説明

再生粒子凝集体

【課題】製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子凝集体とする。
【解決手段】古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とする原料10を、脱水、乾燥、燃焼及び粉砕して得られる再生粒子凝集体であって、燃焼温度500〜650℃で燃焼物の未燃率が2〜20質量となるように乾燥及び酸化燃焼する第1燃焼工程14と、燃焼温度550〜750℃、燃焼時間10〜60分で再度燃焼する第2燃焼工程32とを含む、少なくとも2段階の燃焼工程を経て得られ、下記硬質物質の合計含有量が2.0質量%以下で、かつ白色度が70%以上である。硬質物質:Ca2Al2SiO7、CaAl2Si28

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、脱墨フロスを主原料として得られる再生粒子凝集体に関するものである。
【背景技術】
【0002】
紙パルプ工場の各種工程から排出される製紙スラッジは、無機充填剤及び無機顔料粒子をかなりの割合で含み、これらの製紙スラッジは、回収され、流動床炉、多段燃焼炉やストーカー炉などの焼却炉で製紙スラッジ中の有機物を燃焼して製紙スラッジの減容化を図るとともに、エネルギーとして回収されている。
しかしながら、製紙スラッジには、多量の無機物が含有されているため、燃焼しても多量の焼却灰(無機物)が残り、減容化にも限度がある。そこで、この焼却灰をセメント原料の助剤として活用することや、土壌改良剤として活用すること等の努力もなされている。しかし、これらセメント原料や土壌改良剤の助剤としての焼却灰の使用量はわずかなものであり、結局、大部分の焼却灰は埋立て処分されているのが実情である。
そこで、焼却によって熱エネルギーとして回収するだけでなく、製紙スラッジ中の無機物を製紙用填料、顔料、プラスチック用充填剤等として再利用することは、製紙業界において古紙利用率の向上とともに環境問題に関わる重要な改善課題である。
しかしながら、製紙スラッジの焼却灰には燃焼されずに残った有機物がカーボンとして含まれるため白色度が低く、あるいは、無機物の焼結が進み、粒子径が不揃いで大きくなっており、そのままの状態では製紙用の填料や塗工用顔料、プラスチック用の充填剤等として使用するのに適さない。
【0003】
そこで、特許文献1は焼却灰を再燃焼し、白色度を向上させてから使用する方法を開示している。
しかしながら、特許文献1の焼却灰を再燃焼する方法の場合、未燃焼カーボンを完全に燃焼させるため再燃焼温度を500〜900℃に設定する必要があり、焼却灰の白色度は50%程度にまでしか向上せず、製紙用の填料や塗工用顔料として使用するに適するものとはならないことが知見された。また、再燃焼温度を900℃超に設定すると、焼却灰(無機物)が焼結、溶融し、極めて硬くなることが知見された。また、再焼却灰を填料として使用すると、この再焼却灰は非常に硬い性質をもつため、抄紙ワイヤーの摩耗進行が早く、抄紙ワイヤーの寿命が非常に短くなるため、実操業には使用できるものではなかった。また、この再焼却灰を塗工用顔料として使用すると、再焼却灰が非常に硬い性質であるため、摩耗による塗工設備の毀損が生じると共に、カレンダー処理を行ってもその塗工層表面の平滑性が劣るという問題が生じる。
この点、再焼却灰を粉砕し、その粒子径を小さくして、摩耗の低減、平滑性の向上を図ることも考えられるが、内添填料として使用する場合には、抄紙時における歩留りが低いものになり、焼却灰自体がきわめて硬いため、粉砕のためのエネルギーコストが極めて高いものとなる。
【0004】
特許文献2では、製紙スラッジを、酸素含有ガスを注入した反応器内に供給し、250〜300℃、3000psig程度の加温加圧下で0.25〜5時間酸化して、製紙スラッジ中の無機物を製紙用の顔料として再生化する方法が提案されている。
しかし、この方法は、製紙スラッジを液相のままで湿式空気酸化処理によるものであるため、有機物除去が十分でなく、また、得られた顔料の白色度が低く、粒子径も不揃いで、製紙用の填料や顔料として使用するには不適であり、しかも反応操作が複雑でコストが高いという問題がある。
【0005】
一方、特許文献3には、製紙スラッジをいぶし焼きしてPS炭とした後、さらにこれを内熱キルン炉で焼却して製紙用原料となる白土を生成させる方法が提案されている。しかし、この方法は製紙スラッジをいぶし焼きするため、製紙スラッジからエネルギーを有効に取り出すことができないばかりか、逆に投入エネルギーが必要になるという大きなデメリットがある。また、いぶし焼きにより、揮発分が除去され有機物が燃焼(酸化)し難い所謂「残カーボン」とよばれる状態となり、後工程での燃焼が困難になるとともに、残カーボンのために長い燃焼時間を掛けなければ高い白色度を得がたく、さらに、生成した白土も粒子径が不揃いで大きくなっており、又、内熱キルンで使用される重油バーナーからのカーボンやイオウ酸化物による汚染が生じ、製紙用顔料としては使用できないという問題がある。
【0006】
特許文献4のように、排水処理汚泥をロータリーキルン炉内で連続して乾燥・炭化・燃焼する方法が知られている。この方法において使用される排水処理汚泥は、種々の発生源を有する汚泥で構成されているため、発生源や発生量の変動により、得られる造粒・成形物質においても変動が生じる問題を有し、当該特許文献においては、燃焼に先立って、造粒・成形するのは、燃焼を均一に行うためであると考えられるものの、実施の形態に記載されている固形分濃度40〜60%(換言すれば水分率60〜40%)の状態でロータリーキルン炉内で連続して乾燥・炭化・燃焼する場合、汚泥の乾燥状態、炭化状態のいかんに係らず、キルン炉の回転によって汚泥粒子は強制的に処理が進行してしまう。従って、乾燥が不十分であると粒子内部に未燃分が多く残留しその結果燃焼が不完全となって白色度の低下を生じ、逆に過乾燥になると燃焼は完全となるが過燃焼を招き、得られた再生粒子凝集体の硬度が高くなり、この再生粒子凝集体を使用すると抄紙機でのワイヤー摩耗や紙を断裁する場合のカッター刃摩耗が生じやすくなるという問題を引き起こす。
【0007】
先行する特許文献1〜4に記載の製紙スラッジを原料とする場合における最も大きな問題点は、原料とする製紙スラッジが、抄紙工程でワイヤーを通過して流出したもの、パルプ化工程での洗浄過程で発生した固形分を含む排水から回収したもの、排水処理工程において、沈殿あるいは浮上などを利用した固形分分離装置によりその固形分を分離、回収したもの、古紙処理工程での混入異物除去したもの等の各種スラッジが混在している点である。
これらの製紙スラッジのうち、例えば、抄紙工程でワイヤーを通過して流出したものは、紙力剤等が混入しており、また、抄紙工程における抄造物の変更によって品質に変動が生じる。また、排水処理工程から回収した製紙スラッジには凝集剤が混入する他、工場全体の抄造物、生産量の変動、あるいは生産設備の工程内洗浄などにより大きな変動が生じる。
パルプ化工程での洗浄過程から生じる製紙スラッジにおいては、チップ水分やパルプ製造条件で変動が生じる他、さまざまな填料、顔料とすることができない物質が混入し、品質変動が生じる。従って、全ての製紙スラッジを無選別に用いようとすると、製紙用の填料や塗工用顔料としての品質が大きく低下し、しかも品質の変動が極めて大きく、不安定なものとなる。
