説明

凝視制御装置および眼球の凝視を制御するための方法

いくつかの眼科機器では、検査すべきまたは治療すべき患者が所定の方向を注視することが必要である。したがって操作者は、患者が凝視目標に実際に凝視しているか否か、およびそうでなくなった場合はそれがいつからかなのかについて、できるだけ客観的な情報を必要とする。本発明は、低コスト、短い応答時間および高精度で凝視を監視することを可能にするものである。眼球での凝視制御が、凝視の分光学的検出により、とりわけ中心窩または中心小窩での反射を、残りの網膜と比べて反射率が異なることに基づいて識別することにより、低コスト、短い応答時間および高精度で達成される。本発明は、眼科学に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可視光のための固定光源と、固定光源を眼底に結像するための光学系とを有する、眼科機器用の凝視制御装置、および眼球の凝視を制御するための方法に関する。
【背景技術】
【0002】
いくつかの眼科機器では、検査すべきまたは治療すべき患者が所定の方向を注視することが必要である。この位置合わせは、通例、測定または治療の正確さにとって、したがって治療の成功にとって極めて重要である。これはとりわけ、屈折計、波面収差計、および屈折レーザに当てはまる。
【0003】
通例、患者の視野には、患者が視覚固定すべき可視の凝視目標が準備される。したがってさらなる措置なしでは、機器の操作者、すなわち検査者または医療者は、患者がその指示を守っていることを信用せざるを得なかった。しかしとりわけ長時間にわたると、患者が凝視状態を止める確率が高くなる。人の眼球は、とりわけ毎秒約600°までの速度でいわゆるサッケード運動を実施することができ、そのため短時間内で視線方向の急激な偏向が発生し得る。診断結果または治療結果のばらつきは、凝視が不安定であることから生じるのがしばしばである。とりわけ、子供、盲人、およびその他の身障者では凝視の維持および監視が困難である。したがって操作者は、患者が凝視目標に実際に凝視しているか否か、およびそうでなくなった場合はそれがいつからなのかについて、できるだけ客観的な情報を必要とする。
【0004】
この目的のために従来技術では種々のアプローチが公知である。たとえば米国特許出願公開第2006/0142742号は、UVレーザを備える眼科学治療機器を記載しているが、この機器では患者の網膜上に光点を形成する付加的な光線が視覚固定のために準備される。カメラにより、網膜の平面の画像が中心窩の領域で記録される。凝視を監視するために画像に基づいて、光点が中心窩上にあるかどうかが検査される。瞳の重心に基づいて、または瞳に対する光点の相対位置に基づいて凝視を監視するために、瞳の画像を追加で記録することができる。この形式の凝視制御は複数の欠点を有する。まず、十分な監視精度を達成するためには、ピクセル数の大きな2次元画像センサが必然的に必要である。その結果、画像記録周波数の上限が制限される。なぜなら1つにはセンサの読み出しに時間が掛かり、もう1つには少なくとも画像部分のその後の評価が、データ量のため比較的長く掛かるからである。そのため凝視の喪失への反応が比較的遅くなり、眼球運動が高速である場合には、対応する危険性を伴う。
【0005】
米国特許第6027216号には、眼底を照明し、そこから後方散乱される光線を、偏光感知性の検出器によって記録する凝視監視方法が記載されている。照明光と後方散乱された光との間の偏光の変化に基づいて、後方散乱が中心窩で行われたか、それとも網膜の残りの部分で行われたかが決定される。中心窩での後方散乱は、患者による視覚固定に対する指標として用いられる。欠点は、偏光感知性の検出にはコストが掛かることである。とりわけ偏光の変化は、角膜および水晶体での減偏光のような望ましくない影響に比べて小さいため、中心窩での後方散乱と網膜の残りの部分での後方散乱との間の区別には比較的大きな不確定性がつきまとう。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の基礎とする課題は、冒頭に述べた眼科機器および眼球の凝視を制御する方法を改善して、低コスト、短い応答時間および高精度で凝視を監視できるようにすることである。
【課題を解決するための手段】
【0007】
この課題は、特許請求の範囲に記載の特徴を有する眼科機器によって、および特許請求の範囲に記載の特徴を有する方法によって解決される。
本発明の有利な形態は、特許請求の範囲に記載されている。
【0008】
眼球での凝視制御が、分光学的に擬凝視を検出することによって低コスト、短い応答時間、かつ高精度で達成される。コストの掛かる偏光測定は必要ない。
本発明によれば、この分光学的検出は、とりわけ、中心窩および中心小窩のうちの少なくとも一方での反射の場合に、網膜での反射の場合とは異なる反射率の比を有する、少なくとも2つの波長を放出するための少なくとも1つの測定光源と、測定光源を眼底の少なくとも一部の上に結像するための光学系と、この2つの波長の強度を、眼底における反射後にそれぞれの検出信号の形式で別々に検出するための少なくとも1つの検出器とによって達成される。ここで測定光源は、固定光源と同じであってもよく、また固定光源とは別に配置されてもよい。後者の場合、測定光源自体は、さらに2つまたは3つ以上の個別の光源からなるものでもよい。複数の光源の光線を、ビームコンバイナを介して合波するのが適切である。2つの測定波長は、スペクトルの不可視領域、たとえば赤外線領域にあってもよい。固定光源だけは必然的に可視波長の光(以下、固定波長とも称する)を放出しなければならない。しかし固定光源と測定光源とが(少なくとも部分的に)同じ場合には、固定光源の1つまたは複数の可視波長を測定波長として使用することができる。たとえば固定光源が第1の測定波長を、測定光源が第2の測定波長を放出することもでき、また測定光源が、測定波長の他に固定波長をも放出することもできる。ただしこれは、この固定波長が測定波長の1つとして、または測定波長に加えて放出される場合である。固定光源は好ましくは少なくとも近似的に点状であり、測定光源も好ましくは少なくとも近似的に点状である。測定光源は好ましくは、眼底に点状に結像されるが、固定光源と同じ場合にはこの条件は必然的に満たされる。そして検出器が、網膜上における点状結像の標的部位で反射された測定波長の強度を記録するのが適切である。
