説明

内燃機関の吸気装置

【課題】吸気ダクトの最下部であるインタークーラの底部内に液体を大量に溜め続けることなく、エンジンや吸気ダクトを良好な状態に保つ。
【解決手段】エアクリーナ1を通過したクリーンエアを、オイル貯留部65を経由してスロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62へ導くためのバイパス流路、およびこのバイパス流路においてオイル貯留部65よりも重力方向上方に位置するように設置されたバイパスバルブ14を有するオイル排出機構を設けている。これにより、クーラケース3の底部51からドレーンパイプ11を通ってオイル貯留部65に排出されてオイル貯留部65に溜まったオイルが、バイパスパイプ12を経由してスロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62へ導入される。そして、第2吸気通路62へ導入されたオイルは、エンジンEの各気筒毎の燃焼室内に吸い込まれる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の燃焼室に吸気を供給する吸気通路の最下部に溜まった液体をスロットルバルブよりも下流側の吸気通路へ導入するようにした内燃機関の吸気装置に関するもので、特に過給機で圧縮された吸気を冷却するインタークーラの最下部に溜まった液体をスロットルバルブよりも下流側の吸気通路へ導入するようにした内燃機関の吸気装置に係わる。
【背景技術】
【0002】
[従来の技術]
従来より、ターボチャージャのコンプレッサで圧縮されて高温化した吸気を冷却するインタークーラを備えた内燃機関(エンジン)が公知である。インタークーラは、一対のタンクと、これらのタンク間に設置されるコアとにより構成されたものが一般的である。
また、エンジンには、ターボチャージャのタービンよりも下流側で一端部が開口し、ターボチャージャのコンプレッサよりも上流側で他端部が開口したEGRガス還流路を有し、エンジンの排気ガスの一部であるEGRガスを吸気通路へ還流させる排気ガス循環装置(EGRシステム)が搭載されている。EGRガス還流路には、EGRクーラおよびEGR制御弁が設けられている。
【0003】
この場合、EGRガス還流路を流れるEGRガスは、EGRクーラで熱を奪われて冷却され、EGRガス中の水分が凝縮して凝縮水が発生し、この凝縮水がEGRガス流の勢いでEGRガス還流路から吸気通路へ流れ込む可能性がある。そして、吸気通路内に流れ込んだ凝縮水がインタークーラ内に流入すると、インタークーラの一対のタンクを上下方向の上方側と下方側とにそれぞれ配置した場合、下方側のタンクの底部(凝縮水貯留部内)に液化した凝縮水が溜まって停滞するという問題がある。
なお、EGRシステムが設置されていなくても、インタークーラは、コンプレッサで圧縮された吸気を冷却する熱交換器であるため、インタークーラ内で発生した凝縮水が下方側のタンクの底部(凝縮水貯留部内)に溜まって停滞するという問題がある。
【0004】
また、エンジンには、エンジンのピストンとシリンダとの間の隙間からクランクケース内に吹き抜けるブローバイガスを大気中に放出せずに、パージガスとして吸気通路に戻してエンジンの燃焼室内で再燃焼させるブローバイガス還元装置が搭載されている。
ところで、吸気通路内に導入されるブローバイガスや、ターボチャージャのコンプレッサからインタークーラへ流入する吸気には、エンジンの摺動部を潤滑するエンジンオイルや、ターボチャージャの摺動部を潤滑するオイル(エンジンオイルと兼用)がミスト状に混入している。また、吸気通路内に導入されるEGRガス中に含まれる未燃焼状態の燃料が、吸気通路内においてミスト状に漂っている。
そして、ブローバイガス、EGRガスや吸気が、インタークーラで熱を奪われて冷却され、ブローバイガス、EGRガスや吸気に含まれるオイルミストが液状化してオイルとなる。そして、インタークーラの一対のタンクを上下方向の上方側と下方側とにそれぞれ配置した場合、下方側のタンクの底部(オイル貯留部内)に液化したオイルが凝縮水と同様に溜まって停滞するという問題がある。
【0005】
そこで、インタークーラ内に溜まったオイルを吸気負圧を利用してエンジンの燃焼室に吸い上げ処理するという目的で、インタークーラの最下部に位置するオイル貯留部にドレーンパイプの一端を接続し、ドレーンパイプの他端を吸気絞り弁の下流側に接続した吸気装置が公知である(例えば、特許文献1及び2参照)
特許文献1に記載の吸気装置においては、インタークーラのオイル貯留部内に溜まったオイルを吸気絞り弁の下流側に戻すドレーンパイプを吸気ダクトと並列に配置している。 ドレーンパイプの一端部は、インタークーラの下方側のタンクの底壁を貫通してオイル貯留部内に挿入されている。そして、ドレーンパイプの一端部には、吸気絞り弁が閉じた時に吸気を吸入する吸入口と、吸気絞り弁が閉じた時にオイル貯留部内に蓄積されたオイルを吸入するオイル吸入孔とが形成されている。
【0006】
[従来の技術の不具合]
ところで、特許文献1及び2に記載の吸気装置において、インタークーラ内に溜まったオイルを吸気負圧を利用してエンジンの燃焼室に、任意のタイミングで、最適な流量分だけ吸い上げ処理するという目的で、インタークーラの最下部に位置するオイル貯留部と吸気絞り弁の下流側の吸気通路とを連通するドレーンパイプの途中に、ドレーンパイプから吸気通路へ戻されるオイルの流量を開閉動作により制御する電磁流量制御弁(バイパスバルブ)を設けることが考えられる。
なお、特許文献2に記載の吸気装置には、ドレーンパイプの途中にバルブを設置した構成が開示されている。
【0007】
このような場合、インタークーラ内に溜まったオイルを吸い上げ処理する際に、オイルが電磁流量制御弁内を通過することになる。具体的には、弁体であるバルブとこのバルブが着座可能なバルブシートとの間をオイルが通過することになる。
これにより、バルブ周辺(バルブシートや流路壁面)等にオイルが付着し、バルブ周辺に粘着質を持ったデポジットが堆積する。そして、バルブ周辺にデポジット等の粘着物が付着することによって、バルブの動作応答性の精度を確保することができず、オイルの適量制御を実施することができなくなるという問題がある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−226476号公報
【特許文献2】仏国特許出願公開第2553827号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、吸気ダクト内に液体を大量に溜め続けることなく、内燃機関や吸気ダクトを良好な状態に保つことのできる内燃機関の吸気装置を提供することにある。
また、流量制御弁の動作応答性の精度を長期間保証することのできる内燃機関の吸気装置を提供することにある。
さらに、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を実施することのできる内燃機関の吸気装置を提供することにある。
【課題を解決するための手段】
【0010】
請求項1に記載の発明(内燃機関の吸気装置)は、内燃機関の燃焼室に供給される吸気が流れる吸気ダクトと、この吸気ダクトを流れる吸気の流量を制御する吸気絞り弁と、吸気ダクト内に蓄積された液体を吸気絞り弁よりも空気流方向の下流側に導入して内燃機関の燃焼室に排出する液体排出手段とを備えている。
この吸気装置は、吸気ダクトの重力方向最下部が、吸気絞り弁よりも空気流方向の上流側に位置するように形成れた吸気(ダクト)構造を具備している。
液体排出手段は、吸気ダクトの重力方向最下部から排出された液体を溜める貯留部、吸気絞り弁よりも空気流方向の上流側の吸気通路から貯留部を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ流体を導くためのバイパス流路、およびこのバイパス流路を流れる流体の流量を制御する流量制御弁を備えている。
流量制御弁は、吸気ダクトの重力方向最下部および貯留部よりも重力方向上方に位置するようにバイパス流路に設置されている。
【0011】
請求項1に記載の発明によれば、吸気絞り弁よりも空気流方向の上流側に吸気ダクトの重力方向最下部が位置するように構成される吸気構造を採用しているので、吸気絞り弁よりも空気流方向の上流側の吸気通路内に流入する、あるいは吸気絞り弁よりも空気流方向の上流側の吸気通路内で生成された液体が吸気ダクト(内燃機関の吸気経路)の重力方向最下部に溜まる。
また、吸気ダクトに液体排出手段を設けたことにより、吸気ダクトの重力方向最下部に溜まった(蓄積された)液体を、バイパス流路、吸気絞り弁よりも空気流方向の下流側の吸気通路、内燃機関の燃焼室に排出する液体排出経路が形成される。
吸気絞り弁が閉じられて、流量制御弁が開弁すると、吸気絞り弁よりも空気流方向の下流側の吸気通路からバイパス流路内に吸気負圧が導入される。これにより、吸気ダクトの重力方向最下部に溜まった液体が流体と共に、バイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入される。そして、吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入された液体は、内燃機関の燃焼室に吸い上げられる。
したがって、吸気ダクト内に液体を大量に溜め続けることなく、内燃機関や吸気ダクトを良好な状態に保つことができる。
【0012】
また、吸気絞り弁よりも空気流方向の上流側に吸気ダクトの重力方向最下部が位置するように構成される吸気構造において、吸気ダクトの重力方向最下部および貯留部よりも重力方向上方に位置するようにバイパス流路に流量制御弁を設置することにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に排出する場合であっても、バイパス流路に設置された流量制御弁を液体が通過するのを防止することができる。 これにより、流量制御弁にデポジット等の粘着物が付着し難くなるので、流量制御弁の動作応答性の精度を長期間保証することができる。したがって、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を長期間安定して実施できる。