すなわち、従来公知の方法で得られる再生粒子は、製紙用の填料や塗工用顔料、プラスチック用等の充填剤として使用するには品質が適さず、品質安定性に欠けるものであった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平11−310732号公報
【特許文献2】特公昭56−27638号公報
【特許文献3】特開昭54−14367号公報
【特許文献4】登録3812900号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明が解決しようとする主たる課題は、特に製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子凝集体を提供することにある。
【課題を解決するための手段】
【0010】
この課題を解決した本発明は、次のとおりである。
〔請求項1記載の発明〕
古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とする原料を、脱水、乾燥、燃焼及び粉砕して得られる再生粒子凝集体であって、
燃焼温度500〜650℃で燃焼物の未燃率が2〜20質量となるように乾燥及び酸化燃焼する第1燃焼工程と、燃焼温度550〜750℃、燃焼時間10〜60分で再度燃焼する第2燃焼工程とを含む、少なくとも2段階の燃焼工程を経て得られ、
下記硬質物質の合計含有量が2.0質量%以下で、かつ白色度が70%以上である、
ことを特徴とする再生粒子凝集体。
硬質物質:Ca2Al2SiO7、CaAl2Si28
【0011】
〔請求項2記載の発明〕
前記脱水後の原料が前記第1燃焼工程に先立って粉砕機を通され、平均粒子径3〜40mmの範囲に調整されている、
請求項1記載の再生粒子凝集体。
【0012】
〔請求項3記載の発明〕
前記原料の前記第1燃焼工程での滞留時間が30〜90分である、
請求項1又は請求項2記載の再生粒子凝集体。
【0013】
〔請求項4記載の発明〕
前記第1燃焼工程後の燃焼物が平均粒子径2〜30mmとなるように調整されている、
請求項1〜3のいずれか1項に記載の再生粒子凝集体。
【0014】
〔請求項5記載の発明〕
25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上である、
請求項1〜4のいずれか1項に記載の再生粒子凝集体。
【0015】
〔請求項6記載の発明〕
再生粒子凝集体の表面にシリカが被覆されており、
カルシウム、ケイ素及びアルミニウムの質量割合がX線マイクロアナライザーを用いた元素分析にて酸化物換算で、前記シリカの被覆がされていない状態において30〜82:9〜35:9〜35、前記シリカの被覆がされた状態において30〜62:29〜55:9〜35である、
請求項1〜5のいずれか1項に記載の再生粒子凝集体。
【発明の効果】
【0016】
本発明によれば、特に製紙用の填料又は塗工用顔料として必要な特性を備えた再生粒子凝集体となる。
【図面の簡単な説明】
【0017】
【図1】製造設備の概要図である。
【発明を実施するための形態】
【0018】
次に、本発明の実施の形態の説明に先立ち、本発明の位置づけについて説明する。
たとえば、製紙用スラッジを燃焼する場合、(1)特開2003−119695号公報記載の発明では、乾燥物を炉内の酸素濃度が0.1体積%以下となる実質的に酸素が存在しない貧酸素状態で、具体的には間接加熱炉(外熱燃焼炉)によって乾燥及び炭化処理する。次に炭化物に含まれる有機物由来の炭素を酸化させて脱炭素する、具体的には間接加熱炉によって白化処理する方法が提案されている。また、同発明は、後者の白化処理については内熱ロータリーキルン炉を使用することも教示している。
他方、本出願人は、(2)特開2002−275785号として、炭化後に再燃焼のためにロータリーキルン炉を使用することも教示している。
さらに、本出願人は、(3)特許3808852号として、「原料スラッジとして脱墨スラッジを用い、これを乾燥させる乾燥工程と、前記乾燥させた脱墨スラッジをサイクロン型燃焼炉の炉上部から炉内に供給し、旋回下降させつつ燃焼させ未燃分を含む一次燃焼物を得る一次燃焼工程と、前記サイクロン型燃焼炉に連通し、その下端からの未燃分を含む一次燃焼物を受けて、機械的な攪拌により酸素との接触を促進させながら、前記一次燃焼工程の燃焼熱を利用して所定の白色度となるまで燃焼させる二次燃焼工程とを含む、ことを特徴とする脱墨スラッジからの白色顔料又は白色填料の製造方法。」を提案した。
また、(4)特開2004−176208号においては、「塗工紙製造工程の排水処理汚泥」から填料を製造するに際し、成形汚泥を「一つのロータリーキルン炉内で乾燥、炭化、燃焼」を行うことを提案している。
【0019】
上記(1)(2)及び(4)は、古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とするものではなく、前述の製紙スラッジを主原料とするものである。そして、得られる再生粒子は、本発明のような、再生粒子「凝集体」とは異なるものと考えられる。
一方、(3)の方法によれば、本発明によって得られるものと同様な再生粒子凝集体を得ることができる。しかし、同方法ではサイクロン型燃焼炉を使用し、乾燥物を燃焼し、次いで二次燃焼を行っている。
しかし、これでは、乾燥と燃焼を別の装置で行っており、設備費が嵩むばかりでなく、サイクロン型燃焼炉自体の形式に由来するものと考えられるが、サイクロン式は数十〜数千ミクロンの原料と空気を旋廻流として供給口から供給し、空気の旋廻作用により空気と効果的に混合されながら燃焼させるため、原料に含有される微粒子が、排ガスとともに系外に排出され製品歩留りが低下する問題、主原料である脱墨フロスの燃焼時間(加熱時間)が短時間であることにより未燃焼分が生じやすい問題、最終的に得られる燃焼物の品質(特に形状)が一定でなく、燃焼物の白色度もバラツキが生じる場合があること、内熱燃焼により、再生粒子表面が過度に燃焼され硬質物質の生成が避けられない問題が知見された。
【0020】
そこで、本発明は、脱水後の原料の乾燥と燃焼が好適には一連で行われ、第1燃焼炉における燃焼時間(滞留時間)が30分を超える第1燃焼炉を用い、好ましくは本体が横置きで中心軸周りに回転する内熱(直接加熱)キルン炉により、前記脱水後の原料の乾燥及び燃焼を行い、次に、第1燃焼炉から得られる燃焼物を再度燃焼する燃焼時間(滞留時間)が10分以上の第2燃焼炉を用い、好ましくは本体が横置きで中心軸周りに回転する外熱(間接加熱)キルン炉、特に燃焼温度を容易に調整可能な外熱電気キルン炉により、燃焼する方法を採用し得られるものである。
以下においては、第1燃焼炉を内熱キルン炉、第2燃焼炉を外熱キルン炉を選択した場合について詳説するが、好適には先の第1燃焼炉を内熱で行い、後の第2燃焼炉を外熱で行う少なくとも2段階の燃焼炉であれば公知の燃焼炉を使用できる。更に先に述べたように、第1燃焼炉における燃焼時間(滞留時間)が30分以上の内熱燃焼炉、第2燃焼炉における燃焼時間(滞留時間)が10分を超える外熱燃焼炉であればより好適であり、内熱燃焼炉として流動床焼却炉、多段燃焼炉、外熱燃焼炉として重油等を熱源にした間接加熱方式の燃焼炉等の公知の燃焼方法を採用し得ることができる。