【0009】
網膜の中心には、直径約3mmのいわゆる黄斑(Macula lutea)がある。黄斑の中心には、中心窩、すなわち直径約1.5mmの窪みがある。凝視された対象物は中心窩に結像される。そこでは視覚能力の空間的分解能がもっとも高い。最後に、中心窩の中心に直径約0.35mmの中心小窩がある。視覚認知はほとんどが中心窩の領域で行われ、中心小窩の領域では錐体細胞を介してだけ行われる。黄斑の残りの領域では、桿体と錐体の密度はほぼ同じであり、一方、網膜の残りの部分では錐体の密度は黄斑から離れるにつれて減少する。本発明は、中心窩(およびとりわけ中心小窩)が、周囲の網膜(黄斑の残りの面も含める)とはスペクトル的に異なる反射性を有するという知識に基づくものである。したがって反射の位置は、適切な波長において入射強度と反射強度とを比較することにより反射率を求め、予想値と比較することにより、原理的に識別することができる。中心窩/中心小窩が残りの網膜とは異なる反射率を有する場合の波長がこの目的に適している。コストの掛かる偏光測定は必要ない。
【0010】
本発明によれば、使用される少なくとも2つの測定波長の反射率の比が、中心窩/中心小窩と網膜の残りの部分とで異なるようにされる。言い替えると、網膜での反射の際の第1の波長の反射率Rλ1、Retina、網膜での反射の際の第2の波長の反射率Rλ2、Retina、中心窩/中心小窩での反射の際の第1の波長の反射率Rλ1、Fove(ol)a、および中心窩/中心小窩での反射の際の第2の波長の反射率Rλ2、Fove(ol)aに関して次の条件が満たされなければならない。
【0011】
λ1、Retina/Rλ2、Retina≠Rλ1、Fove(ol)a/Rλ2、Fove(ol)a
凝視制御の特異性は、3つおよび4つ以上の測定波長を使用することにより高めることができる。これらの波長は、それらの反射率の比がペアで異なるという条件を満たさなければならない。原理的には、本発明によれば、網膜での反射の際の反射率が、中心窩/中心小窩での反射の際の反射率と異なる、ただ1つの測定波長だけを使用することもできる。
【0012】
λ、Retina≠Rλ、Fove(ol)a
しかしこの場合、エラー光を、検出された強度から分離することが必要であり、そのため凝視制御のコストが、複数の波長を使用する場合よりも格段に高くなる。
【0013】
凝視状態と非凝視状態との客観的な区別は、少なくとも2つの異なる測定波長において強度をとりわけ繰り返し測定し、強度値に対応する2つの検出信号の比を求め、所定の値または所定の値領域と比較することによって、反射部位(中心窩/中心小窩または網膜)を識別することにより、低コストで短時間に高精度で達成される。次いで比較結果に依存して結果信号が出力される。これは電気的、音響的、または電磁的、とりわけ光学的な結果信号でよい。結果信号は連続値を取ることができ、また離散値(たとえば2進値)だけを取ることもできる。これはスカラー結果信号でも多次元結果信号でもよい。たとえば凝視状態から非凝視状態への移行を識別する場合には、警告音を出力することができる。その代わりに、またはそれに加えて、結果信号は、固定光源と視線方向との間の距離、とりわけ方向を示すことができる。
【0014】
好ましくは、少なくとも1つの検出器への光線路と、少なくとも1つの測定光源への光線路は部分的に同じである。結合はたとえばビームスプリッタによって行うことができる。このような凝視制御装置はコンパクトに構成することができ、そのうえ反射率の決定の際に高精度を可能にする。
【0015】
別の形態では、それぞれ検出信号を発する検出器が2次元フィールドに配置され、不可視測定波長だけを放射する測定光源が対応して平面状に広がって構成され、測定光源は患者から見ると固定光源を少なくとも部分的に取り囲む。これにより中心窩/中心小窩に対する方向指示、またはその時の視線方向を決定することができ、とりわけ結果信号の構成部分として出力することができる(位置分解能のある凝視検出)。その際に、検出器が網膜の位置上に一対一に配列されていると適切であり、これにより反射率と空間配置に基づき、どの位置から網膜上に中心窩/中心小窩の結像が行われたかを決定することができる。
【0016】
中心窩、とりわけ中心小窩での反射の場合に、網膜の他の部分での反射の場合と異なる反射率の比を有する、それぞれ2つの波長を有し、眼底に点状に結像可能な複数の個別の測定光源と、網膜上の点状の結像のそれぞれの標的部位から反射された測定波長のそれぞれの強度を記録する、割り当てられた検出器とを備える代替形態も有利である。この形態によっても、中心窩/中心小窩のための方向指示またはその時の視線方向を決定することができ、とりわけ結果信号の構成部分として出力することができる。たとえば4つの測定光源と割り当てられた検出器を、患者の視野のそれぞれの象限に配置することができる。この形態では、好ましくは各測定光源の位置にそれぞれ1つの固定光源が配置される。または、測定波長の1つまたは追加の固定波長がスペクトルの可視領域にあることにより、測定光源が固定光源としても働く。