【0013】
また、吸気絞り弁よりも空気流方向の上流側の吸気通路と吸気絞り弁よりも空気流方向の下流側の吸気通路との圧力差、つまり吸気絞り弁の上下流の圧力差(吸気負圧)を利用して、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に吸い上げる際に、バイパス流路に設置された流量制御弁を制御することで、バイパス流路を流れる流体(貯留部に溜まった液体にエアを混合した流体)の流量が調整される。
これにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体の吸い上げ量を適量制御することができる。したがって、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を長期間安定して実施できる。
【0014】
請求項2に記載の発明によれば、液体排出手段に、吸気ダクトの重力方向最下部と貯留部とを連通する連通部を設けている。この場合、吸気ダクトの重力方向最下部から排出された液体が連通部を経由して貯留部に排出され、貯留部に排出された液体は、貯留部で(一時的に)貯留される。
請求項3に記載の発明によれば、連通部が、吸気ダクトの重力方向最下部と貯留部とを連通する流路を有する連通管を構成している。
液体排出手段に、流路を開閉する流路開閉弁(第1制御弁)を設けている。流路開閉弁として、例えば電磁流路開閉弁を採用しても良い。
ここで、例えば内燃機関の運転停止時には、流路開閉弁を開弁して流路を開放することにより、吸気ダクトの重力方向最下部に溜まった液体を連通管内の流路を経由して貯留部側へ排出(ドレーン)する。
また、例えば内燃機関の稼動(運転)時、流路開閉弁を閉弁して流路を閉鎖することにより、バイパス流路内の液体を吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入する時に、液体が吸気ダクトの重力方向最下部または貯留部側に逆流する不具合を防止する。
【0015】
請求項4に記載の発明によれば、バイパス流路が、貯留部よりも流体流方向の上流側に形成される第1流路、および貯留部よりも流体流方向の下流側に形成される第2流路を有している。
第1流路は、例えば吸気絞り弁よりも空気流方向の上流側の吸気通路から分岐するように形成されている。この第1流路は、吸気絞り弁よりも空気流方向の上流側の吸気通路から流入した流体を貯留部へ導くための流体流路である。
第2流路は、例えば吸気絞り弁よりも空気流方向の下流側の吸気通路に合流するように形成されている。この第2流路は、貯留部に溜まった液体に流体を混合した混合流体を吸気絞り弁よりも空気流方向の下流側の吸気通路へ導くための流体流路である。
【0016】
請求項5に記載の発明によれば、液体排出手段に、バイパス流路の第1流路の開口面積を変更して貯留部に溜まった液体に流体を混合した混合流体の流量を制御する流量制御弁(第2制御弁)を採用している。流量制御弁として、例えば電磁流量制御弁を採用しても良い。
また、吸気絞り弁よりも空気流方向の上流側の吸気通路と吸気絞り弁よりも空気流方向の下流側の吸気通路との圧力差、つまり吸気絞り弁の上下流の圧力差(吸気絞り弁を閉じることで吸気絞り弁よりも空気流方向の下流側の吸気通路に発生する吸気負圧)を利用して、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に吸い上げる際に、バイパス流路に設置された流量制御弁を制御(例えば流量制御弁のバルブ開度(バイパス流路の第1流路開口面積)を内燃機関の燃焼室に一度に大量に液体が流入しないように制御)することで、バイパス流路を流れる流体(貯留部に溜まった液体にエアを混合した混合流体)の流量が調整される。
これにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体の吸い上げ量を適量制御することができる。したがって、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を長期間安定して実施できる。
【0017】
また、吸気絞り弁よりも空気流方向の上流側に吸気ダクトの重力方向最下部が位置するように構成される吸気(ダクト)構造において、吸気ダクトの重力方向最下部および貯留部よりも重力方向上方に位置するようにバイパス流路の第1流路に流量制御弁を設置することにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に排出する場合であっても、バイパス流路に設置された流量制御弁を液体が通過するのを防止することができる。
これにより、流量制御弁の弁体(バルブ)にデポジット等の粘着物が付着し難くなるので、流量制御弁の動作応答性の精度を長期間保証することができる。したがって、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を長期間安定して実施できる。
【0018】
請求項6に記載の発明によれば、液体排出手段に、バイパス流路の第2流路を開閉する流路開閉弁(第3制御弁)を設けている。流路開閉弁として、例えば電磁流路開閉弁を採用しても良い。
この流路開閉弁は、必要に応じて設定される。例えば内燃機関の通常稼動(運転)時におけるバイパス流路の影響を無くしたい場合、あるいは過給機の過給圧で吸気絞り弁よりも空気流方向の下流側の吸気通路から第2流路に吸気が入り込み、バイパス流路内の液体がその吸気に押し出されてバイパス流路の第1流路に設置された流量制御弁を汚損することを防止したい場合に設定される。
【0019】
請求項7に記載の発明によれば、バイパス流路の第1流路の流体流方向の上流端に設けられる導入ポートが、吸気絞り弁よりも空気流方向の上流側の吸気通路で開口している。 請求項8に記載の発明によれば、バイパス流路の第2流路の流体流方向の下流端に設けられる導出ポートが、吸気絞り弁よりも空気流方向の下流側の吸気通路で開口している。 請求項9に記載の発明によれば、過給機で圧縮された吸気を冷却媒体と熱交換させて冷却するコアを有するインタークーラを備えている。
請求項10に記載の発明によれば、インタークーラに、コアを収納するクーラケースを設けている。インタークーラのクーラケースは、オイルミストや凝縮水が液化した液体が溜まる底部を有している。このクーラケースの底部は、吸気ダクトの重力方向最下部を構成している。
【0020】
請求項9及び10に記載の発明によれば、クーラケースの底部に溜まった(蓄積された)液体を、連通部、バイパス流路(貯留部、第2流路)、吸気絞り弁よりも空気流方向の下流側の吸気通路、内燃機関の燃焼室に排出する液体排出経路が形成される。
流量制御弁が開弁すると、吸気絞り弁よりも空気流方向の上流側の吸気通路から第1流路に流入する流体が、インタークーラのクーラケースの底部から貯留部に排出された液体を押し出しながら、また、混ざりながら第2流路を通って吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入される。これにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に排出することができる。したがって、インタークーラのクーラケース内に液体を大量に溜め続けることなく、内燃機関やインタークーラを良好な状態に保つことができる。例えばインタークーラの腐食等を抑えることができる。
【0021】
請求項11に記載の発明によれば、コアを収納するクーラケースを有するインタークーラと、吸気絞り弁を収容するスロットルボディを有するスロットル装置と、インタークーラのクーラケースとスロットル装置のスロットルボディとを連通するエアコネクタとを備えている。
そして、エアコネクタは、オイルミストや凝縮水が液化した液体が溜まる底部を有している。このエアコネクタの底部は、吸気ダクトの重力方向最下部を構成している。
これによって、エアコネクタの底部に溜まった(蓄積された)液体を、連通部、バイパス流路(貯留部、第2流路)を経由して、吸気絞り弁よりも空気流方向の下流側の吸気通路に導入した後、内燃機関の燃焼室に排出する液体排出経路が形成される。
流量制御弁が開弁すると、吸気絞り弁よりも空気流方向の上流側の吸気通路から第1流路に流入する流体が、エアコネクタの底部から貯留部に排出された液体を押し出しながら、また、混ざりながら第2流路を通って吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入される。これにより、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に排出することができる。したがって、インタークーラのクーラケース内に液体を大量に溜め続けることなく、内燃機関やインタークーラを良好な状態に保つことができる。例えばインタークーラの腐食等を抑えることができる。
【0022】
請求項12に記載の発明によれば、バイパス流路の流体流方向の上流端に設けられる導入ポートが、インタークーラのコアよりも空気流方向の上流側の吸気通路で開口している。
請求項13に記載の発明によれば、バイパス流路の流体流方向の上流端に設けられる導入ポートが、インタークーラのコアよりも空気流方向の下流側の吸気通路で開口している。
なお、連通部の液体導入ポート(クーラケースのドレーンポート)が、インタークーラのコアよりも空気流方向の下流側の吸気通路で開口するように構成しても良い。
これらの場合、バイパスバルブ等の流量制御弁やドレーンバルブ等の流路開閉弁の熱害を考慮すると、過給機の過給圧で高温に曝される懸念がない。したがって、インタークーラのコアよりも空気流方向の下流側にバイパス流路(の第1流路)や連通部を接続することで、バイパスバルブ等の流量制御弁やドレーンバルブ等の流路開閉弁の信頼性を向上することができる。
【図面の簡単な説明】
【0023】
【図1】エンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した模式図である(実施例1)。
【図2】エンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した模式図である(実施例2)。