第1燃焼炉として好適に用いられる内熱キルン炉によれば、乾燥及び燃焼を一つの炉で行うことができ、供給口から排出口に至るまで、緩やかに安定的に乾燥及び燃焼が進行し、かつ燃焼物の微粉化が抑制される。また、第2燃焼炉として好適に用いられる外熱キルン炉により燃焼すると、その端部から燃焼物を一定の滞留時間をもって、他端部の排出口から排出でき、さらに外熱により燃焼物に均一な熱が加わるので、燃焼が均一なものとなり、硬質物質の生成が抑制されるとともに、燃焼のバラツキを生じさせないものとなる。さらに、キルン炉内壁の回転による摩擦によって燃焼物が緩やかに攪拌されるため、微粉化を生じにくい。その結果、最終的な燃焼物の品質及び形状が安定したものとなるのである。
上記のとおり、乾燥、燃焼の操作を、先の第1燃焼炉と後の第2燃焼炉にて行う、好適には内熱キルン炉と外熱キルン炉にて、少なくとも2段階の燃焼炉により行うことで、均一で安定的な再生粒子凝集体が得られる。
好適な燃焼炉として用いられる内熱又は外熱キルン炉は、内部耐火物を円周状でなく、六角形や八角形とすることで燃焼物を滑らす事無く持ち上げて攪拌することができ、燃焼物攪拌用のリフターを設けないことで、粉塵の発生を抑制し排ガスへの粉塵混入を抑えることができ、製品歩留りを向上させることができる。
【0021】
ここで、本件発明者等が好適な再生粒子凝集体を得るに当り、最も注力した燃焼炉の選択について説明する。
従来から慣用的に用いられてきた燃焼炉は、ストーカー炉(固定床)、流動床炉、サイクロン炉、キルン炉の4種に大別でき、本発明者等は、それぞれの焼却炉で再生粒子凝集体を得るための製造方法の検討を重ねたところ、
(1)ストーカー炉(固定床)については、脱墨フロスの燃焼度合い調整が困難であり、燃焼物が不均一である上に、灰分の多い脱墨フロスの燃焼では火格子間のクリアランスから落塵を生じるため適さない。火格子を通し燃焼物の下に空気を吹上げ燃焼させるため、炭酸カルシウムなどが飛灰となり排ガスとともに排ガス設備へ送られるため、歩留の低下が問題となる。燃焼炉のストーカ(階段状)を、所定幅で、燃焼物が通過しながら燃焼するため灰の攪拌が不十分で幅方向で燃焼にバラツキが発生する。
(2)流動床炉については、炉内の流動媒体に珪砂のような粒子状の流動媒体を使用するため、珪砂が再生填料へ混入し品質の低下を招く問題を有する。均一な攪拌ができない。硅砂を流動層混合して燃焼させた後、硅砂と燃焼物を分離し、硅砂は燃焼炉へ戻し燃焼物のみを取り出すが、燃焼物も硅砂と同程度の粒径が生じるため分離できない。硅砂と浮遊した状態で燃焼させているため、燃焼の度合い調整が困難であり、品質のばらつきが発生する又、硬度の高い珪砂との摩擦、衝突により燃焼物が微粉化され飛灰となって系外へ排出され歩留りが低下する。
(3)サイクロン炉については、炉内を一瞬で通過するため燃焼物中の固定炭素を十分に燃焼できず白色度の低下に繋がる、更に、風送により細かい粒子はサイクロンで分離されず排ガスと一緒に排ガス処理工程に回るため歩留が低下する。
前記諸問題について鋭意検討を重ねた結果、燃焼炉としてはキルン炉にて燃焼させることが最も好適な燃焼手段として選択され、更に以下の理由から先の第1燃焼炉を内熱キルン、後の第2燃焼炉を外熱キルンとすることが好適であることを見出している。
外熱キルン炉は、キルン炉の外側に加熱設備を設けた構成となるため、キルン炉の構造が複雑になるとともに、燃焼物を間接的に乾燥、燃焼させるゆえに多量の熱源が必要になるため、本発明に係る、脱水後の水分率が高い原料の乾燥、燃焼処理に外熱キルン炉を先の第1燃焼炉として使用した場合には、乾燥・燃焼効率が低くなり、生産性が悪く、温度の制御が困難になるとともに多大なエネルギーコストを必要とし、費用対効果が極めて低くなる。
又、内熱キルン炉を第2燃焼炉に使用した場合には、残カーボンを燃焼するにおいて、炉内温度の調整に多量の希釈空気が必要であり、多量の空気を投入しないと燃焼熱を内熱キルン炉内に均一に伝えることが困難であり、更に炉内温度の変動を抑えることが困難であるため、燃焼物の過燃焼による硬質物質の生成や燃焼ムラが生じやすい問題を有する。
更に、通常加熱に使用される重油バーナーからの重油燃焼残カーボンやイオウ酸化物等による汚染が発生し、製品段階で白色度の低下やバラツキが生じ、得られる燃焼物の品質の均一化が困難な問題が生じる。
発明者等は、前記問題を知見し、問題を解決する手段について鋭意検討を重ねた結果、本発明を完成させたものである。
【0022】
次に、本発明の製造設備の実施の形態の一例を、図面を参照しながら説明する。
〔概要〕
本発明の再生粒子凝集体を得ることができる製造設備フローには、脱水工程、乾燥・燃焼工程、粉砕工程を有するが、更に、脱墨フロスの凝集工程又は造粒工程や、各工程間に分級工程等を設けてもよい。
図1に、再生粒子凝集体の製造設備フローの一部構成例(乾燥・燃焼工程、及び燃焼工程を含む設備例)を示した。本設備には、各種センサーが備わっており、被燃焼物や設備の状態、処理速度のコントロール等を行っている。
図示しない、古紙パルプを製造する脱墨工程においてパルプ繊維から分離された脱墨フロスは、種々の操作を経て、同じく図示しない脱水設備により脱水される。脱水後の原料は、水分率が50%未満、特に25〜45%とすることが望ましい。
かかる脱水後の原料10は、望ましくは、粉砕機(又は解砕機)により40mm以下の粒子径に粉砕しておく。かかる原料10が貯槽12から切り出されて、第1燃焼炉14の一方側から装入機15により装入される。第1燃焼炉14の一方側には、排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風が第1燃焼炉14の他方側から吹き込まれ、前記一方側から装入され、第1燃焼炉14の回転に伴って前記他方側に順次移送される原料の乾燥及び燃焼を行うようになっている。
【0023】
ここで、第1燃焼炉14内に吹き込む熱風は、酸素濃度が0.2〜20%となるようにするのが望ましい。温度としては、500℃〜650℃が望ましい。熱風は、バーナー20Aを備える熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、乾燥・燃焼に供した排ガスが再燃焼室22に送り込まれる。排ガス中に含まれる燃焼物の微粉末は、排ガスチャンバー16の下部から排出され、再利用される。排ガスは、再燃焼室22でバーナーにより再燃焼が行われ、予冷器24により予冷された後、熱交換器26を通し、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温した後に、熱風発生炉20に送られ、第1燃焼炉14から吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。排ガスの処理は、排ガス中に含まれる有害物質の除去に有効である。
第1燃焼炉14において乾燥及び燃焼処理を経た燃焼物は、第2燃焼炉32に装入される。この装入される燃焼物の粒径としては、20mm以下が好適である。第2燃焼炉32での熱源としては、第2燃焼炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気による調整が好適であり、したがって、電気ヒータにより間接的に第1燃焼炉から得られる燃焼物を再び燃焼させる外熱式の第2燃焼炉32であることが望ましい。