【0017】
光源を種々異なる視距離に調整可能に投影することのできる実施形態も有利である。これにより患者の視障害を補償することができる。たとえば眼鏡装着者に対しては、光源を適切な距離に結像させることにより、メガネなしでの眼科機器の使用が可能になる。
【0018】
さらに、有利には、分光学的評価のために使用される検出信号、またはそこから求められた少なくとも1つの比を、所定の時間にわたり、とりわけ眼球のサッケード運動の合間の眼球の平均滞留時間より長い時間、たとえば20ms〜100msの持続時間にわたり平均する。この平滑化は、S/N比の改善に役立ち、これにより凝視制御の精度が向上する。
【0019】
眼球に入射される測定光線のエネルギーを十分に小さく維持するために、かつ眼球の最大線量の限界値を遵守し、しかしそれでも十分な強度を得るために、そして検出の際に良好なS/N比を達成するために、少なくとも測定波長を放出するための少なくとも1つの測定光源が好ましくはパルス駆動される。好ましくは、すべての測定波長をパルスで放出することができる。
【0020】
比較に使用される値または値領域が、中心窩、とりわけ中心小窩での2つの波長の反射に対応していると適切である。これにより僅かなコストで、患者がその時に固定光源を凝視しているか否かを示す2進結果信号が得られる。
【0021】
網膜と中心窩、とりわけ中心小窩での反射の比を、個人の眼球について最初に正規化しておくのが有利である。これは、中心窩とりわけ中心小窩での反射の際の検出信号の比に対する第1の基準値と、網膜での反射の際の検出信号の比に対する第2の基準値を決定することによって行われる。この正規化はたとえば、交互にスイッチオンされる2つの固定光、すなわち測定軸上の固定光と測定軸から離れた固定光とによって可能にすることができ、これにより眼球は交互に凝視と非凝視をする。そして患者はたとえばまず、分光学的検出の光軸上にある一方の固定光源を注視することが求められ、それに続いて第1の基準信号が検出され、そこから反射比に対する第1の基準値が決定され、続いて患者は分光学的検出の光軸から離れた他方の固定光源を注視することが求められ、それに続いて第2の基準信号が検出され、そこから反射比に対する第2の基準値が決定される。第1の基準値は、認識すべき眼球の凝視状態に対応し、第2の基準値は非凝視状態に対応する。2つの基準値に基づいて、凝視が存在していることを識別するための基準を高精度に決定することができる。たとえば両基準値から決定された中心窩および網膜での反射比の平均値、またはその所定の小数部分を閾値として設定することができ、それより上では中心窩(または中心小窩)での反射であると結論することができる。
【0022】
患者による凝視方向の切換えが必要である、2つの固定光源による異なる方向からの照明の代わりに、向きの異なる検出器を使用することにより、正規化のために、2つまたは3つ以上の方向から同時に基準信号を記録することができる。連続的な記録も可能である。その代わりに、調整可能な光線偏向装置(英語で「スキャナ」)を使用し、基準信号を眼底の異なる個所から、たとえば一度は中心窩/中心小窩から、もう一度は網膜から連続的に記録することにより、2つの基準信号に対して同じ検出器を使用することもできる。
【0023】
さらに基準値に基づいて、中心窩と網膜との反射比のコントラストが凝視の確実な検出のために十分であるか否かを決定することができる。たとえば基準値の商を出し、所定のコントラスト閾値と比較することができる。たとえば網膜の色素障害のため、コントラストが不十分な場合(たとえばコントラスト閾値を下回る場合)、操作者はそれについて示唆を受け、凝視を手動で検査するための措置をとらなければならない。
【0024】
有利には、結果信号に応じて、とりわけ評価ユニットまたは制御ユニットによって画像記録または治療を開始することができる。これにより、ヒトによる追加の応答時間が回避され、したがって画像記録または治療が、たとえば凝視された状態で始まる。遅延が少ないことの利点は、本発明によれば、一般的に眼科機器の運転時に、(少なくとも)1つの眼球が凝視目標に凝視していることを識別し、それに続いて眼球の画像記録または眼球の治療が開始されるか、および眼球の運動追跡が固定されるかのうちの少なくとも一方によって達成することができる。対応して本発明は、評価ユニットを備える、眼科機器用の凝視制御装置も含むものである。この評価ユニットは、眼球による凝視標的の凝視状態を識別し、これに基づいて眼球の画像記録または眼球の治療を開始すること、および眼球の運動追跡を固定することのうち少なくとも一方を行う。運動追跡は、公知のやり方でたとえば眼球の瞳を反復して画像記録することにより行うことができる。とりわけ、すべての場合に、画像記録または治療を、凝視が喪失されたことが識別された場合に自動的に中断することができる。画像記録または治療の種類に応じて、凝視が再びなされたことが検出された場合には、場合により画像記録または治療を再開することができる。
【0025】
