに固定されている冷却プレート17b〜19b(断熱板17c〜19cを含む)をいう。
【0080】
また、成形型80は、上型、下型並びに内胴及び外胴を有する胴型で構成され、上型、下型及び内胴はタングステンカーバイドからなる超硬合金製で、外胴はSUSからなり、プレス成形により、直径16mm、中心厚さ1mm、周辺厚さ5mmの凹メニスカス形状の光学素子が得られるものを用いた。
【0081】
この成形型80の内部に直径φ14mm、中心厚み5.4mmの断面楕円状のランタン系の光学素材を収容した。なお、この光学素材の歪点は580℃、ガラス転移点(Tg)は616℃、屈伏点(At)は662℃である。
【0082】
光学素材を収容した成形型80を、搬送手段により第1の加熱プレート13b上に搬送し載置すると同時に上側の第1の加熱プレート13bを下降させて上型に接触させ、成形型80及び光学素材を120秒間加熱し、次いで、第2の加熱プレート14b上に搬送し載置すると同時に上側の第2の加熱プレート14bを下降させて上型に接触させ、成形型80及び光学素材を120秒間加熱し、さらに、第3の加熱プレート上に搬送し載置すると同時に上型の第3の加熱プレート15bを下降させて上型に接触させ、成形型80及び光学素材を120秒間加熱して光学素材を軟化状態とした。なお、第1の加熱プレート13bは500℃、第2の加熱プレート14bは600℃、第3の加熱プレート15bは690℃に設定した。
【0083】
次に、成形型80をプレスプレート16b上に搬送し載置して、上側のプレスプレート16bを下降させ、エアシリンダー16dにより光学素材に8.5N/mmの圧力をかけて、120秒間プレス成形を行った。このとき、プレスプレート16bの温度は690℃であった。
【0084】
プレス後、成形型を第1の冷却プレート17b上に搬送し載置すると同時に上側の冷却プレート17bを下降させて上型に接触させ、エアシリンダー17dにより光学素材に8.5N/mmの圧力をかけて、120秒間冷却し、次いで、成形型を第2の冷却プレート18b上に搬送し載置すると同時に上側の第2の冷却プレート18bを下降させて上型に接触させ、120秒間冷却し、さらに、成形型を第3の冷却プレート19b上に搬送し載置すると同時に上側の第3の冷却プレート19bを下降させて上型に接触させ、120秒間冷却した。このとき、第1の冷却プレート17bは640℃、第2の冷却プレート18bは580℃、第3の冷却プレート19bは20℃(冷却水温度)に設定した。
【0085】
光学素材を室温になるまで冷却し、成形型から取り出し、光学素子を得た。
【0086】
(比較例1)
図3の光学素子の成形装置11の第1〜第3の冷却ステージ17〜19において、揺動機構17e〜19eを設けずに、シャフト17d〜19dに断熱板を介して冷却プレートを固定した装置を用いた以外は実施例1と同様の操作により光学素子を得た。
【0087】
(試験例)
同一の光学素子を製造するための2個の成形型を用いて、連続的に、実施例1及び比較例1の成形操作を同一条件の元に、それぞれ一つの金型につき5ショット成形操作した。得られた10個の光学素子のレンズチルトを調べたところ、表1の結果が得られた。
【0088】
【表1】

【0089】
レンズチルト(min):成形したレンズ(レンズ外周部に平行部を有する)の平行部の厚さを、所定の基準点から円周方向に均等に8ヵ所、マイクロメータにて測定し、基準点を0としたときの各測定箇所の差異を求め、この差異と外径から算出した。
【0090】
実施例1及び比較例1の得られた10個の光学素子のレンズチルト結果よりレンズチルトの値域の幅に着目した。この結果から、本発明の実施例は従来の方法と比較し値域の幅が少なくなり、品質も向上している。
【0091】
以上に示したように、本発明の光学素子の成形装置及び製造方法により、成形装置の熱間状態でのプレス軸平行度の調整が不要となり、生産性の向上と光学素子の変形を抑制し、歩留まりを向上できることがわかった。
【産業上の利用可能性】
【0092】
本発明の光学素子の成形装置は、プレス成形により光学素子を製造する際に使用できる。
【符号の説明】
【0093】
1…光学素子の成形装置、2…チャンバー、3…加熱ステージ、4…プレス成形ステージ、5…冷却ステージ、6…取入れシャッター、7…取出しシャッター、8,9…成形型載置台、80…成形型、3a,4a,5a…ヒータ、3b…加熱プレート、4b…プレスプレート、5b…冷却プレート、3c,4c,5c…断熱板、3d,4d,5d…シャフト、5e…揺動機構、51…球面座、52…座受部材、53…コイルスプリング、54…環状部材

【特許請求の範囲】
【請求項1】
上型と下型の間に光学素材が置かれた成形型を、チャンバー内に設けた加熱、プレス成形及び冷却の各ステージへ順次搬送して光学素子を成形する成形装置であって、
前記成形装置は、前記加熱、プレス成形及び冷却の各ステージにおいて前記成形型を搭載し、搭載された前記成形型に対して、それぞれ加熱、プレス成形及び冷却の各プロセスを行う上下一対の複数組のプレートと、前記加熱、プレス成形及び冷却の各プロセスを制御する制御手段と、を備えるとともに、
前記冷却ステージにおける上側のプレートが、前記成形型との接触面傾きに応じて傾斜可能な揺動機構を有することを特徴とする光学素子の成形装置。
【請求項2】
前記揺動機構が、前記冷却ステージにおける上側のプレートと、該上側のプレートを上下動させるシャフトとの間に設けられている請求項1記載の光学素子の成形装置。
【請求項3】
前記揺動機構が、前記シャフトの下端部に固定された球面座と、定常時は前記球面座の下方に所定の間隔を維持するように、冷却時は前記球面座と接触するように上下動及び揺動可能に前記シャフトに取り付けられた座受部材と、前記球面座と前記座受部材との間に弾性力を生じさせるコイルスプリングと、を有して構成されている請求項1又は2記載の光学素子の成形装置。
【請求項4】
前記コイルスプリングにより生じる定常時の弾性力が4〜30N、冷却時の弾性力が63〜90Nである請求項3記載の光学素子の成形装置。
【請求項5】
前記揺動機構による揺動可能な最大傾斜角度が、シャフト軸の径方向360度において0.5度以下である請求項2乃至4のいずれか1項記載の光学素子の成形装置。
【請求項6】
請求項1乃至5のいずれか1項記載の光学素子の成形装置を用い、前記成形型に光学素材を収容し、前記成形型を加熱して該成形型内の光学素材を軟化させる加熱工程と、軟化した光学素材を、プレス手段を用いて前記成形型により加圧して光学素子形状を付与するプレス工程と、プレス工程後、前記成形型を冷却し、光学素子形状を付与した光学素材を固化させる冷却工程と、を有する光学素子の成形方法であって、
前記冷却工程において、前記冷却ステージにおける上側のプレートを、前記成形型に接近させ前記成形型の接触面の傾きに応じて揺動させつつ前記成形型に密接させて前記成形型を冷却することを特徴とする光学素子の成形方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−66989(P2012−66989A)
【公開日】平成24年4月5日(2012.4.5)
【国際特許分類】
【出願番号】特願2010−232387(P2010−232387)
【出願日】平成22年10月15日(2010.10.15)
【出願人】(000000044)旭硝子株式会社 (2,665)