【0024】
第2燃焼炉32においては、酸素濃度が5〜20%となるように燃焼するのが望ましい。温度としては、550℃〜750℃が望ましい。また、第2燃焼炉内での滞留時間は10分〜60分が、残カーボンを完全に燃焼させるに望ましい。
燃焼が終了した再生粒子凝集体は、冷却機34により冷却された後、振動篩機などの粒径選別機36により選別され、湿式粉砕機等を用いた粉砕工程で目的の粒子径に調整された燃焼物が燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものを原料とした燃焼物であってもよい。
【0025】
以上、概要を説明したが、その詳細及び応用例などを以下に説明する。
〔原料〕
古紙パルプ製造工程では、安定した品質の古紙パルプを連続的に生産する目的から、使用する古紙の選定、選別を行い、一定品質の古紙を使用する。そのため、古紙パルプ製造工程に持ち込まれる無機物の種類やその比率、量が基本的に一定になる。しかも、再生粒子凝集体を得るための製造方法において、未燃物の変動要因となるビニールやフィルムなどのプラスチック類が古紙中に含まれていた場合においても、これらの異物は脱墨フロスを得る脱墨工程に至る前段階で除去することができる。従って、脱墨フロスは、工場排水工程や製紙原料調整工程等、他の工程で発生する製紙スラッジと比べ、極めて安定した品質の再生粒子凝集体を製造するための原料となる。
本発明で云う脱墨フロスとは、古紙パルプを製造する古紙処理工程において、主に、古紙に付着したインクを取り除く脱墨工程で、パルプ繊維から分離されるものをいう。
【0026】
〔脱水工程〕
脱墨フロスの更なる脱水は、公知の脱水手段を適宜に使用できる。本形態における一例では、脱墨フロスは、脱水手段たる例えばスクリーンによって、脱墨フロスから水を分離して脱水する。スクリーンにおいて、水分を90%〜97%に脱水した脱墨フロスは、例えばスクリュープレスに送り、更に水分を50%以下に脱水することが好適である。
水分率が50%を超えると、第1燃焼炉における乾燥・燃焼処理温度の低下を招き、加熱のためのエネルギーロスが多大になるとともに、原料の燃焼ムラが生じやすくなり均一な燃焼を進めがたくなる。さらに、排出される排ガス中の水分が多くなり、ダイオキシン対策における再燃焼処理効率の低下と、排ガス処理設備の負荷が大きくなる問題を有する。また、原料の水分率を低くすることで、均一な燃焼を進め易くなるものの、原料の水分率を25%未満まで脱水を行うことは、脱水設備が大型化すると共に、脱水処理エネルギーが多大になる問題を有する。
以上のように、脱墨フロスの脱水を多段工程で行い急激な脱水を避けると、無機物の流出が抑制でき脱墨フロスのフロックが硬くなりすぎるおそれがない。脱水処理においては、脱墨フロスを凝集させる凝集剤等の脱水効率を向上させる助剤を添加しても良いが、凝集剤には、鉄分を含まないものを使用することが好ましい。鉄分が含有されると、鉄分の酸化により再生粒子凝集体の白色度を下げる問題を引き起こす。
脱墨フロスの脱水工程は、本発明における再生粒子凝集体の製造工程に隣接することが生産効率の面で好ましいが、予め古紙パルプ製造工程に隣接して設備を設け、脱水を行った物を搬送することも可能であり、トラックやベルトコンベア等の搬送手段によって定量供給機まで搬送し、この定量供給機から乾燥・燃焼工程に供給する。
かかる脱水後の原料10は、第1燃焼炉に供給する操作において、望ましくは、粉砕機(又は解砕機)により平均粒子径40mm以下の粒子径に揃えることが好ましく、より好ましくは平均粒子径が3〜30mm、更に好ましくは平均粒子径が5〜25mmの範囲に成るように調整することが好ましく、好適には粒子径が50mm以下の割合が、70重量%以上に成るように粉砕しておく事がより好ましい。脱墨フロス中に含まれる炭酸カルシウムの熱変化を来たさない燃焼処理を図るため、原料の粒子径は均一であることが好ましいところ、平均粒子径が3mm未満では過燃焼になりやすく、40mmを超える平均粒子径では、原料芯部まで均一に燃焼を図る事が困難な問題を有するためである。
本発明における平均粒子径と粒子径の割合は、攪拌式の分散機で充分分散させた試料溶液を用いて測定した。
各燃焼行程における粒子径は、JIS Z 8801−2:2000に基づき、金属製の板ふるいにて測定した。
【0027】
〔第1燃焼工程〕(乾燥、燃焼工程)
かかる原料10が貯槽12から切り出されて、第1燃焼炉に供給される。第1燃焼炉は本体が横置きで中心軸周りに回転する内熱キルン炉方式からなり、内熱キルン炉14の一方側から装入機15により装入される。内熱キルン炉加熱手段は、熱風発生炉にて生成された熱風を内熱キルン炉の排出口側から、脱水物の流れと向流する様に送り込まれる。内熱キルン炉14の一方側には、排ガスチャンバー16が、他方側には排出チャンバー18が設けられている。排出チャンバー18を貫通して、熱風が内熱キルン炉14の他方側から吹き込まれ、前記一方側から装入され、内熱キルン炉14の回転に伴って前記他方側に順次移送される原料の乾燥及び燃焼を行うようになっている。
すなわち、本乾燥・燃焼工程は、脱水物を、本体が横置きで中心軸周りに回転する、内熱キルン炉という有形的な手段によって、乾燥・燃焼することにより、供給口から排出口に至るまで、緩やかに乾燥と有機分の燃焼が行え、燃焼物の微粉化が抑制され、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。また、乾燥を別工程に分割し吹き上げ式の乾燥機を入れることも出来る。
ここで、内熱キルン炉14内に吹き込む熱風は、酸素濃度が0.2〜20%が好ましく、より好ましくは1〜15%、最も好ましくは5〜12%となるようにするのが望ましい。
酸素濃度は、原料の燃焼(酸化)により消費されるため、燃焼の状況により酸素濃度に変動を生じる。酸素濃度が0.2%未満では、十分な燃焼を図る事が困難である。燃焼炉内の酸素は、原料の燃焼等によって消費され酸素濃度が低下するが、燃焼させるための熱風発生装置等により、空気などの酸素含有ガスを送風し、あるいは排気することで、酸素濃度を維持、調節可能であり、さらに酸素含有ガスを送風し、あるいは排気することで、燃焼炉内の温度を細かく調節可能になり、原料をムラなく万遍に燃焼することができる。
第1燃焼炉の温度としては、500℃〜650℃、より好ましくは510℃〜620℃、特に好ましくは、530℃〜600℃が望ましい。第1燃焼炉においては、容易に燃焼可能な有機物を緩やかに燃焼させ、燃焼温度500℃〜650℃の温度範囲で燃焼する事が好ましく、500℃未満では有機物の燃焼が不十分であり、650℃を超えると過燃焼が生じ、炭酸カルシウムの分解による酸化カルシウムが生成し易くなる。更に、熱風の温度が650℃を超える場合は、硬い・柔らかい等さまざまな性質を有する燃焼物の粒揃えが進行するよりも早く乾燥・燃焼が局部的に進むため、粒子表面と内部の未燃率の差を少なく均一にすることが困難になる。
熱風は、バーナー20Aを備える熱風発生炉20から吹き込まれる。
排ガスチャンバー16からは、乾燥・燃焼に供した排ガスが再燃焼室22に送り込まれる。微粉末は、排ガスチャンバー16の下部から排出され、再び原料に配合され再利用される。