【図3】エンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した模式図である(実施例3)。
【発明を実施するための形態】
【0024】
以下、本発明の実施の形態を、図面に基づいて詳細に説明する。
本発明は、吸気ダクト内に液体を大量に溜め続けることなく、内燃機関や吸気ダクトを良好な状態に保つという目的を、吸気ダクトの重力方向最下部および貯留部に溜まった液体を、吸気絞り弁の上下流の圧力差(吸気負圧)を利用し、バイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に吸い上げることで実現した。
また、流量制御弁の動作応答性の精度を長期間保証するという目的を、吸気ダクトの重力方向最下部および貯留部に溜まった液体を、バイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に排出する場合であっても、流量制御弁を液体が通過するのを防止することで実現した。
さらに、内燃機関に支障がないように、吸気ダクト内から内燃機関の燃焼室に排出される液体の適量制御を実施するという目的を、吸気ダクトの重力方向最下部および貯留部に溜まった液体をバイパス流路を経由して吸気絞り弁よりも空気流方向の下流側の吸気通路へ導入して内燃機関の燃焼室に吸い上げる際に、バイパス流路に設置された流量制御弁のバルブ開度を内燃機関の燃焼室に一度に大量に液体が流入しないように制御することで実現した。
【実施例1】
【0025】
[実施例1の構成]
図1は本発明の実施例1を示したもので、図1はエンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した図である。
【0026】
本実施例の内燃機関の制御装置(エンジン制御システム)は、内燃機関(エンジンE)の排気ガス(排気)の圧力を利用して、エアクリーナ1を通過した吸気を過給(圧縮)するターボチャージャを有する過給システム(内燃機関の過給装置)と、エンジンEの排気ガスの一部であるEGRガスを排気通路から吸気通路へ再循環(還流)させる排気ガス循環装置(EGRシステム)と、エンジンEの各気筒毎の燃焼室に供給される吸入空気(吸気)の流量を調整する電子スロットル装置と、エンジンEのクランクケース内に充満しているブローバイガスを再燃焼させるブローバイガス還元装置と、エンジンEの吸気ダクト内に蓄積された液体をエンジンEの各気筒毎の燃焼室内に排出するオイル排出機構とを備え、エンジンEの各気筒毎の燃焼室に供給する吸入空気(吸気)を制御する内燃機関の吸気制御装置(内燃機関の吸気装置)として使用されるものである。
【0027】
本実施例のエンジンEは、複数の気筒(シリンダボア)を有する多気筒ディーゼルエンジン(直列4気筒エンジン)が採用されている。但し、多気筒ディーゼルエンジンに限定されず、多気筒ガソリンエンジンを適用しても構わない。
このエンジンEは、自動車等の車両のエンジンルーム内にターボチャージャおよびEGRシステムと共に設置されている。また、エンジンEの各気筒(シリンダヘッド)には、各気筒毎の燃焼室内に燃料を噴射供給するインジェクタが搭載されている。
エンジンEは、各気筒毎の燃焼室に吸い込まれる吸気が流れる吸気通路を形成する吸気管(吸気ダクト)と、各気筒毎の燃焼室より流出する排気ガスを外部に排出するための排気通路を形成する排気管(排気ダクト)とを備えている。
【0028】
吸気ダクトには、エアクリーナ1、ターボチャージャのコンプレッサ、インタークーラ(クーラコア2、クーラケース3、クーラカバー4)、エアコネクタ5、電子スロットル装置(スロットルボディ6、スロットルバルブ7、アクチュエータ)、およびインテークマニホールド9等が設置されている。なお、インテークマニホールド9は、エンジンEの各気筒毎の吸気ポートに接続されている。
排気ダクトには、エキゾーストマニホールド、ターボチャージャのタービン、排気浄化装置(触媒10)、排気絞り弁およびマフラ等が設置されている。なお、エキゾーストマニホールドは、エンジンEの各気筒毎の排気ポートに接続されている。
【0029】
ここで、オイル排出機構は、吸気ダクトの重力方向最下部であるクーラケース3の底部から例えばオイルミストや凝縮水等が液化した液体(以下オイルと言う)を排出(ドレーン)するドレーンパイプ11、およびこのドレーンパイプ11を介してクーラケース3の底部から排出されたオイルが溜まるバイパスパイプ12等を備えている。
ドレーンパイプ11には、電磁流路開閉弁であるドレーンバルブ13が設置されている。
バイパスパイプ12には、電磁流量制御弁であるバイパスバルブ14、および電磁流路開閉弁であるスルーバルブ15が設置されている。
これらのドレーンバルブ13、バイパスバルブ14およびスルーバルブ15は、エンジン制御ユニット(電子制御装置:以下ECUと言う)16によって電子制御されるバルブ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
なお、オイル排出機構の詳細は、後述する。
【0030】
ここで、内燃機関の吸気装置は、ターボチャージャ(過給機)のコンプレッサを通過した吸気を冷却するインタークーラを備えている。このインタークーラは、クーラコア2、クーラケース3およびクーラカバー4等を備えている。
クーラコア2は、ターボチャージャのコンプレッサで圧縮されて高温化された吸気を冷却媒体である冷却水と熱交換させて冷却する複数の扁平チューブにより構成されている。 クーラケース3は、クーラカバー4との間に形成されるコア収納空間内にクーラコア2を収納している。
なお、インタークーラの詳細は、後述する。
【0031】
ここで、電子スロットル装置は、円筒状のエアコネクタ5を介して、クーラケース3の出口端部に接続されるスロットルボディ6と、このスロットルボディ6の内部(スロットルボア)に回転自在に収容されたスロットルバルブ7とを備えている。この電子スロットル装置は、スロットルバルブ7の開閉動作により吸気の流量を調整する空気流量調整装置である。
スロットルバルブ7を駆動するアクチュエータとして、スロットルバルブ7の回転軸であるシャフトを電動モータの駆動力を利用して回転駆動する電動アクチュエータが採用されている。
アクチュエータは、電力の供給を受けるとスロットルバルブ7を駆動する動力を発生する電動モータ、およびこの電動モータの回転を減速してシャフトに伝達する減速機構等により構成される。
なお、電動モータは、ECU16によって電子制御されるモータ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
【0032】
ターボチャージャは、エンジンEの吸気ダクトの途中に設けられたコンプレッサと、エンジンEの排気ダクトの途中に設けられたタービンとを備え、吸気ダクトを流れる吸気をコンプレッサで圧縮し、圧縮された圧縮空気(吸気)をエンジンEの各気筒毎の燃焼室へ送り込むターボ過給機である。
このターボチャージャは、タービンのホイール(タービンホイール17)が排気ガスにより回転駆動されると、タービンホイール17に連結したタービンシャフト18およびコンプレッサのインペラ(コンプレッサインペラ19)も回転し、このコンプレッサインペラ19が吸気を圧縮する。
【0033】
タービンは、タービンホイール17およびタービンハウジングを備えている。このタービンホイール17は、円周方向に複数のタービンブレード(翼)を有し、エンジンEの排気圧力により回転駆動される。そして、タービンホイール17は、タービンシャフト18を介して、コンプレッサのコンプレッサインペラ19と直接的に連結してコンプレッサインペラ19を回転駆動(直結駆動)する。
タービンハウジングの中央部には、タービンホイール17を回転自在に収容するホイール収容空間が形成されている。
タービンハウジングには、エキゾーストマニホールドの合流部からタービン入口流路に流入した排気ガスを、ホイール収容空間(タービンホイール17)を迂回して、タービン出口流路に導くためのバイパス流路(ウェイストゲート流路)21が形成されている。
また、タービンハウジングには、ウェイストゲート流路21を流れる排気ガスの流量を開閉動作により制御するウェイストゲートバルブ22が搭載されている。
【0034】
コンプレッサは、コンプレッサインペラ19およびコンプレッサハウジングを備えている。このコンプレッサインペラ19は、円周方向に複数のインペラブレード(翼)を有し、タービンシャフト18を介して、タービンホイール17に連結して回転駆動(直結駆動)される。
コンプレッサハウジングの中央部には、コンプレッサインペラ19を回転自在に収容するインペラ収容空間が形成されている。
コンプレッサハウジングには、エアクリーナ1またはEGRシステムからコンプレッサ入口流路に流入した吸気またはEGRガスを、インペラ収容空間(コンプレッサインペラ19)を迂回して、コンプレッサ出口流路に導くためのバイパス流路23が形成されている。
また、コンプレッサハウジングには、バイパス流路23を流れる吸気またはEGRガスの流量を開閉動作により制御するバイパスバルブ24が搭載されている。
【0035】
エンジンEのエンジン本体(シリンダブロックおよびシリンダヘッド)には、吸気バルブによって開閉される吸気ポート、および排気バルブによって開閉される排気ポートが形成されている。
エンジンEの各シリンダ25の内部には、例えば4気筒エンジンでは気筒配列方向に4つの燃焼室(シリンダボア)がそれぞれ形成されている。各シリンダボア内には、連接棒を介して、クランクシャフトに連結されたピストン26がその往復摺動方向に摺動自在にそれぞれ支持されている。
【0036】
ターボチャージャのタービンまたは排気浄化装置(触媒10)よりも下流側の排気ダクトと、ターボチャージャのコンプレッサよりも上流側の吸気ダクトとは、EGRガスを排気通路から吸気通路へ再循環(還流)させるための排気ガス還流路(EGRガス流路31)を形成する排気ガス還流管(EGRガスパイプ)により接続されている。
EGRガスパイプは、上流端部が排気ダクトのEGRガス分岐部に接続され、また、下流端部が吸気ダクトのEGRガス合流部に接続されている。
EGRガスパイプには、EGRガス流路31を流れるEGRガスの流量を開閉動作により制御するためのEGRガス流量制御弁(排気ガス制御弁)、およびEGRガスを冷却水と熱交換させて冷却するEGRクーラ32が設置されている。