決定された反射比の値を漸次的に判定することにより、測定結果および眼科機器の画像のうちの少なくとも一方の評価および重み付けのうちの少なくとも一方を行うことができる。そのために機器は一連の測定値および画像のうちの少なくとも一方を記録し、その間に本発明のやり方で、測定値および画像のうちの少なくとも一方ごとにその時の反射比をその時の固定度の値として決定し、固定度のそれぞれの値をその測定値および画像のうちの少なくとも一方に割り当てる。そして固定度のそれぞれの値に基づいて、機器によって記録された測定値および画像のうちの少なくとも一方の重み付けされた平均値を決定することができる。これはたとえば、固定度が小さすぎる場合に特定の測定値および一連の画像のうちの少なくとも一方を重み付けゼロにより除外できることを意味する。極端な場合、一連の記録のうちで最高の固定度をもつ、単一の測定値または単一の画像が選択され、示される。
【0026】
好ましい一実施形態では、固定光源の変調が結果信号に依存して行われる。これは結果信号の、固定光の強度へのフィードバックと称することもできる。たとえば患者が固定光源に、もはや凝視していないこと、すなわち固定光がもはや中心窩で反射されないことが検出された場合、固定光源は点滅を開始する。視覚的刺激により、患者は無意識に固定光を再び注視するようになる。
【0027】
有利には、少なくとも1つの測定光源の強度変調が行われる。これにより、2つ(または複数)の測定波長の強度を測定するために、1つの検出器しか必要なくなる。このことは、波長ごとに異なる周波数で変調し、反射された測定波長を1つの共通の検出器によって検出し、その際に続いてたとえば、いわゆるロックイン技術によりそれぞれの検出信号を電子的に分離することによって、または波長ごとに周波数は同じであるが位相をずらして変調し、波長を1つの共通の検出器で位相感知的に検出することによって達成される。
【0028】
少なくとも1つの検出器での共焦点検出を伴う構成が特に好ましい。考察される反射部位に対して共役な点で共焦点検出することにより、反射率の測定を大きな空間分解能で行うことが可能になる。
【0029】
本発明の一実施形態では、虹彩の画像記録が、瞳の、とりわけ瞳中心の、光学的基準軸を基準とする角膜頂点に対する相対的位置を決定するために、カメラにより記録される。その時の頂点Vは、光学的基準軸に沿ってカメラにもっとも近い角膜の点である。言い替えると、光軸を基準とする頂点は、光軸上への直交投影がカメラの入射光学系に対してもっとも小さな距離を有する表面の点である。その代わりに、カメラの光軸の視線方向での絶頂点(最高点)を、またはカメラの光軸を基準にした極大点または極値点を、頂点として定義することもできる。頂点の位置を、角膜でのプルキンエ反射に基づいて決定することが適切である。これは、本発明の凝視制御装置により固定光源の凝視が識別された場合に、凝視制御装置自体によって、または上位の眼科機器によって行うことができる。これにより、決定された瞳と頂点の関係を、識別された凝視に属する視線方向に割り当てることができる。瞳と頂点との位置関係は視線方向によって変化するので、凝視として識別された状態で記録された画像またはそれから決定された瞳と頂点の関係を、正しい凝視に対する基準として使用することができる。いくつかの診断および治療方法のうちの少なくとも一方では、その時の瞳と頂点の関係が別の目的のために決定され、凝視制御のためにも利用することができる。とりわけ位置分解能のある凝視検出を行う構成では、複数の瞳と頂点の関係を(とりわけ虹彩画像の形で)様々な凝視方向について決定し、記憶することができる。このような支持点の数と密度が十分な場合、たとえば補間により眼球運動の認識を行うことができる。1つまたは複数の瞳と頂点の関係の決定は、有利には、後での利用に関係なく、とりわけ手術前に実施することができる。
【0030】
好ましくは、凝視制御装置は、2つの眼球の凝視を同時に監視できるようにするために、両眼用に構成することができる。これは、両眼で眼球の測定を行う機器で利用することができる。たとえば立体視または眼球の誤調整(斜視)を分析するために、両側での凝視検出が役立ち得る。この目的のために、とりわけ位置分解能のある凝視制御を、視線方向の決定と共に使用することができる。
【0031】
有利な一形態では、本発明の凝視制御装置がモジュールとして構成されており、したがって従来の固定光源を僅かなコストで置き換えることができる。
本発明はまた、本発明の凝視制御装置ならびに本発明の方法を実施するように適合されたコンピュータプログラムまたは評価ユニットを備える眼科機器をも包含する。コンピュータプログラムは、この目的のために、たとえば眼底の少なくとも一部を、中心窩、とりわけ中心小窩における反射の場合に、網膜における反射の場合と異なる反射率比を有する2つの波長の光で、少なくとも1つの測定光源によって照明するためのソフトウエアモジュールと、2つの波長の強度を少なくとも1つの検出器により、眼底での反射後のそれぞれの検出信号として別個に検出するためのソフトウエアモジュールと、2つの検出信号の比を決定するためのソフトウエアモジュールと、この比を所定の値または所定の値領域と比較するためのソフトウエアモジュールと、比較結果に依存して結果信号を出力するためのソフトウエアモジュールとを含むことができる。その際に、単一のソフトウエアモジュールが上記の課題のすべてを満たすこともできる。その代わりに、少なくとも1つの単一のソフトウエアモジュールが上記の課題のいくつかを満たすこともできる。しかし、これは5つまたは6つ以上の異なるソフトウエアモジュールであってもよい。
【0032】
以下、本発明を例示的実施形態に基づき詳細に説明する。
【図面の簡単な説明】
【0033】
【図1】凝視制御装置を有する眼科機器の図。
【図2】別の凝視制御装置の図。
【図3】この凝視制御装置の測定光源の配置図。
【図4】第3の凝視制御装置の図。
【図5】第4の凝視制御装置の図。
【図6】第5の凝視制御装置の図。
【図7】別の眼科機器の図。
【図8】第6の凝視制御装置の図。
【図9】第7の凝視制御装置の図。