排ガスは、再燃焼室22でバーナーにより再燃焼が行われ、予冷器24により予冷された後、熱交換器26を通し、誘引ファン28により煙突30から排出される。ここで、熱交換器26は外気を昇温した後に、熱風発生炉20に送られ、内熱キルン炉14から吹き込まれる熱風の用に供せられ、排ガスチャンバー16からの排ガスの熱を回収するようにしてある。
第1燃焼炉は、脱墨フロス中に含有される燃焼容易な有機物を緩慢に燃焼させ、残カーボンの生成を抑制するため、好適には前記条件で30分から90分の滞留時間で燃焼させることが好ましい。より好ましくは、40分から80分が有機物の燃焼と生産効率の面で好ましい。最も好ましくは、50分から70分の範囲が恒常的な品質を確保するために好ましい。燃焼時間が30分未満では、十分な燃焼が行われず残カーボンの割合が多くなる。燃焼時間が90分を超えると、原料の過燃焼による炭酸カルシウムの熱分解が生じ、得られる再生粒子凝集体が極めて硬くなる。
特に、次工程の第2燃焼工程内に供給する燃焼物の未燃率を、2〜20質量%に乾燥・燃焼することが好ましく、より好ましくは未燃率を、2〜15質量%、特に好ましくは未燃率を、2〜10質量%にすることが望ましい。
未燃率を、2〜20質量%にすることで、第2燃焼工程での燃焼を短時間に効率よく行うことができるとともに、外熱炉における安定した加熱により、硬度が低く白色度が80%以上、少なくとも70%以上の高白色度の燃焼物を得ることができる。未燃物が2質量%未満では、先の第1燃焼炉におけるエネルギーコストが高いものとなるとともに、燃焼物の硬度が比較的高くなっている場合があり、第2燃焼炉出口における白色度の低下等の品質低下を来たす場合がある。
【0028】
〔第2燃焼工程〕
内熱キルン炉14において乾燥及び燃焼処理を経た燃焼物は、移送流路を通して、本体が横置きで中心軸周りに回転する外熱ジャケット31を有する第2燃焼炉にあたる外熱キルン炉32に装入される。
この燃焼炉では、燃焼物を、外熱で加温しながらキルン炉内壁の回転による摩擦によって緩やかに攪拌させることで粒子の微細化を抑制し、また、更に均一に、硬質物質の生成を抑制しながら未燃分を燃焼する。
第2燃焼炉における燃焼においては、第1燃焼炉で燃焼しきれなかった残留有機物、例えば残カーボンを燃焼させるため、第1燃焼炉において供給される原料の粒子径よりも小さい粒子径に調整された燃焼物を用いることが好ましい。乾燥・燃焼工程後の燃焼物の粒揃えは、平均粒子径が2〜30mmとなるように調整するのが好ましく、更に好適には平均粒子径2〜18mmとなるように燃焼凝集させる調整がより好ましく、平均粒子径を3〜15mmとなるように燃焼凝集させるのが特に好ましい。
第2燃焼炉入り口での平均粒子径が2mm未満では、過燃焼の危惧があり、平均粒子径が30mmを超える粒子径では、残カーボンの燃焼が困難であり、芯部まで燃焼が進まず得られる再生粒子凝集体の白色度が低下する問題を引き起こす。第2燃焼炉での安定生産を確保するためには、粒子径が1〜30mmの燃焼物が70%以上に成るように粒子径を調整することが好ましい。従って、得られる再生粒子凝集体の品質を均一にするという観点における実用化可能性に、有益である。更に、本形態のように、分級を乾燥後とすると、小径な粒子の燃焼物を確実に除去することができ、また、処理効率も向上する。
外熱キルン炉32での外熱源としては、外熱キルン炉32内の温度コントロールが容易で長手方向の温度制御が容易な電気加熱方式の電気キルン炉が好適であり、原料中に含有する有機物の過燃焼、再生粒子構成物質の溶融による硬質物質の生成を抑制することができる。したがって、電気ヒータによる外熱キルン炉32であることが最も望ましい。
外熱に電気を使用することにより、温度の調整を細かくかつ内部の温度を均一にコントロール可能になり、硬い・柔らかい等さまざまな性質を有する脱水物の燃焼度合いの制御と粒揃えを安定的に行うことができる。
さらに電気キルン炉は、電気ヒータを炉の流れ方向に複数設けることで、任意に温度勾配を設ける事が可能であると共に、燃焼物の温度を一定時間、一定温度保持することが可能であり、第1燃焼炉を経た燃焼物中の残留有機分、特に残カーボンを第2燃焼炉で炭酸カルシウムの分解を来たすことなく未燃分を限りなくゼロに近づけることができ、低いワイヤー摩耗度で、高白色度の再生粒子凝集体を得ることができる。
外熱キルン炉32においては、酸素濃度が5〜21%、より好ましくは10〜21%、最も好ましくは、15〜21%となるようにするのが望ましい。
外熱キルン炉内の酸素濃度が、5%未満では、燃焼困難な残カーボンの燃焼が進まない問題を生じる。
燃焼温度としては、550℃〜750℃、より好ましくは600℃〜725℃、特に好ましくは650〜710℃が望ましい。
第2燃焼炉は先に述べたように、第1燃焼炉で燃焼しきれなかった残留有機物、特に残カーボンを燃焼させる必要があるため、第1燃焼炉よりも高温で燃焼させることが好ましく、燃焼温度が550℃未満では、十分に残留有機物の燃焼を図ることが困難であり、燃焼温度が750℃を超える場合は、燃焼物中の炭酸カルシウムの酸化が進行し、粒子が硬くなる問題が生じる。
また、滞留時間は10〜60分、より好ましくは15〜45分、特に好ましくは20〜40分が望ましい。特に残カーボンの燃焼は炭酸カルシウムの分解を出来る限り生じさせない高温で、緩慢に燃焼させる必要があり、滞留時間が10分未満では、残カーボンの燃焼には短時間で不十分であり、60分を超えると、炭酸カルシウムが分解する問題が生じる。
更に、燃焼物の安定生産を行うにおいて滞留時間を10分以上、過燃焼の防止、生産性の確保のため60分以下で燃焼させることが好適である。
この外熱キルン炉32から排出される燃焼物の粒子径としては、20mm以下、より望ましくは平均粒子径が5〜18mm以下、最も好ましくは平均粒子径が8〜15mmに調整することが好適であり、20mm以下の粒子径の割合を65%以上にすることが、後工手である粉砕工程の不可低減に効果的である。
燃焼が終了した再生粒子凝集体は、冷却機34により冷却された後、振動篩機などの粒径選別機36により目的の粒子径のものが燃焼品サイロ38に一時貯留され、顔料や填料の用途先に仕向けられる。
なお、脱墨フロスを原料として用いた場合を例示したが、脱墨フロスを主原料に、抄紙工程における製紙スラッジ等の他製紙スラッジを適宜混入させたものの燃焼品であってもよい。
【0029】
〔粉砕工程〕
本発明に基づく再生粒子凝集体は、必要に応じ、更に公知の分散・粉砕工程を設け、適宜必要な粒子径に微細粒化することで塗工用の顔料、内添用の填料として使用できる。
本発明においては、硬質物質の含有量を2.0質量%以下、好適には1.0%以下、より好ましくは、0.8%以下に抑えた再生粒子凝集体を得ることができるため、粉砕負荷の低減、エネルギーコストの低廉化を図れるメリットもある。一例では、燃焼後、得られた粒子は、ジェットミルや高速回転式ミル等の乾式粉砕機、あるいは、アトライター、サンドグラインダー、ボールミル等の湿式粉砕機を用いて粉砕する。填料、顔料用途等への最適な粒子径については、本形態の再生粒子凝集体は、平均粒子径0.1〜10μmであるのが好ましい。
粉砕工程後における再生粒子凝集体の粒子径は、粒径分布測定装置(レーザー方式のマイクロトラック粒径分析計:日機装製)により体積平均粒子径を測定した。
【0030】
〔付帯工程〕