なお、以上のように、排気通路からのEGRガスの取り出し口がターボチャージャのタービンよりも下流側にあるEGRシステムを「低圧ループ(LPL)EGRシステム」と呼ぶ。
【0037】
また、EGRガス流量制御弁のバルブ本体(弁体)であるEGRバルブ33を駆動するアクチュエータとして、EGRバルブ33の回転軸であるシャフト34を電動モータの駆動力を利用して回転駆動する電動アクチュエータ35が採用されている。
電動アクチュエータ35は、電力の供給を受けるとEGRバルブ33を駆動する動力を発生する電動モータ、およびこの電動モータの回転を減速してEGRバルブ33のシャフト34に伝達する減速機構等により構成される。
なお、電動モータは、ECU16によって電子制御されるモータ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
【0038】
ここで、排気絞り弁のバルブボディ内には、排気通路からEGRガス流路31へ流入するEGRガスの量を制御可能なバルブ本体(弁体)であるバルブ36が収容されている。このバルブ36を駆動するアクチュエータとして、バルブ36の回転軸であるシャフトを電動モータの駆動力を利用して回転駆動する電動アクチュエータ37が採用されている。 電動アクチュエータ37は、電力の供給を受けるとバルブ36を駆動する動力を発生する電動モータ、およびこの電動モータの回転を減速してバルブ36のシャフトに伝達する減速機構等により構成される。
なお、電動モータは、ECU16によって電子制御されるモータ駆動回路を介して、自動車等の車両に搭載されたバッテリに電気的に接続されている。
【0039】
ブローバイガス還元装置は、エンジンEのシリンダ25とピストン26との間の隙間からクランクケース内に吹き抜けるブローバイガス(PCVガス)を抜き取り、エンジンEの吸気ダクト(例えばサージタンクまたはインテークマニホールド)に戻してエンジンEの各気筒毎の燃焼室に吸い込ませて各気筒毎の燃焼室内で再燃焼させると共に、エアクリーナ1で濾過された清浄な外気(外気中に含まれる不純物が取り除かれたクリーンエア)をクランクケースの内部(クランク室)に導入してクランクケース内を換気するPCV装置のことである。
【0040】
ブローバイガス還元装置は、エンジンEの内部、特にクランクケースの内部(クランク室)とエアクリーナホースとを接続する新規導入ホース(PCVホース)と、エンジンEの内部、特にシリンダヘッドカバーの内部とサージタンクまたはインテークマニホールド9の内部とを接続するブローバイガス還流ホースとを備えている。
エアクリーナホースは、エアクリーナ1の出口端部と吸気ダクトのEGRガス合流部の吸気ポートとを接続している。
【0041】
PCVホースの内部には、エアクリーナ1で濾過された清浄な外気(クリーンエア)をエンジンEの内部、特にクランクケースの内部(クランク室)に導くための新規導入通路(換気通路)が形成されている。
ブローバイガス還流ホースの内部には、エンジンEのクランクケースの内部(クランク室)のブローバイガスをエンジンEの吸気ダクト(例えばサージタンクまたはインテークマニホールド9)に戻すためのブローバイガス還流通路が形成されている。
なお、ブローバイガス還流通路には、エンジンEの運転状態に応じて開閉されるPCVバルブが設置されている。
【0042】
ここで、インテークマニホールド9は、複数のパーツ(分割成形体)により構成されている。なお、複数のパーツは、全て合成樹脂によって形成されている。
インテークマニホールド9は、スロットルボディ6より流入した吸気の圧力変動を低減するサージタンク41、このサージタンク41の複数(各気筒毎)の空気出口にそれぞれ接続する複数(各気筒毎)の吸気分岐管42、複数の吸気分岐管42にオイルを分配供給するためのオイル分配管43等を有するサージタンク一体型のインテークマニホールドである。
【0043】
サージタンク41は、吸気を一旦貯蔵すると共に、エンジンEの各気筒毎の燃焼室および吸気ポートに接続する複数の吸気分岐管42に吸気を分配供給するためのサージタンク室44を形成するサージタンク本体、およびスロットルボディ6からサージタンク本体に吸気を導入する吸気導入管(スロットル連結管)等を有している。
吸気導入管の上流端部は、エアコネクタ5を介して、スロットルボディ6の下流端部が気密的に結合されている。この吸気導入管の内部には、スロットルボディ6から吸気が導入される連通流路が形成されている。
なお、本実施例のサージタンク41には、サージタンク室44に隣設してガス導入室が形成されている。このガス導入室には、ブローバイガスまたは燃料蒸発ガス等のガス導入パイプ(図示せず)が接続されている。
インテークマニホールド9のサージタンク41には、インタークーラのクーラケース3を結合するクーラ取付座(図示せず)が一体成形で形成されている。
【0044】
複数の吸気分岐管42は、エンジンEの各気筒毎の燃焼室および吸気ポートに独立して接続されて、サージタンク41のサージタンク室44より分岐している。各吸気分岐管42の内部には、サージタンク室44からエンジンEの各気筒毎の吸気ポートへ吸気を導くための吸気分岐流路45が形成されている。
オイル分配管43は、インテークマニホールド9の重力方向最上部において複数の吸気分岐管42の重力方向上方に一体成形で形成されている。
オイル分配管43の内部には、トーナメント分岐形状のオイル分配流路が形成されている。このオイル分配管43の上流部には、オイル排出機構と接続するオイル導入管(図示せず)が設けられている。なお、オイル導入管には、オイル排出機構からオイルが導入されるバイパスパイプ12の下流端部が接続されている。
【0045】
[実施例1の特徴]
次に、本実施例の吸気ダクト、インタークーラおよびオイル排出機構の詳細を図1に基づいて簡単に説明する。
【0046】
本実施例の内燃機関(エンジンE)は、吸気ダクトの重力方向最下部が、スロットルバルブ7よりも吸気流方向の上流側に位置するように形成された吸気ダクト構造を備えている。
本実施例の吸気ダクトは、エアクリーナ1のエアクリーナケース、ターボチャージャのコンプレッサハウジング、インタークーラのクーラケース3、クーラカバー4、エアコネクタ5、電子スロットル装置のスロットルボディ6およびインテークマニホールド9等により構成されている。
吸気ダクトの内部には、エンジンEの各気筒毎の燃焼室に吸い込まれる吸気が流れる吸気通路が形成されている。
【0047】
ここで、インタークーラは、ターボチャージャのコンプレッサインペラ19で圧縮されて高圧になり吸気温度が上昇した圧縮空気(吸気)を冷却する空気冷却器である。このインタークーラは、エンジンEのウォータジャケットから流入する冷却水とコンプレッサインペラ19で圧縮された吸気とを熱交換させて吸気を冷却する水冷式の熱交換器である。 インタークーラは、内部に吸気流路が形成される扁平チューブを、その板厚方向に複数積層して構成される積層型のクーラコア2、コンプレッサインペラ19で圧縮された吸気が流入するクーラケース3、およびこのクーラケース3の開口部を閉塞するクーラカバー4等により構成されている。
クーラコア2は、複数の扁平チューブの周囲を巡るように、冷却水が循環する複数の冷却水流路(図示せず)を有している。
【0048】
クーラケース3は、有底筒状に形成されて、インテークマニホールド9のクーラ取付座に一体成形で形成されている。このクーラケース3の重力方向最下部には、オイルミストや凝縮水が液化した液体であるオイルが溜まるオイルパンを形成する底部51が設けられている。そして、クーラケース3の底部51は、吸気ダクトの重力方向最下部を構成している。
クーラケース3の底部51には、クーラケース3の重力方向最下部で開口したドレーンポート52が形成されている。このドレーンポート52は、クーラコア2よりも吸気流方向の下流側で、クーラケース3の吸気導入ポートよりも重力方向下方側に位置している。
【0049】
クーラケース3は、外部(コンプレッサハウジングに接続するインテークパイプ)からクーラコア2の内部へ吸気を導入する吸気導入管54、内部にコア収納空間を形成するケース本体56、およびこのケース本体56の内部(コア収納空間)から外部(エアコネクタ5)へ吸気を導出する吸気導出管等を有している。
吸気導入管54の上流側端部には、インテークパイプに結合する結合部が一体的に設けられている。この吸気導入管54の内部には、インテークパイプの出口端部に接続する吸気導入ポートを介して、コンプレッサハウジングからコア収納空間へ吸気を導入するためのクーラ入口流路57が形成されている。
吸気導出管の下流側端部には、エアコネクタ5を結合する結合部が一体的に設けられている。この吸気導出管の内部には、コア収納空間からエアコネクタ5を介してスロットルボディ6へ吸気を導出するためのクーラ出口流路58が形成されている。
【0050】
ケース本体56は、吸気導入管54の下流端部と吸気導出管の上流端部との間に設けられている。このケース本体56の内部のうち、クーラコア2よりも吸気流方向の上流側の空間は、複数の扁平チューブの入口部に連通する入口タンク56aを構成する。また、ケース本体56の内部のうち、クーラコア2よりも吸気流方向の下流側の空間は、複数の扁平チューブの出口部に連通する出口タンク56bを構成する。これにより、クーラコア2は、一対の入口、出口タンク56a、56b間に設けられる。また、ケース本体56は、重力方向上方部分が開口しており、その上部開口部は、クーラカバー4によって気密的に塞がれている。
【0051】
クーラカバー4には、冷却水流入口および冷却水流出口が形成されている。そして、クーラカバー4の冷却水流入口には、複数の冷却水流路内に冷却水を流入させるための冷却水導入パイプ(図示せず)が接続されている。また、クーラカバー4の冷却水流出口には、複数の冷却水流路内から冷却水を流出させるための冷却水導出パイプ(図示せず)が接続されている。
なお、ケース本体56に上部開口部が設けられていない場合には、クーラカバー4を廃止しても良い。
【0052】
エアコネクタ5は、インタークーラのクーラケース3の吸気導出管の下流端部と電子スロットル装置のスロットルボディ6の上流端部とを連通する吸気流路59を形成する円筒状のインテークダクトである。