【図10】第8の凝視制御装置の図。
【発明を実施するための形態】
【0034】
すべての図面中、一致する部分は同じ参照符号を有する。
図1は、眼科機器1、たとえば眼球3の凝視を監視するための凝視制御装置2を備える屈折レーザを概略的に示す。凝視制御装置2は、たとえば近似的に点状であり第1の測定光源5.1として同時に用いられる固定光源4と、第2の測定光源5.2と、光源4および5に割り当てられた絞り6と、結像光学系7と、ダイクロイックカラースプリッタ8と、2つのカラーニュートラルビームスプリッタ9と、やはりそれぞれ1つの絞り6を割り当てられた2つの光検出器10.1および10.2と、出力インタフェース12を備える制御・評価ユニット11とを含む。出力インタフェース12は、たとえば出力ユニット13としての圧電ブザーと接続されている。固定光源4は、たとえばもっぱら固定波長λの可視光を放出し、この可視光は第1の測定波長λとしても使用される:λ=λ=590nm。第2の測定光源5.2は、たとえばもっぱら不可視の第2の波長λ=1050nmの赤外光を放出する。カラースプリッタ8は、第1の測定波長λはこれを通過し、一方、第2の測定波長λはこれで反射されるように設計されている。2つの光源4/5.1と5.2は、2つの測定波長λ、λの光強度が所定の比にたとえば電子的に調節される。その代わりに、基準測定に基づいて相対強度を決定することもできる。
【0035】
光源4と5が制御・評価ユニット11によってスイッチオンされると、患者が自分の眼球3を固定光源4に凝視している場合、絞り6と光学系7が光源4、5を、ビームスプリッタ8と9を介してそれぞれ点状に、眼底3.1上の共通の点P上に結像する。この点Pは、眼球3の位置に応じて、中心窩3.2(とりわけ中心小窩)または残りの網膜3.3の領域にあることが可能である。検出器10の前方の絞り6は、照明された点Pと共役な面にそれぞれ配置されており、したがって検出器10での検出はこの例示的実施形態では共焦点で行われる。照明光線路Bと検出光線路Dをビームスプリッタ8と9によって結合することにより、眼球3から見てすべての光源4、5が光学的に同じ位置に現れる。共焦点検出と関連して、検出器10は対応してもっぱら同じ点Pからの光を記録し、それから電気信号S、Sを生成する。これらの電気信号は、2つの測定波長λ、λの記録された光強度を別個に表す。
【0036】
使用される固定波長および測定波長λ、λは、中心窩3.2と残りの網膜3.3の領域との間で反射が大きく異なるという条件、とりわけ中心窩3.2および網膜3.3での反射の際にそれらの反射率の比が異なるという条件を満たす。したがってこれらの波長はそれらの相対的スペクトル反射性が、中心窩3.2と網膜3.3において異なる。
【0037】
λ1、Retina/Rλ2、Retina≠Rλ1、Fove(ol)a/Rλ2、Fove(ol)a
凝視制御のために、制御・評価ユニット11は光源4と5を持続的にスイッチオンし、これら2つの電気信号S、Sを、デジタル化し、互いの比に変換することによって評価する。代替構成(図示せず)では、これをアナログ電気的に行うこともできる。制御・評価ユニット11は、得られた値Q=S/Sをたとえば所定の閾値と比較し、この閾値より上では反射率の相違に基づいて中心窩3.2または中心小窩(図示せず)での反射であると結論することができる。たとえば中心窩3.2は、その黄色色素の故に第1の測定波長λを第2の測定波長λよりも有意に強く反射する。その結果、相対的反射率が、したがって第1の測定波長λの測定可能な強度が、中心窩3.2での反射の場合に、残りの網膜3.3での反射の場合よりも大きくなる。測定波長λに関しては、たとえばほぼ反対の反射挙動が当てはまる。
【0038】
したがって2つの測定波長λ、λの測定された光強度の比に基づいて、測定された反射が中心窩3.2で行われたのか、それとも残りの網膜3.3の領域で行われたのかを決定することができる。眼球3が固定光源4上に凝視されている限り、固定光源4の点状結像の標的Pが、したがって検出器10で測定された反射の部位も中心窩3.2上にある。閾値と比較することにより、制御・評価ユニット11は、測定の時点で正しい凝視が存在していたか否かを決定することができる。測定および比較は高速に実行することができるので(画像処理は不要である)、結果信号を短い応答時間で出力することができる。もちろん電気信号の商は、使用される波長に応じて逆に生成されてもよい:Q=S/S。商の生成に応じて、所定の閾値を上回るか、それとも下回るかに基づいて凝視を識別することができる。
【0039】
得られた値が閾値より小さければ、制御・評価ユニット11は、この例示的実施形態ではデジタル電気結果信号として「1」のレベルを、インタフェース12を介して出力する。これに基づいて出力ユニット13は警告音を形成し、操作者および患者に凝視が喪失されたことが通知される。得られた値が閾値より大きいかまたは等しければ、「0」のレベルが結果信号として出力される。これにより警告音は発生しないか、または前にスイッチオンされていた場合には遮断される。
【0040】
代替構成(図示せず)では、結果信号が凝視の喪失を示すと直ちに検査および治療のうちの少なくとも一方を中断するために、結果信号が前述の出力ユニット13の代わりに、またはそれに加えて、眼科機器1の制御ユニット(図示せず)によって使用される。それに加えてまたはその代わりに、結果信号に基づいて、固定光源4が眼球3により正しく凝視されていることが確実である場合、検査および治療のうちの少なくとも一方を自動的に開始することもできる。
【0041】