本発明の再生粒子凝集体を得るために使用する設備において、より品質の安定化を求めるためには、再生粒子凝集体の粒子径を、各工程で均一に揃えるための分級を行うことが好ましく、粗大や微小粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。
また、乾燥工程の前段階において、脱水処理を行った脱墨フロスを造粒することが好ましく、更には、造粒物の粒子径を均一に揃えるための分級を行うことがより好ましく、粗大や微小の造粒粒子を前工程にフィードバックすることでより品質の安定化を図ることができる。造粒においては、公知の造粒設備を使用でき、回転式、攪拌式、押し出し式等の設備が好適である。
本発明の再生粒子凝集体の原料としては、再生粒子凝集体の原料と成り得るもの以外は予め除去しておくことが好ましく、例えば古紙パルプ製造工程の脱墨工程に至る前段階のパルパーやスクリーン、クリーナー等で砂、プラスチック異物、金属等を除去することが、除去効率の面で好ましい。特に鉄分の混入は、鉄分が酸化により微粒子の白色度低下の起因物質になるため、鉄分の混入を避け、選択的に取り除くことが推奨され、各工程を鉄以外の素材で設計又はライニングし、摩滅等により鉄分が系内に混入することを防止するとともに、更に、乾燥・分級設備内等に磁石等の高磁性体を設置し選択的に鉄分を除去することが好ましい。
このように、古紙パルプの製造工程から排出される脱墨フロスを主原料とし、該主原料を脱水工程、乾燥工程、焼成工程及び粉砕工程に供することにより再生粒子凝集体が得られるが、本願発明においては、該再生粒子凝集体として、前記のごとき工程を経て得られた粒子の表面をさらにシリカで被覆した、シリカ被覆再生粒子凝集体を特に好適に用いることができる。
【0031】
前記再生粒子凝集体の表面にさらにシリカを析出させ、シリカ被覆再生粒子凝集体とすることで、循環使用における古紙処理工程において、水酸化ナトリウムと反応させて、緩衝剤や漂白助剤として製紙用原料、無機粒子の循環使用に寄与させることができる。
なお、本願発明に用いられる、古紙処理工程から排出される脱墨フロスは、近年の中性抄紙化に伴い、炭酸カルシウムの含有量が増加傾向にあり、得られる再生粒子凝集体中のカルシウムの割合も高くなる傾向がある。このようにカルシウムの割合が高い再生粒子凝集体をパルプに内添すると、紙の不透明度がやや低下する場合があるが、表面にシリカを析出させたシリカ被覆再生粒子凝集体は、製紙用途の再生粒子凝集体としての機能が非常に高く、該シリカ被覆再生粒子凝集体をパルプに内添して得られる壁紙用裏打ち紙の不透明度は向上する。
再生粒子凝集体の表面を被覆するシリカについては、天然に産出するシリカではなく、何らかの化学反応による合成シリカであれば特に制限なく使用することが可能である。具体的には、例えばコロイダルシリカ、シリカゲル、無水シリカ等があげられる。これらの合成シリカは、高比表面積、ガス吸着能の高さ、微細性、細孔への浸透力や吸着力の大きさ、付着性の高さ、高吸油性等の優れた特性を活かして、幅広い分野で利用されているものである。これらのうち、コロイダルシリカは、ケイ酸化合物から不純分を除去して無水ケイ酸ゾルとし、pH及び濃度を調整してゾルを安定化させた、球状、連鎖状、不定形等の形状を有する非晶質シリカである。シリカゲルは、ケイ酸ナトリウムを無機酸で分解することによって得られる含水ケイ酸である。また無水シリカは、四塩化ケイ素の加水分解によって得られるものである。
【0032】
再生粒子凝集体の表面にシリカを析出させ、シリカ被覆再生粒子凝集体を得る方法には特に限定がないが、例えば以下の方法を好適に採用することができる。まず、再生粒子凝集体をケイ酸アルカリ溶液に添加、分散させ、スラリーを調製した後に加熱攪拌しながら、液温を70〜100℃程度に保持して酸を添加し、シリカゾルを生成させる。次いで最終反応液のpHを8〜11の範囲に調整することにより、再生粒子凝集体の表面にシリカを析出させることができる。このようにして再生粒子凝集体の表面に析出されるシリカは、ケイ酸アルカリ(例えばケイ酸ナトリウム:水ガラス)を原料として、硫酸、塩酸、硝酸等の鉱酸の希釈液と高温下で反応し、加水分解反応とケイ酸の重合化により得られる、粒子径が10〜20nm程度のシリカゾル粒子である。
また、ケイ酸ナトリウム溶液等のケイ酸アルカリ溶液に希硫酸等の酸を添加することによって生成する、粒子径が数nm程度のシリカゾル微粒子を、再生粒子凝集体の多孔性を有する表面全体を被覆するように付着させ、このシリカゾル微粒子の結晶成長に伴う、無機微粒子表面上のシリカゾル微粒子と再生粒子凝集体に包含されるケイ素やカルシウム、アルミニウムとの間で生じる結合により、再生粒子凝集体の表面にシリカを析出させることもできる。この場合、ケイ酸アルカリ溶液に酸を添加する際のpHは、中性〜弱アルカリ性の範囲とし、好ましくはpHを8〜11の範囲に調整する。これは、pHが7未満の酸性条件になるまで酸を添加してしまうと、シリカゾル粒子ではなくホワイトカーボンが生成する恐れが生じるからである。
なお、前記ケイ酸アルカリ溶液の種類には特に限定がないが、入手が容易である点からケイ酸ナトリウム溶液(3号水ガラス)が特に望ましい。このケイ酸アルカリ溶液の濃度としては、再生粒子凝集体中のシリカ成分が低下し、再生粒子凝集体の表面にシリカが析出し難くならないようにするには、溶液中のケイ酸分(SiO2換算)が3質量%以上であることが好ましく、再生粒子凝集体の表面に析出されるシリカが、シリカゾルの形態からホワイトカーボンになり、再生粒子凝集体の多孔性が阻害され、不透明度の向上効果が不充分になる恐れをなくすには、該ケイ酸分(SiO2換算)が10質量%以下であることが好ましい。
【0033】
かくして得られる再生粒子凝集体は、その粒子構成成分として、カルシウム、ケイ素及びアルミニウムを含有しており、粒子中でこれらカルシウム、ケイ素及びアルミニウムが複合体を形成している。再生粒子凝集体中のこれらカルシウム、ケイ素及びアルミニウムの質量割合(カルシウム:ケイ素:アルミニウム)は、X線マイクロアナライザー(型番:E−MAX・S−2150、(株)日立製作所/(株)堀場製作所製)を用いた元素分析にて、酸化物換算で、30〜82:9〜35:9〜35、好ましくは40〜82:9〜30:9〜30、特に好ましくは60〜82:9〜20:9〜20である。なお、特に再生粒子凝集体がシリカ被覆再生粒子凝集体である場合には、これらカルシウム、ケイ素及びアルミニウムの質量割合(カルシウム:ケイ素:アルミニウム)は、前記X線マイクロアナライザーを用いた元素分析にて、酸化物換算で、30〜62:29〜55:9〜35、好ましくは30〜50:35〜55:15〜30である。また同時に、前記粒子構成成分中の、これらカルシウム、ケイ素及びアルミニウムの合計含有割合は、前記と同様の元素分析にて、酸化物換算で、90質量%以上、好ましくは94質量%以上である。
また、シリカ被覆再生粒子の場合は、カルシウム、ケイ素及びアルミニウムを、酸化物換算で10〜80:10〜80:5〜29の質量割合とすることで、シリカ被覆効果による吸油性、不透明性を向上させることができる。