なお、本実施例では、クーラケース3のケース本体56および吸気導出管の重力方向最下部に、吸気ダクトの重力方向最下部を構成する底部51を設けているが、エアコネクタ5の重力方向最下部に、吸気ダクトの重力方向最下部を構成する底部(エアコネクタ5の底部)を設けても良い。
また、クーラケース3のケース本体56の出口部にエアコネクタ5の上流端部が直接接続されている場合には、クーラケース3のケース本体56およびエアコネクタ5の重力方向最下部に、吸気ダクトの重力方向最下部を構成する底部51が設けられる。
【0053】
ここで、吸気ダクトは、エアクリーナ1からエンジンEの各気筒毎の吸気ポートおよび燃焼室へ流れる吸気の流れ方向(吸気流方向)に直列に接続される第1、第2吸気通路61、62を備えている。2つの第1、第2吸気通路61、62は、これらの中間に形成される中継吸気通路(エアコネクタ5内の吸気流路63、スロットルボディ6内のスロットルボア(吸気流路)64)を介して互いに連通している。
第1吸気通路61は、スロットルボア64内に回転自在(開閉自在)に収容されるスロットルバルブ7よりも吸気流方向の上流側に形成されている。
第2吸気通路62は、スロットルバルブ7よりも吸気流方向の下流側に形成されている。
【0054】
次に、本実施例のオイル排出機構の詳細を図1に基づいて簡単に説明する。
オイル排出機構は、ドレーンパイプ11、バイパスパイプ12、ドレーンバルブ13、バイパスバルブ14およびスルーバルブ15を備えている。
ドレーンパイプ11は、インタークーラのクーラケース3の底部51とバイパスパイプ12のオイル貯留部65とを連通する連通部(連通管)である。このドレーンパイプ11は、クーラケース3の底部51の外面から、クーラケース3の底部51よりも重力方向下方に真っ直ぐに延長されている。また、ドレーンパイプ11の内部には、クーラケース3の底部51からバイパスパイプ12のオイル貯留部65へオイルをドレーンするドレーン流路(連通路、排出流路)66が形成されている。
なお、ドレーンパイプ11のオイル(液体)導入ポートである、クーラケース3のドレーンポート52は、インタークーラのクーラコア2よりも吸気流方向の下流側、つまりクーラケース3のケース本体56の出口タンク56bで開口している。
【0055】
バイパスパイプ12は、吸気ダクトの重力方向最下部に位置するクーラケース3の底部51、クーラケース3の重力方向最下部で開口したドレーンポート52からドレーンパイプ11を経由してドレーン(排出)されたオイルを一時的に溜めるオイル貯留部65を有している。このバイパスパイプ12の内部には、エアクリーナ1を通過したクリーンエアを、スロットルバルブ7よりも吸気流方向の上流側の吸気通路(第1吸気通路61)からオイル貯留部65を経由してスロットルバルブ7よりも吸気流方向の下流側の吸気通路(第2吸気通路62)へ導くためのバイパス流路が形成されている。
オイル貯留部65は、ドレーンパイプ11との接続部を有している。このオイル貯留部65の接続部には、ドレーンパイプ11内のドレーン流路66に連通する連通部(連通ポート67)が開口している。
【0056】
バイパスパイプ12は、オイル貯留部65の接続部よりも図示左側(空気流方向の上流側)の第1配管、およびオイル貯留部65の接続部よりも図示右側(空気流方向の下流側)の第2配管を備えている。なお、オイル貯留部65の接続部は、バイパスパイプ12を構成する2つの第1、第2配管の中間に位置する中間部である。
第1配管は、途中で直角に屈曲している。この第1配管の内部には、外部(吸気ダクトの第1吸気通路61)からエアクリーナ1を通過した清浄なクリーンエア(空気)が導入(供給)される第1流路71が形成されている。
第2配管は、途中で直角に屈曲している。この第2配管の内部には、オイル貯留部65よりも空気流方向の下流側に形成される第2流路72が形成されている。
したがって、バイパス流路は、第1流路71、オイル貯留部65および第2流路72を含んでいる。
【0057】
第1流路71は、クリーンエアが第1吸気通路61から分岐するように形成されている。この第1流路71は、オイル貯留部65よりも空気流方向の上流側に形成される上流側流路である。
第1流路71の上流端部には、クーラケース3の吸気導入管54のクーラ入口流路57、つまり第1吸気通路61で開口した導入ポート(第1ポート)73が設けられている。 導入ポート73は、第1吸気通路61の中で、インタークーラのクーラコア2よりも吸気流方向の上流側で開口している。この導入ポート73は、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65よりも重力方向上方で開口(第1吸気通路61のうちのクーラ入口流路57と連通)するように、つまり第1吸気通路61のクーラ入口流路57から分岐するように設けられている。
【0058】
第2流路72は、オイル貯留部65に溜まったオイルにクリーンエアを混合した混合流体を第2吸気通路62へ導くオイル導出流路である。この第2流路72は、混合流体が、第2吸気通路62に合流するように形成されている。また、第2流路72は、オイル貯留部65よりも流体流方向の下流側に形成される下流側流路である。
第2流路72の下流端部には、インテークマニホールド9の吸気分岐流路45、つまり第2吸気通路62のうちの吸気分岐流路45で開口したオイル導出ポート(第2ポート)74が設けられている。
オイル導出ポート74は、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65よりも重力方向上方で開口(第2吸気通路62のうちの吸気分岐流路45と連通)するように、つまり第2吸気通路62の吸気分岐流路45に合流するように設けられている。
【0059】
ドレーンバルブ13は、ドレーンパイプ11内に形成されるドレーン流路66を開閉する常開型の電磁流路開閉弁(バキューム・スイッチング・バルブ:VSV)である。このドレーンバルブ13は、ドレーン流路66を開閉する弁体(バルブ)、このバルブが着座可能なバルブシート、バルブをバルブシートに押し付けるスプリング、およびバルブをバルブシートより離脱させる電磁アクチュエータを有している。
バルブシートには、ドレーン流路66の一部を構成する弁孔が形成されている。
電磁アクチュエータは、通電されると磁力を発生するコイルを有するソレノイド等により構成されている。
ドレーンバルブ13の弁体であるバルブは、ソレノイドのコイルが通電(オン)されると、バルブシートに着座して弁孔(ドレーン流路66)を閉鎖(全閉)する。また、ドレーンバルブ13のバルブは、ソレノイドのコイルへの通電が停止(オフ)されると、バルブシートより離脱して弁孔(ドレーン流路66)を開放(全開)する。
【0060】
バイパスバルブ14は、バイパスパイプ12内に形成されるオイル貯留部65、第1、第2流路71、72を流れる混合流体の流量を制御する流量制御弁であり、バイパスパイプ12のオイル貯留部65から第2流路72を経由してスロットルバルブ7の下流側(第2吸気通路62)へオイルを含む混合流体を導入(オイルパージ)してエンジンEの各気筒毎の燃焼室へ排出する常開型の電磁流量制御弁(ソレノイドバルブ、オイルパージデューティVSV)である。
このバイパスバルブ14は、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65よりも重力方向上方に位置するように、バイパスパイプ12の第1流路71の導入ポート73側に設置されている。
【0061】
バイパスバルブ14は、第1流路71を開閉する弁体(バルブ)、このバルブが着座可能なバルブシート、バルブをバルブシートに押し付けるスプリング、およびバルブをバルブシートより離脱させる電磁アクチュエータを有している。
バルブシートには、第1流路71の一部を構成する弁孔が形成されている。
電磁アクチュエータは、通電されると磁力を発生するコイルを有するソレノイド等により構成されている。
バイパスバルブ14の弁体であるバルブは、ソレノイドのコイルへの通電が停止(オフ)されると、バルブシートより離脱して弁孔(第1流路71)を開放(全開)する。
ここで、バイパスバルブ14は、ソレノイドのコイルを通電する時間を制御することで、オイルを含む混合流体をバイパスパイプ12のオイル貯留部65から第2吸気通路62へ導入するオイルパージ流量を制御している。なお、バイパスバルブ14のソレノイドのコイルへの電力の供給量(電圧値または電流値)を制御することで、第1流路71の流路開口面積を変更して、オイルパージ流量を制御しても良い。
【0062】
スルーバルブ15は、バイパスパイプ12内に形成される第2流路72を開閉する常開型の電磁流路開閉弁(バキューム・スイッチング・バルブ:VSV)である。このスルーバルブ15は、第2流路72を開閉する弁体(バルブ)、このバルブが着座可能なバルブシート、バルブをバルブシートに押し付けるスプリング、およびバルブをバルブシートより離脱させる電磁アクチュエータを有している。
バルブシートには、第2流路72の一部を構成する弁孔が形成されている。
電磁アクチュエータは、通電されると磁力を発生するコイルを有するソレノイド等により構成されている。
スルーバルブ15の弁体であるバルブは、ソレノイドのコイルが通電(オン)されると、バルブシートに着座して弁孔(第2流路72)を閉鎖(全閉)する。また、スルーバルブ15のバルブは、ソレノイドのコイルへの通電が停止(オフ)されると、バルブシートより離脱して弁孔(第2流路72)を開放(全開)する。
【0063】
ここで、ドレーンバルブ13、バイパスバルブ14およびスルーバルブ15は、バルブ駆動回路を介して、ECU16によって電子制御されるように構成されている。
ECU16は、制御処理や演算処理を行うCPU、制御プログラムまたは制御ロジックや各種データを保存する記憶装置(RAM、ROM等のメモリ)、タイマー等の機能を含んで構成される周知の構造のマイクロコンピュータが設けられている。このECU16は、エアフロメータ、クランク角度センサ、アクセル開度センサ、スロットル開度センサ、EGRVセンサ、吸気温センサ、冷却温センサおよび排気ガスセンサ(空燃比センサ78、酸素濃度センサ79)等の各種センサからのセンサ出力信号が、A/D変換回路によってA/D変換された後に、マイクロコンピュータに入力されるように構成されている。