偶然の眼球運動が凝視と識別されるのを回避するために、一連の動作がトリガされる前に、識別された凝視が最小持続時間の間、継続しなければならないという追加の条件を設定することができる。最小持続時間の検査は、凝視制御装置2自体で、または後置された眼科機器1で行うことができる。たとえば制御・評価ユニット11は、凝視を示す比較結果を最初に決定する際に、時間制御カウンタを初期化することができる。たとえば1秒の最小持続時間の経過まで凝視が中断せずに維持された場合だけ、凝視を示す結果信号が出力される。
【0042】
ダイクロイックカラースプリッタ8の代わりに、測定波長を選択するために、ニュートラルスプリッタをカラーフィルタ、格子およびプリズムのうちの少なくとも一方と組み合わせることもできる(図示せず)。別の構成(図示せず)では、3つ以上の測定波長を使用することができる。この場合、3つまたは4つ以上の電気信号Sが測定され、たとえばペアで比に換算される。正しい凝視を識別するために、この場合たとえばこのようにして求められた各商について、それぞれの閾値との別個の比較が実施される。この場合、結果信号において、それぞれ所定の条件(上回りまたは下回り)の各々が満たされている場合にだけ、正しい凝視が示される。
【0043】
検出器10が小さなアパーチャを有する場合、検出器10の前方の絞り6は省略することができる(図示せず)。この場合、検出器10が絞り6の代わりに共焦点面に配置される。たとえば絞り6なしで共焦点面に配置された位置分解能のあるセンサの個々のピクセルを、共焦点検出器10として使用することができる。
【0044】
別の実施形態(図示せず)では、結像光学系7をモータ制御部によって、光学系7が眼球3の異なる視距離上に調整可能であるように構成することができる。この目的のために、このような実施形態では制御・評価ユニット11は、モータ制御部の調整のためにモータ制御部と接続されている。
【0045】
図2は、検出器10が第1のカラースプリッタ8に、光源4、5が第2のカラースプリッタ8に結び付けられている一代替実施形態を示す。照明光線路Bと検出光線路Dがニュートラルスプリッタ9で結合される。その他の点は、図1の説明を参照されたい。
【0046】
図3には、図1の実施形態と大部分一致する凝視制御装置2が示されている。ただし図1の実施形態との相違点は、光記録のために2つの測定波長λ、λに対して単一の検出器10しか設けられていないことである。検出器10は単一の電気信号S1/2しか出力しない。分離の目的のために、2つの測定光源5.1、5.2は、したがって固定光源4も強度変調される。その結果、光源は高周波で点滅する。これは2つの測定光源5.1と5.2について、同じ周波数または異なる周波数で行うことができる。前者の場合、変調は位相をずらして行われる。これは図4に概略的に図示されている。ここで検出器10は、位相感知的に一方または他方の測定波長λ、λを記録し、その結果、電気信号S1/2は制御・評価ユニット11によりブロックごとに、第1の信号Sまたは第2の信号Sとして解釈される。異なる変調周波数で行う後者の変調の場合、2つの測定波長λ、λの検出強度を電子的に、たとえば変調信号を基準として使用するロックイン技術によって、分離する必要がある。少なくとも可視の固定光源および第1の測定光源4/5.1の変調周波数が、どちらの変調においても眼球3が変調を知覚できないほど高いことが適切であり、たとえば50Hz、100Hz、または1kHzである。とりわけ、異なる周波数による変調は、ビームスプリッタ/フィルタ/格子/プリズムによる静的な色選択と組み合わせることができる。
【0047】
図5は、図2の実施形態と大部分一致する凝視制御装置2を示す。ただし図2の実施形態との相違点は、個別検出器10.i(i=1...N、たとえばN=256)の2次元フィールドと、対応して面状に眼底3.1に結像される測定光源5.1および5.2が、眼底3.1に点状に結像される別個の固定光源4の横に設けられていることである。2つの光源5.1と5.2は、2つの測定波長λ、λの光強度が所定の比にたとえば電子的に調節される。その代わりに、相対的強度を、基準測定に基づいて決定することもできる。眼球3から見ると、面状の測定光源5.1と5.2(眼底3.1に白く示される)は、点状の固定光源4を完全に取り囲む。凝視制御装置2から見ると、個別検出器10.iは眼底3.1の異なる位置に向いており、したがって中心窩3.2(またはとりわけ中心小窩)の位置を、異なって反射された測定波長λ、λの強度に基づいて決定することが可能になる。測定光源5.1と5.2はこの目的のために、上の図3で説明したように強度変調されて駆動される。固定光源4は持続的に発光する。各個別検出器10.iごとに別々の電気信号Si、1/2を測定し、検出器ごとに電気信号Si、1/2の比に換算することにより、各個別検出器10.iごとに、中心窩3.2がその検出器に結像されたか否かを識別することができる。検出器フィールドにおける中心窩3.2の結像の相対位置から、眼球3のその時の視線方向を決定し、出力インタフェース12を介して出力することができる。そのような場合にさらなる処理のため、眼科機器1の評価ユニット(図示せず)が、インタフェース12に接続されていることが適切である。眼球3が固定光源4を不鮮明にしか凝視していない場合、中心窩3.2はたとえばぼやけた斑点として当該の検出器10.iに結像される。この場合、中心窩3.2の画像の位置として、たとえば斑点の中心が決定される。
【0048】