このように、再生粒子凝集体がその粒子構成成分として、カルシウム、ケイ素及びアルミニウムを、酸化物換算で、前記質量割合で含有しているので、その比重が軽く、過度の水溶液吸収が抑制され、脱水工程における脱水性が良好であり、乾燥工程における水分調整が容易であるだけでなく、焼成工程における未燃物の割合が減少し、焼結による過度の硬さを生じる恐れを低減することができる。
再生粒子凝集体中のカルシウム、ケイ素及びアルミニウムの質量割合を、酸化物換算で例えば前記範囲内に調整するには、本来、脱墨フロスにおける原料構成を調整することが好ましいが、乾燥工程や焼成工程、さらには必要に応じて分級工程において、由来が明確な塗工フロスや調整工程フロスをスプレー等で含有させる方法や、焼却炉スクラバー石灰を含有させる方法を採用することも可能である。
例えば、再生粒子凝集体中のカルシウムの含有割合を調整するには、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを、ケイ素の含有割合を調整するには、不透明度向上剤として多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの含有割合を調整するには、酸性抄紙系等の硫酸バンドが使用された抄紙系の排水スラッジや、クレーの使用量が多い上質紙抄造工程の排水スラッジを、各々適宜用いることができる。
【0034】
脱墨フロス中には、製紙用に供される填料や顔料としての、炭酸カルシウム、カオリン、タルク、抄紙助剤として硫酸アルミニウム等の無機物を多く含み、示差熱熱重量分析(エスアイアイ・ナノテクノロジー社製「TG/DTA6200」により測定したものである。以下同様。)とX線回折(理学電気社製「RAD2X」にて測定したものである。以下同様。)による、燃焼後の再生粒子の分析から、脱墨フロスを燃焼させる際に、例えば、炭酸カルシウム(CaCO3)は、600〜750℃にて重量減少し、硬質かつ水溶性の酸化カルシウム(CaO)に変化し、クレー(Al2Si25(OH)4)については、500℃前後で脱水により重量減少を生じ、メタカオリンとなり、1000℃前後の高温では硬質なムライト(Al2Si213)に変化する。また、タルク(Mg3Si410(OH)2)は、900℃前後で重量減少しエンスタタイト(MgSiO3)に変化した。
さらにX線回折による燃焼後の再生粒子の分析から、再生粒子中には、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の存在が確認され、製紙用に供される填料や顔料と比べ、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)は極めて硬質(硬質物質)であり、微量の生成で、製紙用具の摩耗・毀損や、抄紙系内の汚れが生じ、塗工用顔料として使用した場合は、ドクター等の塗工設備の摩耗・毀損、ストリークの発生要因となる根源であることが知見された。
【0035】
従来、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)は、900℃を超える高温において生成されるものと予想されていたが、本発明者等の検討において、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の生成は燃焼温度が500℃前後から生じ、温度の上昇に応じて生成量が増大することを見出している。
更に、脱墨フロス中の酸化物換算におけるカルシウムの含有量が増えるとCaAl2Si28(アノーサイト)は減少し、Ca2Al2SiO7(ゲーレナイト)は増える傾向を示すことも知見している。
【0036】
本発明の原料となる古紙は、近年の中性抄紙化、ビジュアル化の進展に伴ない、印刷見栄えの良い塗工紙使用量の増加に伴ない填料・顔料としての炭酸カルシウムの使用量増により、脱墨フロス中の炭酸カルシウムの含有量増につながり、結果としてCaAl2Si28(アノーサイト)、Ca2Al2SiO7(ゲーレナイト)の生成量増に繋がるため、再生粒子に含有されるCaAl2Si28(アノーサイト)、Ca2Al2SiO7(ゲーレナイト)、所謂硬質物質の含有量をできる限り減少させることが必要である。
硬質物質の生成を減少させるには、脱水後の脱水原料を乾燥及び燃焼を例えば一連で行う先の第1燃焼炉と、第1燃焼炉にて燃焼された燃焼原料を再度燃焼する、後の第2燃焼炉とを有する設備における、少なくとも2段階の燃焼操作が必要であり、温度、酸素濃度、時間等を本発明に基づき実施することで達成できる。
特にCaAl2Si28(アノーサイト)は、酸化カルシウムとカオリンの混合燃焼により生じやすく、脱墨フロス中に含有される炭酸カルシウムの過燃焼により生じる酸化カルシウムと同様に脱墨フロス中に含有されるカオリンとの反応生成により容易にアノーサイト物質を生じるため、本発明おける好適な燃焼手段により、再生粒子凝集体の、25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上となるように燃焼させること、所謂酸化カルシウムの生成をできる限り抑えることが必要である。特に酸化カルシウムより水酸化カルシウムの存在がCaAl2Si28(アノーサイト)の生成を生じやすい傾向を示すため、原料の脱水度合い(水分)、燃焼炉中の酸素濃度を適切に調整する必要がある。
【0037】
また、脱墨フロス中に含有されるシリカ分の存在が、CaAl2Si28(アノーサイト)やCa2Al2SiO7(ゲーレナイト)の生成を助長することを本発明者等は知見している。極力シリカ分含有量を低減させること、例えば新聞古紙や新聞抄紙系の白水使用を抑えることで、比較的低融点のCaAl2Si28(アノーサイト)やCa2Al2SiO7(ゲーレナイト)の生成を抑えることができ、好適には、再生粒子凝集体を形成後に本発明に基づくシリカ被覆を行うことが、効果的である。
本発明における好適な再生粒子凝集体の形成においては、凝集体の形成に低融点鉱物たるCaAl2Si28(アノーサイト)やCa2Al2SiO7(ゲーレナイト)が、明瞭ではないものの膠的な効果を有しているとも考えられる。
【0038】
硬質物質の含有量は、X線回析分析(XRD)にて測定可能であり、本発明者等の知見では、硬質物質として、Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の含有量が2.0質量%以下、より好ましくは1.0質量%、最も好ましくは0.5質量%以下の再生粒子凝集体が好適である。Ca2Al2SiO7(ゲーレナイト)、CaAl2Si28(アノーサイト)の含有量が2.0質量%を超えると、再生粒子凝集体の製造工程においては、設備の摩耗や粉砕効率・生産性を落とす原因になり、製紙用填料や塗工用の顔料として使用した場合、製紙用具の摩耗・毀損や、抄紙系内の汚れが生じ、塗工用顔料として使用した場合は、ドクター等の塗工設備の摩耗・毀損、ストリークの発生要因となる。
また、得られた再生粒子凝集体の、25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上であることが好ましく、より好ましくは、7%以上、更に好ましくは9%以上である。重量減量割合が5%(TG)未満では、再生粒子凝集体中に含まれていた炭酸カルシウムが燃焼時分解し、硬質な酸化カルシウムに殆ど変化しており、製紙用の填料や顔料として使用するに、製紙用具の摩耗・毀損や、抄紙系内の汚れが生じ、塗工用顔料として使用した場合は、ドクター等の塗工設備の摩耗・毀損、ストリークの発生要因となる問題が生じる。