【0064】
ECU16のマイクロコンピュータは、スロットル開度センサより出力される電気信号(スロットル開度信号)に基づいて、スロットルバルブ7のバルブ開度に相当するスロットル開度を計測(算出)し、この算出したスロットル開度を各種エンジン制御(例えばPCVバルブの開度制御等)に使用する。
ここで、ECU16のマイクロコンピュータは、バイパスバルブ14のコイルを通電する時間(オン時間とオフ時間との比:デューティ比)を制御することで、オイルを含む混合流体をバイパスパイプ12のオイル貯留部65から第2吸気通路62へ導入するオイルパージ流量が制御される。
【0065】
[実施例1の制御方法]
次に、本実施例のエンジン制御システムに組み込まれるオイル排出機構の制御方法を図1に基づいて簡単に説明する。
【0066】
先ず、イグニッションスイッチがオン(IG・ON)されると、エアフロメータ、クランク角度センサ、アクセル開度センサ、スロットル開度センサ、EGRVセンサ、吸気温センサ、冷却温センサおよび排気ガスセンサ(空燃比センサ78、酸素濃度センサ79)等の各種センサからのセンサ出力信号が、ECU16のマイクロコンピュータに、例えば所定のサンプリング周期毎に繰り返し読み込まれる。
ECU16のマイクロコンピュータは、イグニッションスイッチがオフ(IG・OFF)されると、ドレーンバルブ13のコイル、バイパスバルブ14のコイルおよびスルーバルブ15のコイルを全てOFFすることで、ドレーンバルブ13を全開(OPEN)し、バイパスバルブ14を全開(OPEN)し、スルーバルブ15を全開(OPEN)する。これにより、エンジンEの停止中に、クーラケース3の底部51からバイパスパイプ12のオイル貯留部65へオイルをドレーンすることができる。
【0067】
ECU16のマイクロコンピュータは、エンジンEの通常運転時に、所定のオイル吸上げ条件が成立(所定時間が経過しているか否か、スロットル開度が所定値以下であるか否か等)していない場合、イグニッションスイッチがオン(IG・ON)されると、ドレーンバルブ13のコイル、バイパスバルブ14のコイルおよびスルーバルブ15のコイルを全てONすることで、ドレーンバルブ13を全閉(CLOSE)し、バイパスバルブ14を全閉(CLOSE)し、スルーバルブ15を全閉(CLOSE)する。これにより、エンジンEの通常運転中には、バイパスパイプ12のオイル貯留部65にオイルを封じ込めることができる。
【0068】
ECU16のマイクロコンピュータは、エンジンEの通常運転時に、所定のオイル吸上げ条件が成立した場合、例えばエンジン始動後所定時間が経過し、且つスロットル開度が所定値以下に閉じられた場合、ドレーンバルブ13のコイルをONし、バイパスバルブ14のコイルをデューティ(DUTY)制御し、スルーバルブ15のコイルをOFFすることで、ドレーンバルブ13を全閉(CLOSE)し、バイパスバルブ14のコイルをDUTY制御し、スルーバルブ15を全開(OPEN)する。これにより、バイパスパイプ12のオイル貯留部65に溜まったオイルの吸い上げが行われる。
【0069】
具体的には、スロットルバルブ7の上流側の第1吸気通路61とスロットルバルブ7の下流側の第2吸気通路62との圧力差、つまりスロットルバルブ7の上下流の圧力差(吸気負圧)を利用して、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65に溜まったオイルをバイパスパイプ12を経由して第2吸気通路62へ導入してエンジンEの各気筒毎の燃焼室に吸い上げる場合には、バイパスバルブ14のコイルをDUTY制御する。
このとき、バイパスバルブ14のコイルを通電(オン)する時間(オン時間とオフ時間との比:デューティ比)が、例えばスロットル開度やバイパスパイプ12のオイル貯留部65内の貯留量(例えばエンジンEの運転継続時間や自動車の連続走行距離)に基づいて制御されるため、バイパスパイプ12のオイル貯留部65から第2吸気通路62へ導入する、オイルを含む混合流体のオイルパージ流量が制御される。
【0070】
これにより、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65に溜まったオイルの吸い上げ量を適量制御することができる。したがって、エンジンEに支障がないように、吸気ダクト内からエンジンEの各気筒毎の燃焼室に排出されるオイルの適量制御を長期間安定して実施できる。
何らかの要因で、例えば自動車等の車両が坂道を走行することで、吸気ダクトの最下部がエンジンEの吸気ポートよりも重力方向の上方側に位置して、ターボチャージャの潤滑油や凝縮水等のオイルが大量に一度にエンジンEの燃焼室に吸い上げられると、エンジンEの燃焼状態が悪化したり、白煙が発生したり、エミッションが低下したりする不具合が発生するが、上述したように、エンジンEの燃焼室内に吸い上げられるオイルパージ流量を適量制御することで、そのような不具合の発生を防止することができる。
【0071】
[実施例1の作用]
次に、本実施例の内燃機関の吸気制御装置の作動を図1に基づいて簡単に説明する。
ECU16は、イグニッションスイッチがオン(IG・ON)されると、エンジンEの運転が開始される。
ここで、ドライバーがアクセルペダルを踏み込むと、アクセル開度センサより出力されたアクセル開度信号がECU16に入力される。そして、ECU16によってスロットルバルブ7が所定のスロットル開度(回転角度)となるようにアクチュエータ(電動モータ)8への電力の供給が成されて、電動モータのシャフトが回転する。
そして、電動モータのシャフトが回転することにより、スロットルバルブ7のシャフトにトルクが伝達される。これにより、スロットルバルブ7が開弁作動方向または閉弁作動方向に駆動される。
そして、エンジンEの特定気筒が排気行程から、吸気バルブが開弁し、ピストン26が下降する吸気行程に移行すると、ピストン26の下降に従って当該気筒の燃焼室内の負圧(大気圧よりも低い圧力)が大きくなり、吸気バルブが開弁している吸気ポートから吸気が吸い込まれる。
【0072】
一方、ECU16は、イグニッションスイッチがオン(IG・ON)されると、先ずドレーンバルブ13、バイパスバルブ14およびスルーバルブ15を全て閉弁状態とする。 また、ECU16は、エンジンEの通常運転中に、所定のオイル吸い上げ条件(例えばスロットルバルブ7が所定のスロットル開度以下に閉じる等)が成立した段階で、ドレーンバルブ13の閉弁状態を継続し、バイパスバルブ14の開弁状態をDUTY制御し、スルーバルブ15を開弁状態とする。
これにより、エンジンEの吸気負圧が、バイパスパイプ12内のバイパス流路を経由してスロットルバルブ7よりも吸気流方向の上流側の第1吸気通路61である、クーラケース3のクーラ入口流路57で開口した導入ポート73に到達し、エアクリーナ1を通過したクリーンエアが導入ポート73からバイパスパイプ12内のバイパス流路(第1流路71)に吸い込まれる。
このとき、バイパスパイプ12内のバイパス流路には、導入ポート73から、スロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62である、インテークマニホールド9のオイル分配流路または吸気分岐流路45へ向かう空気流が生じる。
【0073】
このような空気流が生じると、バイパスパイプ12内のバイパス流路中のオイル貯留部65に溜まっているオイルが、エアクリーナ1を通過したクリーンエアによって第2吸気通路62側へ押し出されて、あるいはクリーンエアと混ざり合って第2吸気通路62に導かれる。
したがって、エンジンEの吸気負圧を利用して、オイル貯留部65に溜まっているオイルをパージオイルとしてスロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62へパージさせることができる。
第2吸気通路62内に導入されたパージオイルは、インテークマニホールド9のオイル分配流路または吸気分岐流路45、吸気バルブが開弁している吸気ポートを経由して、エンジンEの燃焼室内に吸い込まれる。
【0074】
[実施例1の効果]
以上のように、本実施例のエンジンEは、スロットルバルブ7の上流側に、吸気ダクトの最下部であるクーラケース3の底部51が位置するように構成される吸気ダクト構造を採用している。
これにより、スロットルバルブ7の上流側の第1吸気通路61、つまりクーラケース3の外部(コンプレッサハウジング、エアコネクタ5、スロットルボディ6)からクーラケース3のクーラ入口流路57やクーラ出口流路58に流入する、あるいはクーラケース3内で生成されたオイルがクーラケース3の底部51に溜まる。
また、吸気ダクトにスロットルバルブ7を迂回(バイパス)するようにオイル排出機構を設けたことにより、クーラケース3の底部51に溜まった(蓄積された)オイルを、ドレーンパイプ11内のドレーン流路66、バイパスパイプ12内のオイル貯留部65、第2流路72、インテークマニホールド9の第2吸気通路62を経由して、エンジンEの各気筒毎の燃焼室に排出するオイル排出経路が形成される。
【0075】
スロットルバルブ7が閉じられて、バイパスバルブ14がECU16によるDUTY制御により開口面積が変更されると、エアクリーナ1を通過し、低圧ループEGRシステムとの合流部を経由して、ターボチャージャのコンプレッサより吐出されたクリーンエア(またはクリーンエアとEGRガスとの混合ガス)が、スロットルバルブ7よりも吸気流方向の上流側の第1吸気通路61である、クーラケース3のクーラ入口流路57で開口した導入ポート73からバイパスパイプ12内のバイパス流路(第1流路71)に吸い込まれる。
そして、第1流路71に吸い込まれたエアは、バイパスパイプ12内のバイパス流路(オイル貯留部65)を経由して、バイパスパイプ12内のバイパス流路(第2流路72)へ導かれる。
このとき、エアは、オイル貯留部65を通過する際に、クーラケース3の底部51からドレーンパイプ11を通ってオイル貯留部65に排出されて、オイル貯留部65に一時的に溜まったオイルを押し出しながら、また、オイルと混ざりながら、第2流路72へ導かれる。