図6にも、図1の実施形態と大部分一致する凝視制御装置2が示されており、したがってその限りではその説明を参照されたい。ただしそれとの相違点は、それぞれ固有の固定光源4を備える独立した複数の照明光線路と検出光線路B、Dが設けられていることである。分かりやすくするために、2つの照明光線路と検出光線路B、Dしか図示されていない。すべての光線路B、Dにおいて、測定波長λ、λの同じペア(3つ以上の波長がある場合には3組、4組など)を使用することができる。この配置により同様に、位置分解能のある凝視検出が可能である。なぜなら、一般的に凝視が存在している限り、どの固定光源4が眼球3によって凝視されるかを識別することができるからである。
【0049】
最後に図7は、たとえば外科治療用のフェムト秒レーザである眼科機器1を概略的に示しているが、この機器には凝視制御装置2に加えて、角膜3.4をコリメート照明するための光源13と、特に瞳3.6bの画像を記録するためのカメラ14とが装備されている。制御・評価ユニット11は、カメラ14の光軸OA(図示しないレーザの光軸と同じ)を基準とする角膜3.4の頂点Vの位置を、レーザの座標系(典型的にはzがレーザの光軸の方向であるデカルト座標x/y/z)で測定することができる。この測定は、制御・評価ユニット11が光源13とカメラ14を用いて、公知のようにプルキンエ反射を生成し、それに基づいてその時の頂点の位置を決定することによって行われる。患者のための凝視点(ここに図示されない凝視制御装置2の固定光源)は、光軸OAから離れている。この軸に平行に角膜3.4に入射するコリメート光は、角膜3.4の最高点、すなわち頂点Vからだけカメラ14に反射される。他の場所からの反射はカメラ14に達しない(矢印によって示されている)。制御・評価ユニット11が凝視制御装置2を用いて、眼球3が凝視制御装置2の固定光源(ここには図示されない)を凝視していることを識別すると、そのうえたとえば瞳3.6の画像が記録される。この場合、その時の頂点V(固定頂点)と、眼球固定の基準点、たとえば瞳3.6の重心もしくは中点、または角膜輪部との相対位置が、記録された画像に基づいて2次元ベクトルの形で決定され、記憶/出力され、または記録された全画像の形で、凝視状態に対する基準として記憶/出力される。
【0050】
すべての実施形態で、点状の固定光源の代わりに、注視すべき点を一義的に定義する別の構成、たとえば十字形の固定光源を使用することができる。
図8には、検出器10の光軸から離れて配置された追加の固定光源15を備える凝視制御装置2の実施形態が示されている。この実施形態により、眼球3に対する個別の正規化が可能になる。眼球3の視線VAが第1の固定光源4上に向けられているとき、検出器10により眼球3の凝視状態に対する第1の基準信号を決定することができる。なぜなら、測定波長が中心窩3.2で反射されるからである。眼球3の視線VAが追加の固定光源15上に向けられているとき、検出器10により眼球3の非凝視状態に対する第2の基準信号を決定することができる。なぜなら、測定波長が中心窩3.2から離れて反射されるからである。第1の基準信号から第1の基準値を、第2の基準信号から第2の基準値を決定することができる。2つの基準値の算術平均値を、たとえば凝視を識別するための閾値として設定することができる。
【0051】
図9は、正規化手段を備える1変形実施形態を示す。ここでは第2の検出器10が第1の検出器16と同時に、第1の検出器10が記録する光とは別の場所で反射された光を記録する。眼球3の視線VAが固定光源4上に向けられているとき、記録される測定波長が中心窩3.2で反射されたので、第1の検出器10によって眼球3の固定状態に対する第1の基準信号を決定することができる。そして第2の検出器16によって眼球3の非固定状態に対する第2の基準信号を決定することができる。なぜなら記録される測定波長が、中心窩3.2から離れて反射されたからである。
【0052】
図10は、検出光線路内に調整可能な光線偏向装置17が配置された、正規化手段を備える別の実施形態を示す。光線偏向装置17を変位させることにより、検出光線路Dを偏向させることができ、これにより眼底の異なる部位からの検出信号を記録することができる。検出光線路Dが中心窩3.2上に向けられているとき、検出器10により眼球3の凝視状態に対する第1の基準信号を決定することができる。なぜなら、記録される測定波長が中心窩3.2で反射されたからである。検出光線路Dが網膜3.3の残りの個所に向けられているとき、検出器10により眼球3の非凝視状態に対する第2の基準信号を決定することができる。なぜなら、記録される測定波長が網膜3.3で反射されたからである。

【特許請求の範囲】
【請求項1】
眼科機器(1)用の凝視制御装置(2)であって、
眼球(3)による凝視を分光学的に検出する手段を備える、凝視制御装置(2)。
【請求項2】
可視光用の固定光源(4)と該固定光源(4)を眼底(3.1)上に結像するための光学系(7)とを有する、請求項1に記載の眼科機器(1)用の凝視制御装置(2)において、
中心窩(3.2)、とりわけ中心小窩での反射の場合に、残りの網膜(3、3)での反射の場合と異なる反射率の比を有する、少なくとも2つの波長の光を放出する少なくとも1つの測定光源(5.1、5.2)と、
眼底(3.1)の少なくとも一部の上に測定光源(5.1、5.2)を結像するための光学系(7)と、
眼底(3.1)での反射の後、それぞれ検出信号(S、S)として2つの波長の強度を別々に検出するための少なくとも1つの検出器(10、10.1、10.2)と
を備える、凝視制御装置(2)。
【請求項3】
2つの検出信号(S、S)の比を繰り返し判定し、所定の値または所定の値領域と比較し、比較結果に応じて結果信号を出力する評価ユニット(11)を備える、請求項1に記載の凝視制御装置(2)。