得られた再生粒子凝集体の、25℃から800℃における示差熱熱重量分析において、重量減量割合は多くとも35%(TG)程度であり、35%を超えると、残カーボン量の増大や白色度の低下を招く恐れがある。
脱墨フロス中には、炭酸カルシウム以外にケイ素やアルミニウムが含まれており、燃焼時に炭酸カルシウムが分解することによってケイ素やアルミニウムと反応し、硬度の高いケイ酸アルミニウムカルシウム等が生成する場合があるため、炭酸カルシウムが分解しない条件、例えば、500〜750℃の範囲で燃焼することが必要である。
このような条件では、有機化合物を完全燃焼させることが難しく、製紙用として有用に利用できるレベルの白色度を有する再生粒子凝集体を得るためには長時間の燃焼を必要とするが、本発明においては、脱水後の原料の水分率、酸素濃度、未燃率、粒度、平均粒子径を所定の範囲に調整することで燃焼時間を短く、且つ、25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上に調整した再生粒子凝集体を得ることができる。
25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)未満の場合は、脱墨フロス中に含まれるカオリン、タルク、炭酸カルシウム、二酸化チタン、シリカ、アルミナ等無機物の分解および焼結が進み、燃焼処理して得られた再生粒子凝集体を本発明において所望される粒子径まで粉砕するのに多大のエネルギーや時間を要するおそれがあるため好ましくない。
【0039】
本発明に係る再生粒子凝集体の構成成分の酸化物換算での割合に調整するための方法としては、脱墨フロスにおける原料構成を調整することが本筋ではあるが、乾燥・燃焼工程、燃焼工程において、出所が明確な塗工フロスや調整工程フロスをスプレー等で工程内に含有させる手段や、焼却炉スクラバー石灰を含有させる手段にて調整することも可能である。
例えば、脱墨フロスを主原料に、再生粒子凝集体中のカルシウムの調整には、中性抄紙系の排水スラッジや、塗工紙製造工程の排水スラッジを用い、シリカの調整には、不透明度向上剤としてホワイトカーボンが多量添加されている新聞用紙製造系の排水スラッジを、アルミニウムの調整には酸性抄紙系等の硫酸バンドの使用がある抄紙系の排水スラッジや、タルク使用の多い上質紙抄造工程における排水スラッジを用いることができる。
また、本発明で得られる再生粒子凝集体は、示差熱熱重量同時測定装置による示差熱分析において、700℃近傍で生じる炭酸カルシウムの分解(酸化カルシウムへの変化)における減量(率)が50%以上と成るように、本発明に基づいて脱墨フロスを燃焼制御することで、より正確にカルシウム成分の酸化の進行を抑制し、粒子が硬くなることを防止することができるので好ましい。
【実施例】
【0040】
本発明の実施例及び比較例を示す。
各種要因を変化させて、得られた再生粒子凝集体の品質を調べたところ、表1及び表2に示す結果が得られた。品質の評価は次記のように行った。
(硬質物質割合):X線回析 理学電気社製、RAD2Xを用いた。測定条件:Cu−Kα−湾曲モノクロメーター 40KV−40mA、発散スリット・1mm SS・1mm RS・0.3mm、走査速度・0.8度/分、走査範囲・2シータ=7〜85度、サンプリング・0.02度
(未燃率):電気マッフル炉を予め600℃に昇温後、ルツボに試料を入れ約3時間で完全燃焼させ、燃焼前後の重量変化から未燃分を算出した。
(ワイヤー摩耗度):プラスチックワイヤー摩耗度(日本フィルコン製 3時間)、スラリー濃度2重量%で測定した。
(生産性評価):原料の脱水効率、生産性、粉砕に必要な電力を4段階評価し、最も効率の良かった条件を◎、良かったものを〇、水効率、生産性、粉砕のいずれかに問題を見出したものを△、実操業困難なものを×とした。
(品質安定性):所定の方法で得られた微粒子の、白色度、粒子径、一定時間間隔における生産量の各項目について、変動程度を測定し、変動が少ない順にランク付けを行い、上位9位までを◎、10位から20位を〇、21位から23位を△、それ以下を×とした。
(見た目):目視で再生粒子凝集体の色を比較判断し、白色と灰色に区分した。
(示差熱分析):エスアイアイ・ナノテクノロジー株式会社製(型式 TG/DTA6200)を用い、測定条件を (1) 昇温速度 25〜1050 ℃:20℃/min、(2) 供給ガス 空気(酸素濃度約 5vol%)、(3) 供給ガス流量 約48ml/minにて測定した。
【0041】
【表1】

【0042】
【表2】

【0043】
【表3】

【産業上の利用可能性】
【0044】
本発明は、脱墨フロスを主原料として得られる再生粒子凝集体として適用可能である。
【符号の説明】
【0045】
10…原料、14…内熱キルン炉(第1燃焼炉)、32…外熱キルン炉(第2燃焼炉)。

【特許請求の範囲】
【請求項1】
古紙パルプを製造する古紙処理設備の脱墨工程においてパルプ繊維から分離された脱墨フロスを主原料とする原料を、脱水、乾燥、燃焼及び粉砕して得られる再生粒子凝集体であって、
燃焼温度500〜650℃で燃焼物の未燃率が2〜20質量となるように乾燥及び酸化燃焼する第1燃焼工程と、燃焼温度550〜750℃、燃焼時間10〜60分で再度燃焼する第2燃焼工程とを含む、少なくとも2段階の燃焼工程を経て得られ、
下記硬質物質の合計含有量が2.0質量%以下で、かつ白色度が70%以上である、
ことを特徴とする再生粒子凝集体。
硬質物質:Ca2Al2SiO7、CaAl2Si28
【請求項2】
前記脱水後の原料が前記第1燃焼工程に先立って粉砕機を通され、平均粒子径3〜40mmの範囲に調整されている、
請求項1記載の再生粒子凝集体。
【請求項3】
前記原料の前記第1燃焼工程での滞留時間が30〜90分である、
請求項1又は請求項2記載の再生粒子凝集体。
【請求項4】
前記第1燃焼工程後の燃焼物が平均粒子径2〜30mmとなるように調整されている、
請求項1〜3のいずれか1項に記載の再生粒子凝集体。
【請求項5】
25℃から800℃における示差熱熱重量分析において、重量減量割合が5%(TG)以上である、
請求項1〜4のいずれか1項に記載の再生粒子凝集体。
【請求項6】
再生粒子凝集体の表面にシリカが被覆されており、
カルシウム、ケイ素及びアルミニウムの質量割合がX線マイクロアナライザーを用いた元素分析にて酸化物換算で、前記シリカの被覆がされていない状態において30〜82:9〜35:9〜35、前記シリカの被覆がされた状態において30〜62:29〜55:9〜35である、
請求項1〜5のいずれか1項に記載の再生粒子凝集体。

【図1】
image rotate


【公開番号】特開2012−41670(P2012−41670A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2011−168884(P2011−168884)
【出願日】平成23年8月2日(2011.8.2)
【分割の表示】特願2007−22377(P2007−22377)の分割
【原出願日】平成19年1月31日(2007.1.31)
【出願人】(390029148)大王製紙株式会社 (2,041)
【出願人】(392019857)株式会社アクトリー (27)
【Fターム(参考)】