【0076】
そして、第2流路72へ導かれたオイルにエアを混合した混合流体は、オイル導出ポート74から、スロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62である、インテークマニホールド9のオイル分配流路または吸気分岐流路45へ導入される。
そして、第2吸気通路62に導入された混合流体は、吸気負圧によってエンジンEの各気筒毎の燃焼室内に吸い込まれる。
これにより、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65に溜まったオイルを、バイパスパイプ12、インテークマニホールド9の第2吸気通路62を経由してエンジンEの各気筒毎の燃焼室内に排出することができる。
【0077】
すなわち、スロットルバルブ7が閉じられて、バイパスバルブ14がDUTY制御により開口面積が変更されると、第2吸気通路62からバイパスパイプ12のバイパス流路(第2流路72)内に吸気負圧が導入される。これにより、クーラケース3の底部51に溜まったオイルを、バイパスパイプ12を経由してスロットルバルブ7の下流側の第2吸気通路62へ導入してエンジンEの各気筒毎の燃焼室に吸い上げられる。
したがって、吸気ダクトの最下部であるクーラケース3の底部51内にオイルを大量に溜め続けることなく、エンジンE、吸気ダクトやインタークーラを良好な状態に保つことができる。
何らかの要因で、例えば自動車等の車両が坂道を走行することで、吸気ダクトの最下部がエンジンEの吸気ポートよりも重力方向の上方側に位置して、ターボチャージャの潤滑油や凝縮水等の液体が大量に一度にエンジンEの燃焼室に吸い上げられると、エンジンEの燃焼状態が悪化したり、白煙が発生したり、エミッションが低下したりする不具合が発生するが、そのような不具合の発生を防止することができる。
また、インタークーラのクーラコア2の腐食等を抑えることができる。
【0078】
また、オイル排出機構のドレーンパイプ11の途中に、クーラケース3の底部51とバイパスパイプ12のオイル貯留部65とを連通する連通路であるドレーン流路66を開閉するドレーンバルブ13を設けている。
このドレーンバルブ13は、イグニッションスイッチがオフ(IG・OFF)されると、ソレノイドのコイルがOFFされてドレーン流路66を全開(OPEN)し、また、イグニッションスイッチがオン(IG・ON)されると、ソレノイドのコイルがONされてドレーン流路66を全閉(CLOSE)するように開閉動作(ON−OFF動作)する。 ここで、エンジンEの運転停止時には、ドレーン流路66を開放することにより、クーラケース3の底部51に溜まったオイルをバイパスパイプ12のオイル貯留部65側へ排出(ドレーン)する。つまりエンジンEの通常運転中にクーラケース3の底部51に溜まったオイルは、エンジンEの運転停止中にバイパスパイプ12のオイル貯留部65へドレーンされる。
【0079】
また、エンジンEの稼動(通常運転)時には、ドレーン流路66を閉鎖することにより、バイパスパイプ12内のオイルを第2吸気通路62へ導入する時にオイルがクーラケース3の底部51側に逆流する不具合を防止できる。
なお、オイルミストが液化したオイルを積極的に通過させるドレーンバルブ13は、デポジット堆積等の粘着によってドレーンバルブ13のコイルへの制御信号に対するバルブの動作応答性の精度を長期間保証することが困難となる可能性がある。
そこで、ドレーンバルブ13は、上述したように、ソレノイドのコイルをOFFすることによりドレーン流路66を全開(開放)し、ソレノイドのコイルをONすることによりドレーン流路66を全閉(閉鎖)するON−OFF制御を実施することが望ましい。
【0080】
また、オイル排出機構のバイパスパイプ12のクーラケース3の吸気導入管54側に、吸気ダクトの第1吸気通路61、つまりクーラケース3の吸気導入管54のクーラ入口流路57と、バイパスパイプ12のオイル貯留部65とを連通する第1流路71を開閉するバイパスバルブ14を設けている。
また、スロットルバルブ7の上流側に、吸気ダクトの最下部であるクーラケース3の底部51が位置するように構成される吸気ダクト構造において、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65よりも重力方向上方に位置するように、バイパスパイプ12の第1流路71の導入ポート73側にバイパスバルブ14が設置されている。つまりバイパスバルブ14は、オイルが自身の内部を通過する環境下、あるいはオイル貯留部65に蓄積されるオイルに浸漬される環境下に設置されていない。
これによって、クーラケース3の底部51およびバイパスパイプ12のオイル貯留部65に溜まったオイルをバイパスパイプ12を経由して第2吸気通路62へ導入してエンジンEの各気筒毎の燃焼室に排出する場合であっても、バイパスパイプ12に設置されたバイパスバルブ14をオイルが通過するのを防止することができる。
【0081】
これにより、バイパスバルブ14にデポジット等の粘着物が付着し難くなるので、バイパスバルブ14のコイルへの制御信号に対するバルブの動作応答性の精度を長期間保証することができる。したがって、エンジンEに支障がないように、吸気ダクトの最下部であるクーラケース3の底部51内からエンジンEの各気筒毎の燃焼室に排出されるオイルの適量制御を長期間安定して実施できる。
また、オイルの流量制御を高い精度で行うバイパスバルブ14は、オイルミストが液化したオイル環境にならない構成であるので、上述したように、バイパスバルブ14のコイルのON/OFF時間比を制御するDUTY制御を実施することが望ましい。
【0082】
また、オイル排出機構のバイパスパイプ12のインテークマニホールド9側に、バイパスパイプ12のオイル貯留部65と、吸気ダクトの第2吸気通路62、つまりインテークマニホールド9の吸気分岐流路45とを連通する第2流路72を開閉するスルーバルブ15を設けている。
このスルーバルブ15は、イグニッションスイッチがオフ(IG・OFF)されると、ソレノイドのコイルがOFFされて第2流路72を全開(OPEN)し、また、イグニッションスイッチがオン(IG・ON)されると、ソレノイドのコイルがONされて第2流路72を全閉(CLOSE)するように開閉動作(ON−OFF動作)する。また、オイル吸上げ条件が成立したら、ソレノイドのコイルをOFFして第2流路72を全開(OPEN)して、吸気負圧を利用したオイルの吸い上げが実施される。
【0083】
ここで、例えばエンジンEの通常稼動(運転)時のバイパスパイプ12の影響を無くしたい場合、あるいはターボチャージャの過給圧で第2吸気通路62から第2流路72にクリーンエアが入り込み、バイパスパイプ12のオイル貯留部65内のオイルがそのクリーンエアに押し出されて第1流路71に設置されたバイパスバルブ14を汚損することを防止した場合にスルーバルブ15が設定される。
なお、オイルミストが液化したオイルを積極的に通過させるスルーバルブ15は、デポジット堆積等の粘着によってスルーバルブ15のコイルへの制御信号に対するスルーバルブ15のバルブの動作応答性の精度を長期間保証することが困難となる可能性がある。
【0084】
そこで、スルーバルブ15は、上述したように、ソレノイドのコイルをOFFすることにより第1流路71を全開(開放)し、ソレノイドのコイルをONすることにより第1流路71を全閉(閉鎖)するON−OFF制御を実施することが望ましい。
以上のように、各バルブ13〜15の役割を分担することで、成立させる。つまり各バルブ13〜15へのデポジット等の粘着物の付着を抑制しながら、吸気負圧を利用してオイルを吸い上げる処理を成立させる。
【実施例2】
【0085】
図2は本発明の実施例2を示したもので、エンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した図である。
本実施例のオイル排出機構のバイパスパイプ12には、スルーバルブ15が設定されていない。
その他の構成は、実施例1と同様である。
【実施例3】
【0086】
図3は本発明の実施例3を示したもので、エンジン制御システム(エンジンの吸気ダクト内に蓄積されるオイルの吸い上げ構造)を示した図である。
【0087】
本実施例のオイル排出機構は、ドレーンパイプ11、バイパスパイプ12、ドレーンバルブ13、バイパスバルブ14およびスルーバルブ15を備えている。
ドレーンパイプ11は、実施例1及び2と同様にして、インタークーラのクーラケース3の底部51とバイパスパイプ12のオイル貯留部65とを連通する連通管である。
ドレーンパイプ11の内部には、クーラケース3の底部51からバイパスパイプ12のオイル貯留部65へオイルをドレーンするドレーン流路(連通路、排出流路)66が形成されている。
【0088】
バイパスパイプ12は、実施例1と同様にして、クーラケース3の底部51からドレーンパイプ11内のドレーン流路66を経由してドレーンされたオイルを一時的に溜めるオイル貯留部65を有している。このバイパスパイプ12の内部には、エアクリーナ1を通過したクリーンエアを、スロットルバルブ7よりも吸気流方向の上流側の第1吸気通路61からオイル貯留部65を経由してスロットルバルブ7よりも吸気流方向の下流側の第2吸気通路62へ導くためのバイパス流路が形成されている。
【0089】
バイパスパイプ12は、第1流路71の空気流方向の上流端部に設けられる導入ポート73が、インタークーラのクーラコア2よりも吸気流方向の下流側の第1吸気通路61、つまりクーラケース3のケース本体56の出口タンク56bで開口している。
また、ドレーンパイプ11のオイル導入ポートである、クーラケース3のドレーンポート52は、インタークーラのクーラコア2よりも吸気流方向の下流側、つまりクーラケース3のケース本体56の出口タンク56bで開口している。
【0090】
以上のように構成した場合、インタークーラのクーラコア2よりも吸気流方向の下流側でドレーンパイプ11のドレーンポート52や、バイパスパイプ12の導入ポート73を開口しているので、ドレーンバルブ13やバイパスバルブ14の熱害を考慮すると、ターボチャージャの過給圧で高温に曝される懸念がない。したがって、インタークーラのクーラコア2よりも吸気流方向の下流側にバイパスパイプ12の第1流路71の導入ポート73やドレーンパイプ11のドレーンポート52を接続することで、ドレーンバルブ13やバイパスバルブ14の動作信頼性および耐久性を向上することができる。