【請求項4】
少なくとも1つの検出器への光線路(D)と、少なくとも1つの測定光源(4)への光線路(B)が部分的に同じである、請求項1または2に記載の凝視制御装置(2)。
【請求項5】
それぞれ検出信号を有する検出器(10)の2次元フィールドと、患者から見て前記固定光源(4)を少なくとも部分的に取り囲み、且つ前記固定光源(4)に対応して平面状に広がった、不可視測定波長を放出するための測定光源(5)の構成とを備える、請求項1乃至3のいずれか1項に記載の凝視制御装置(2)。
【請求項6】
中心窩(3.2)、とりわけ中心小窩での反射の場合に、残りの網膜(3、3)での反射の場合と異なる反射率の比を有し、且つそれぞれ2つの波長を有する、眼底に点状に結像可能な複数の測定光源(5)を備える、請求項1乃至5のいずれか1項に記載の凝視制御装置(2)。
【請求項7】
異なる視距離における光源(4、5)の調整可能な投影を備える、請求項1乃至6のいずれか1項に記載の凝視制御装置(2)。
【請求項8】
分光学的検出の光軸上の固定光源(4)と、該分光学的検出の光軸とは離れた別の固定光源(15)とを備える、請求項1乃至7のいずれか1項に記載の凝視制御装置(2)。
【請求項9】
眼球による凝視標的の凝視状態を識別し、該凝視状態の識別に応答して、眼球の画像記録または眼球の治療を開始すること、および眼球の運動追跡を固定することのうちの少なくとも一方を行う評価ユニット(11)を備える、請求項1乃至8のいずれか1項に記載の眼科機器(1)用の凝視制御装置(2)。
【請求項10】
請求項1乃至9のいずれか1項に記載の凝視制御装置(2)を備える眼科機器(1)。
【請求項11】
方法であって、
眼球(3)による凝視を分光学的な検出によって制御する、方法。
【請求項12】
請求項11に記載の眼球(3)による凝視を制御する方法であって、
中心窩(3.2)、とりわけ中心小窩での反射の場合に、網膜(3、3)での反射の場合と異なる反射率の比を有する、2つの波長の光により、眼底(3.1)の少なくとも一部を、少なくとも1つの測定光源(5、5.1、5.2)によって照明する工程と、
眼底(3.1)での反射の後、該2つの波長の強度を、それぞれ検出信号(S、S)として、少なくとも1つの検出器(10、10.1、10.2)により別々に検出する工程と、
該2つの検出信号(S、S)の比を判定する工程と、
該比を、所定の値または所定の値領域と比較する工程と、
該比較結果に応じて、結果信号を出力する工程と
が実施される、方法。
【請求項13】
眼球による凝視目標の凝視を識別し、該識別したことに応答して該眼球の画像記録または眼球の治療を開始すること、および該眼球の運動追跡を固定することのうちの少なくとも一方を行う、請求項12に記載の眼科機器のための運転方法。
【請求項14】
測定波長の強度の検出中に、別の測定値および画像のうちの少なくとも一方が記録され、検出信号(S)の比に基づいて評価および重み付けのうちの少なくとも一方を行う、請求項12または13に記載の方法。
【請求項15】
比較に使用される値または値領域が、中心窩(3.2)、とりわけ中心小窩での2つの波長の反射に対応する、請求項2乃至14のいずれか1項に記載の対象。
【請求項16】
結果信号に応じて固定光源(4)を変調する、請求項2乃至15のいずれか1項に記載の対象。
【請求項17】
a)2つの波長に対して異なる周波数で少なくとも1つの測定光源(5、5.1、5.2)を強度変調し、反射された波長を1つの共通の検出器(10)で検出し、続いて検出信号(S、S)を電子的に分離するか、または
b)2つの波長に対して位相をずらした同じ周波数で少なくとも1つの測定光源(5、5.1、5.2)を強度変調し、該2つの波長を1つの共通の検出器(10)で位相感知的に検出する、請求項1乃至16のいずれか1項に記載の対象。
【請求項18】
少なくとも1つの検出器(10、10.1、10.2)における共焦点を検出する、請求項1乃至17のいずれか1項に記載の対象。
【請求項19】
瞳、とりわけ瞳中心と角膜の頂点との相対位置をカメラ(14)によって決定するための、虹彩の画像を記録する、請求項1乃至18のいずれか1項に記載の対象。
【請求項20】
少なくとも1つの測定光源(5.1、5.2)のパルスを駆動する、請求項1乃至19のいずれか1項に記載の対象。
【請求項21】
中心窩、とりわけ中心小窩での反射の際の検出信号の比に対する第1の基準値の決定と、網膜での反射の際の検出信号の比に対する第2の基準値を決定する、請求項1乃至20のいずれか1項に記載の対象。
【請求項22】
請求項11乃至14のいずれか1項に記載の方法を実施するように構成されたコンピュータプログラムまたは評価ユニット(11)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公表番号】特表2012−530573(P2012−530573A)
【公表日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2012−516699(P2012−516699)
【出願日】平成22年6月22日(2010.6.22)
【国際出願番号】PCT/EP2010/058854
【国際公開番号】WO2010/149672
【国際公開日】平成22年12月29日(2010.12.29)
【出願人】(503078265)カール ツァイス メディテック アクチエンゲゼルシャフト (51)
【氏名又は名称原語表記】Carl Zeiss Meditec AG
【住所又は居所原語表記】Goeschwitzer Strasse 51−52, D−07745 Jena, Germany