【0091】
[変形例]
本実施例では、インタークーラのクーラケース3の底部(クーラケース3の重力方向最下部)51を、吸気ダクトの重力方向(自動車等の車両上下方向)最下部に適用しているが、吸気ダクトの重力方向(自動車等の車両上下方向)最下部を、ターボチャージャのコンプレッサハウジングの底部(コンプレッサハウジングの重力方向最下部)、エアコネクタ5の底部(エアコネクタ5の重力方向最下部)、スロットルボディ6の底部(スロットルボディ6の重力方向最下部)、インテークマニホールド9のサージタンク41の底部(サージタンク41の重力方向最下部)に適用しても良い。
【0092】
また、自動車等の車両に搭載される内燃機関(例えば発電機、圧縮機、送風機等の駆動源または車両走行用エンジン)として、多気筒ディーゼルエンジンだけでなく、多気筒ガソリンエンジンを用いても良い。また、内燃機関(エンジンE)として、多気筒エンジンだけでなく、単気筒エンジンを用いても良い。
本実施例では、ドレーンバルブ13またはスルーバルブ15として電磁流路開閉弁を適用しているが、ドレーンバルブ13またはスルーバルブ15として電磁流量制御弁を適用しても良い。
【0093】
本実施例では、連通部として、インタークーラのクーラケース3の底部(吸気ダクトの重力方向における最下部(最下点))51とバイパスパイプ12のオイル貯留部65とを連通するドレーンパイプ(連通管)11を適用しているが、連通部として、インタークーラのクーラケース3の底部(吸気ダクトの重力方向における最下部(最下点))51とバイパスパイプ12のオイル貯留部65とを直接連通する連通ポートを適用しても良い。
また、吸気ダクトの重力方向における最下部よりも重力方向下方に、内部に貯留部を形成する凹部を設けても良い。
なお、貯留部に溜まる液体、また、吸気負圧を利用して貯留部から内燃機関(エンジン)の燃焼室内に吸い込まれる液体としては、EGRガス等の排気ガス中の水分が凝縮、液化した凝縮水、ターボチャージャからの潤滑油、ブローバイガス還元装置からのオイルミストが凝縮、液化したオイル、蒸発燃料処理装置からのパージガス中の水分が凝縮、液化した凝縮水や液体燃料等が考えられる。
【0094】
本実施例では、スロットルバルブ(吸気絞り弁)7よりも吸気流方向の上流側の吸気通路からバイパス流路を経由して吸気絞り弁よりも吸気流方向の下流側の吸気通路へ導かれるエアとして、エアクリーナ1を通過し、低圧ループEGRシステムとの合流部を経由して、ターボチャージャのコンプレッサより吐出されたクリーンエア(またはクリーンエアとEGRガスとの混合ガス)を用いているが、エアクリーナ1を通過し、低圧ループEGRシステムとの合流部を迂回して(あるいは低圧ループEGRシステムを廃止して)、ターボチャージャのコンプレッサより吐出されたクリーンエアを用いても良い。
また、ターボチャージャのタービンまたは排気浄化装置(触媒10)よりも吸気流方向の下流側の排気通路から吸気通路へEGRガスを取り込む低圧ループEGRシステムの代わりに、ターボチャージャのタービンよりも吸気流方向の上流側の排気通路から吸気通路へEGRガスを取り込む高圧ループEGRシステムを採用しても良い。
なお、過給機として、ターボチャージャを用いたが、スーパーチャージャや、電動コンプレッサを用いても良い。また、吸気ダクトに過給機が設置されていなくても良い。
【符号の説明】
【0095】
E エンジン(内燃機関)
1 エアクリーナ
2 インタークーラのクーラコア
3 インタークーラのクーラケース
4 インタークーラのクーラカバー
5 エアコネクタ
6 スロットルボディ
7 スロットルバルブ(吸気絞り弁の弁体)
9 インテークマニホールド
11 ドレーンパイプ(オイル排出機構、連通部、連通管)
12 バイパスパイプ(オイル排出機構、バイパス配管)
13 ドレーンバルブ(オイル排出機構、電磁流路開閉弁、第1制御弁)
14 バイパスバルブ(オイル排出機構、電磁流量制御弁、第2制御弁)
15 スルーバルブ(オイル排出機構、電磁流路開閉弁、第3制御弁)
45 インテークマニホールドの吸気分岐流路(吸気絞り弁よりも空気流方向の下流側の吸気通路)
51 クーラケースの底部(吸気ダクトの重力方向最下部)
57 クーラケースのクーラ入口流路(吸気絞り弁よりも空気流方向の上流側の吸気通路)
61 第1吸気通路(吸気絞り弁よりも空気流方向の上流側の吸気通路)
62 第2吸気通路(吸気絞り弁よりも空気流方向の下流側の吸気通路)
65 オイル貯留部(バイパス流路)
66 ドレーン流路(連通路、排出流路)
71 第1流路(バイパス流路)
72 第2流路(バイパス流路)
73 導入ポート
74 オイル導出ポート
56b クーラケースの出口タンク(吸気絞り弁よりも空気流方向の上流側の吸気通路)

【特許請求の範囲】
【請求項1】
(a)内燃機関の燃焼室に供給される吸気が流れる吸気ダクトと、
(b)この吸気ダクトを流れる吸気の流量を制御する吸気絞り弁と、
(c)前記吸気ダクト内に蓄積された液体を前記吸気絞り弁よりも空気流方向の下流側に導入して前記内燃機関の燃焼室に排出する液体排出手段と
を備え、
前記吸気ダクトの重力方向最下部が、前記吸気絞り弁よりも空気流方向の上流側に位置するように形成された吸気構造を具備した内燃機関の吸気装置において、
前記液体排出手段は、前記吸気ダクトの重力方向最下部から排出された液体を溜める貯留部、
前記吸気絞り弁よりも空気流方向の上流側の吸気通路から前記貯留部を経由して前記吸気絞り弁よりも空気流方向の下流側の吸気通路へ流体を導くためのバイパス流路、
およびこのバイパス流路を流れる流体の流量を制御する流量制御弁を有し、
前記流量制御弁は、前記吸気ダクトの重力方向最下部および前記貯留部よりも重力方向上方に位置するように前記バイパス流路に設置されていることを特徴とする内燃機関の吸気装置。
【請求項2】
請求項1に記載の内燃機関の吸気装置において、
前記液体排出手段は、前記吸気ダクトの重力方向最下部と前記貯留部とを連通する連通部を有していることを特徴とする内燃機関の吸気装置。
【請求項3】
請求項2に記載の内燃機関の吸気装置において、
前記連通部は、前記吸気ダクトの重力方向最下部と前記貯留部とを連通する流路を有する連通管であり、
前記液体排出手段は、前記流路を開閉する流路開閉弁を有していることを特徴とする内燃機関の吸気装置。
【請求項4】
請求項1ないし請求項3のうちのいずれか1つに記載の内燃機関の吸気装置において、 前記バイパス流路は、前記貯留部よりも空気流方向の上流側に形成されて、前記吸気絞り弁よりも空気流方向の上流側の吸気通路から流入した流体を前記貯留部へ導くための第1流路、および前記貯留部よりも空気流方向の下流側に形成されて、前記貯留部に溜まった液体に流体を混合した混合流体を前記吸気絞り弁よりも空気流方向の下流側の吸気通路へ導くための第2流路を有していることを特徴とする内燃機関の吸気装置。
【請求項5】
請求項4に記載の内燃機関の吸気装置において、
前記流量制御弁は、前記第1流路の開口面積を変更して前記貯留部に溜まった液体に流体を混合した混合流体の流量を制御することを特徴とする内燃機関の吸気装置。
【請求項6】
請求項4または請求項5に記載の内燃機関の吸気装置において、
前記液体排出手段は、前記第2流路を開閉する流路開閉弁を有していることを特徴とする内燃機関の吸気装置。
【請求項7】
請求項4ないし請求項6のうちのいずれか1つに記載の内燃機関の吸気装置において、 前記第1流路は、前記吸気絞り弁よりも空気流方向の上流側の吸気通路で開口した導入ポートを有していることを特徴とする内燃機関の吸気装置。
【請求項8】
請求項4ないし請求項7のうちのいずれか1つに記載の内燃機関の吸気装置において、 前記第2流路は、前記吸気絞り弁よりも空気流方向の下流側の吸気通路で開口した導出ポートを有していることを特徴とする内燃機関の吸気装置。
【請求項9】
請求項1ないし請求項8のうちのいずれか1つに記載の内燃機関の吸気装置において、 過給機で圧縮された吸気を冷却媒体と熱交換させて冷却するコアを有するインタークーラを備えたことを特徴とする内燃機関の吸気装置。
【請求項10】
請求項9に記載の内燃機関の吸気装置において、
前記インタークーラは、前記コアを収納するクーラケースを有し、
前記クーラケースは、オイルミストや凝縮水が液化した液体が溜まる底部を有し、
前記クーラケースの底部は、前記吸気ダクトの重力方向最下部を構成していることを特徴とする内燃機関の吸気装置。
【請求項11】
請求項1ないし請求項10のうちのいずれか1つに記載の内燃機関の吸気装置において、
過給機で圧縮された吸気を冷却媒体と熱交換させて冷却するコア、およびこのコアを収納するクーラケースを有するインタークーラと、
前記吸気絞り弁を収容するスロットルボディを有するスロットル装置と、
前記クーラケースと前記スロットルボディとを連通するエアコネクタと
を備え、
前記エアコネクタは、オイルミストや凝縮水が液化した液体が溜まる底部を有し、
前記エアコネクタの底部は、前記吸気ダクトの重力方向最下部を構成していることを特徴とする内燃機関の吸気装置。
【請求項12】
請求項10または請求項11に記載の内燃機関の吸気装置において、
前記バイパス流路は、前記コアよりも空気流方向の上流側の吸気通路で開口した導入ポートを有していることを特徴とする内燃機関の吸気装置。
【請求項13】
請求項10または請求項11に記載の内燃機関の吸気装置において、
前記バイパス流路は、前記コアよりも空気流方向の下流側の吸気通路で開口した導入ポートを有していることを特徴とする内燃機関の吸気装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−2406(P2013−2406A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−136059(P2011−136059)
【出願日】平成23年6月20日(2011.6.20)
【出願人】(000004260)株式会社デンソー (27,639)